Abstract
This study focused on the function of hnRNP-R in the regulation of c-fos expression. We demonstrated that hnRNP-R accelerated the rise and decline phases of c-fos mRNAs and Fos proteins, allowing PMA to induce an augmented pulse response of c-fos expression. Then, we examined the role of the c-fos-derived AU-rich element (ARE) in hnRNP-R-regulated mRNA degradation. Studies with the ARE-GFP reporter gene showed that hnRNP-R significantly reduced the expression of GFP with an inserted ARE. Moreover, immunoprecipitation-RT-PCR analysis demonstrated that in R28 cells and rat retinal tissues, the c-fos mRNA was co-immunoprecipitated with hnRNP-R. These findings indicate that hnRNP-R regulates the c-fos expression in retinal cells, and that the ARE of c-fos mRNAs contributes to this regulation.
Keywords: hnRNP-R, Retina, c-fos, mRNA turnover, ARE
Full Text
The Full Text of this article is available as a PDF (497.2 KB).
Abbreviations
- ARE
AU-rich element
- DMSO
dimethyl sulfoxide
- GFP
green fluorescence protein
- PMA
phorbol 12-myristate 13-acetate
- SMA
spinal muscular atrophy
- UTR
3′-untranslated region
References
- 1.Sheng M., Greenberg M.E. The regulation and function of c-fos and other immediate early genes in the nervous system. Neuron. 1990;4:477–485. doi: 10.1016/0896-6273(90)90106-P. [DOI] [PubMed] [Google Scholar]
- 2.Kovacs K.J. c-fos as a transcription factor: a stressful (re)view from a functional map. Neurochem. Int. 1998;33:287–297. doi: 10.1016/S0197-0186(98)00023-0. [DOI] [PubMed] [Google Scholar]
- 3.Rahmsdorf H.J., Schonthal A., Angel P., Litfin M., Ruther U., Herrlich P. Posttranscriptional regulation of c-fos mRNA expression. Nucleic Acids Res. 1987;15:1643–1659. doi: 10.1093/nar/15.4.1643. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 4.Sariban E., Luebbers R., Kufe D. Transcriptional and posttranscriptional control of c-fos gene expression in human monocytes. Mol. Cell Biol. 1988;8:340–346. doi: 10.1128/mcb.8.1.340. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 5.Mitchell P., Tollervey D. mRNA turnover. Curr. Opin. Cell Biol. 2001;13:320–325. doi: 10.1016/S0955-0674(00)00214-3. [DOI] [PubMed] [Google Scholar]
- 6.Grosset C., Chen C.Y., Xu N., Sonenberg N., Jacquemin-Sablon H., Shyu A.B. A mechanism for translationally coupled mRNA turnover: interaction between the poly(A) tail and a c-fos RNA coding determinant via a protein complex. Cell. 2000;103:29–40. doi: 10.1016/S0092-8674(00)00102-1. [DOI] [PubMed] [Google Scholar]
- 7.Chen C.Y., Shyu A.B. Au-Rich Elements-Characterization and importance in messenger-RNA degradation. Trends Biochem. Sci. 1995;20:465–470. doi: 10.1016/S0968-0004(00)89102-1. [DOI] [PubMed] [Google Scholar]
- 8.Krecic A.M., Swanson M.S. hnRNP complexes: composition, structure, and function. Curr. Opin. Cell Biol. 1999;11:363–371. doi: 10.1016/S0955-0674(99)80051-9. [DOI] [PubMed] [Google Scholar]
- 9.Mourelatos Z., Abel L., Yong J., Kataoka N., Dreyfuss G. SMN interacts with a novel family of hnRNP and spliceosomal proteins. EMBO J. 2001;20:5443–5452. doi: 10.1093/emboj/20.19.5443. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 10.Rossoll W., Kroning A.K., Ohndorf U.M., Steegborn C., Jablonka S., Sendtner M. Specific interaction of Smn, the spinal muscular atrophy determining gene product, with hnRNP-R and gry-rbp/hnRNP-Q: a role for Smn in RNA processing in motor axons? Hum. Mol. Genet. 2002;11:93–105. doi: 10.1093/hmg/11.1.93. [DOI] [PubMed] [Google Scholar]
- 11.Rossoll W., Jablonka S., Andreassi C., Kroning A.K., Karle K., Monani U.R., Sendtner M. Smn, the spinal muscular atrophy-determining gene product, modulates axon growth and localization of beta-actin mRNA in growth cones of motoneurons. J. Cell Biol. 2003;163:801–812. doi: 10.1083/jcb.200304128. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 12.Kim T.D., Kim J.S., Kim J.H., Myung J., Chae H.D., Woo K.C., Jang S.K., Koh D.S., Kim K.T. Rhythmic serotonin N-acetyltransferase mRNA degradation is essential for the maintenance of its circadian oscillation. Mol. Cell Biol. 2005;25:3232–3246. doi: 10.1128/MCB.25.8.3232-3246.2005. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 13.Huang J., Chen X.H., Wu K., Xu P. Cloning and expression of a novel isoform of heterogeneous nuclear ribonucleoprotein-R. Neuroreport. 2005;16:727–730. doi: 10.1097/00001756-200505120-00014. [DOI] [PubMed] [Google Scholar]
- 14.Esnault S., Malter J.S. Hyaluronic acid or TNF-alpha plus fibronectin triggers granulocyte macrophage-colony-stimulating factor mRNA stabilization in eosinophils yet engages differential intracellular pathways and mRNA binding proteins. J. Immunol. 2003;171:6780–6787. doi: 10.4049/jimmunol.171.12.6780. [DOI] [PubMed] [Google Scholar]
- 15.Chen X., Guo L., Lin W., Xu P. Expression of Tra2beta isoforms is developmentally regulated in a tissue-and temporal-specific pattern. Cell Biol. Int. 2003;27:491–496. doi: 10.1016/S1065-6995(03)00072-6. [DOI] [PubMed] [Google Scholar]
- 16.Amemiya T., Kambe T., Fukumori R., Kubo T. Role of protein kinase C beta in phorbol ester-induced c-fos gene expression in neurons of normotensive and spontaneously hypertensive rat brains. Brain Res. 2005;1040:129–136. doi: 10.1016/j.brainres.2005.01.073. [DOI] [PubMed] [Google Scholar]
- 17.Humphries A., Carter D.A. Circadian dependency of nocturnal immediate-early protein induction in rat retina. Biochem. Biophys. Res. Commun. 2004;320:551–556. doi: 10.1016/j.bbrc.2004.06.006. [DOI] [PubMed] [Google Scholar]
- 18.Schiavi S.C., Wellington C.L., Shyu A.B., Chen C.Y., Greenberg M.E., Belasco J.G. Multiple elements in the c-fos protein-coding region facilitate mRNA deadenylation and decay by a mechanism coupled to translation. J. Biol. Chem. 1994;269:3441–3448. [PubMed] [Google Scholar]
- 19.Panchision D.M., Gerwin C.M., DeLorenzo R.J., Jakoi E.R. Glutamate receptor activation regulates mRNA at both transcriptional and posttranscriptional levels. J. Neurochem. 1995;65:969–977. doi: 10.1046/j.1471-4159.1995.65030969.x. [DOI] [PubMed] [Google Scholar]
