Abstract
This study focused on establishing and making a comprehensive functional characterization of an HEK-293-transfected cell line that would coexpress the enhanced yellow fluorescent protein-actin (pEYFP-actin) construct and the neurokinin type 1 receptor (NK1-R), which is a member of the seven transmembrane (7TM) receptor family. In the initial selection procedure, the cloning ring technique was used alone, but failed to yield clones with homogenous pEYFP-actin expression. Flow cytometry sorting (FCS) was subsequently used to enrich the pEYFP-actin-expressing subpopulation of cells. The enzyme-linked immunosorbent assay (ELISA), FCS and quantitative real-time reverse transcription/polymerase chain reaction (RT-PCR) were then employed to monitor the passage-dependent effects on transgene expression and to estimate the total β-actin/pEYFP-actin ratio. NK1-R was characterized via radioactive ligand binding and the second messenger assay. The suitability of the pEYFP-actin as a marker of endogenous actin was assessed by colocalizing pEYFP-actin with rhodamine-phalloidine-stained F-actin and by comparing receptor- and jasplakinolide-induced changes in the actin cytoskeleton organization. These experiments demonstrated that: i) both constructs expressed in the generated transfected cell line are functional; ii) the estimated pEYFP-actin: endogenous β-actin ratio is within the limits required for the functional integrity of the actin filaments; and iii) pEYFP-actin and rhodamine-phalloidine-stained F-actin structures colocalize and display comparable reorganization patterns in pharmacologically challenged cells.
Key words: Cytoskeleton, Actin filaments, HEK-293, Neurokinin type 1 receptor, Flow cytometry, Confocal microscopy
Full Text
The Full Text of this article is available as a PDF (9.7 MB).
Abbreviations used
- 7TM
seven transmembrane receptor
- Bmax
max. receptor number
- BSA
bovine serum albumin
- Ct
threshold cycle
- DMEM
Dulbecco’s modified Eagles’s Medium
- DNA
deoxyribonucleic acid
- D-PBS
Dulbecco’s phosphate-buffered saline
- ELISA
enzyme-linked immunosorbent assay
- F-actin
filamentous actin
- FCA
flow cytometry analysis
- FCS
flow cytometry sorting
- GFP
green fluorescent protein
- GPCR
G-protein coupled receptor
- HA
hemagglutinin
- HANK1-R
N-terminally HA-tagged human neurokinin-1 receptor
- HEK-293
human embryonic kidney cells
- HIFCS
heat inactivated fetal calf serum
- HRP
horseradish peroxidase
- IC50
50% inhibitory concentration
- IP1
inositol phosphate 1
- mRNA
messenger ribonucleic acid
- NK1-R
neurokinin type 1 receptor
- pEYFP
enhanced yellow fluorescent protein
- PN
passage number
- RT
reverse transcription
- RT-PCR
quantitative real-time reverse transcription / polymerase chain reaction
- SP
substance P
- TMB
tetramethylbenzidine
- WT
wildtype
References
- 1.Janmey P.A. The cytoskeleton and cell signaling: component localization and mechanical coupling. Physiol. Rev. 1998;78:763–781. doi: 10.1152/physrev.1998.78.3.763. [DOI] [PubMed] [Google Scholar]
- 2.Luttrell L.M., Big G., Little G. G proteins and actin cytoskeletal reorganization. Mol. Cell. 2002;9:1152–1154. doi: 10.1016/S1097-2765(02)00551-8. [DOI] [PubMed] [Google Scholar]
- 3.Cotton M., Claing A. G protein-coupled receptors stimulation and the control of cell migration. Cell. Signal. 2009;21:1045–1053. doi: 10.1016/j.cellsig.2009.02.008. [DOI] [PubMed] [Google Scholar]
- 4.Ludin B., Doll T., Meili R., Kaech S., Matus A. Application of novel vectors for GFP-tagging of proteins to study microtubule-associated proteins. Gene. 1996;173:107–111. doi: 10.1016/0378-1119(95)00899-3. [DOI] [PubMed] [Google Scholar]
- 5.Ludin B., Matus A. GFP illuminates the cytoskeleton. Trends Cell. Biol. 1998;8:72–77. doi: 10.1016/S0962-8924(97)01169-0. [DOI] [PubMed] [Google Scholar]
- 6.Lippincott-Schwartz J., Patterson G.H. Development and use of fluorescent protein markers in living cells. Science. 2003;300:87–91. doi: 10.1126/science.1082520. [DOI] [PubMed] [Google Scholar]
- 7.Yoon Y., Pitts K., McNiven M. Studying cytoskeletal dynamics in living cells using green fluorescent protein. Mol. Biotechnol. 2002;21:241–250. doi: 10.1385/MB:21:3:241. [DOI] [PubMed] [Google Scholar]
- 8.Bohme, I. and Beck-Sickinger, A.G. Illuminating the life of GPCRs. Cell. Commun. Signal.7 (2009) - in press (doi:10.1186/1478-811X-7-16). [DOI] [PMC free article] [PubMed]
- 9.Arun K.H., Kaul C.L., Ramarao P. Green fluorescent proteins in receptor research: an emerging tool for drug discovery. J. Pharmacol. Toxicol. Methods. 2005;51:1–23. doi: 10.1016/j.vascn.2004.07.006. [DOI] [PubMed] [Google Scholar]
- 10.Volovyk Z.M., Wolf M.J., Prasad S.V., Rockman H.A. Agonist-stimulated β-adrenergic receptor internalization requires dynamic cytoskeletal actin turnover. J. Biol. Chem. 2006;281:9773–9780. doi: 10.1074/jbc.M511435200. [DOI] [PubMed] [Google Scholar]
- 11.Ganguly S., Pucadyil T.J., Chattopadhyay A. Actin cytoskeleton-dependent dynamics of the human serotonin1A receptor correlates with receptor signaling. Biophys. J. 2008;95:451–463. doi: 10.1529/biophysj.107.125732. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 12.Barnes W.G., Reiter E., Violin J.D., Ren X.R., Milligan G., Lefkowitz R.J. β-Arrestin 1 and Gαq/11 coordinately activate RhoA and stress fiber formation following receptor stimulation. J. Biol. Chem. 2005;280:8041–8050. doi: 10.1074/jbc.M412924200. [DOI] [PubMed] [Google Scholar]
- 13.Vogt S., Grosse R., Schultz G., Offermanns S. Receptor-dependent RhoA activation in G12/G13-deficient cells: genetic evidence for an involvement of Gq/G11. J. Biol. Chem. 2003;278:28743–28749. doi: 10.1074/jbc.M304570200. [DOI] [PubMed] [Google Scholar]
- 14.Le Page S.L., Bi Y., Williams J.A. CCK-A receptor activates RhoA through Gα12/13 in NIH3T3 cells. Am. J. Physiol. Cell. Physiol. 2003;285:1197–1206. doi: 10.1152/ajpcell.00083.2003. [DOI] [PubMed] [Google Scholar]
- 15.Gohla A., Offermanns S., Wilkie T.M., Schultz G. Differential involvement of Gα12 and Gα13 in receptor-mediated stress fiber formation. J. Biol. Chem. 1999;274:17901–17907. doi: 10.1074/jbc.274.25.17901. [DOI] [PubMed] [Google Scholar]
- 16.Pagliaro L., Praestegaard M. Transfected cell lines as tools for high throughput screening: a call for standards. J. Biomol. Screen. 2001;6:133–136. doi: 10.1177/108705710100600302. [DOI] [PubMed] [Google Scholar]
- 17.Herget-Rosenthal S., Hosford M., Kribben A., Atkinson S.J., Sandoval R.M., Molitoris B.A. Characteristics of EYFP-actin and visualization of actin dynamics during ATP depletion and repletion. Am J. Physiol. Cell. Physiol. 2001;281:1858–1870. doi: 10.1152/ajpcell.2001.281.6.C1858. [DOI] [PubMed] [Google Scholar]
- 18.McFarland D.C. Preparation of pure cell cultures by cloning. Methods Cell. Sci. 2000;22:63–66. doi: 10.1023/A:1009838416621. [DOI] [PubMed] [Google Scholar]
- 19.Martini L., Hastrup H., Holst B., Fraile-Ramos A., Marsh M., Schwartz T.W. NK1 receptor fused to β-arrestin displays a single-component, high-affinity molecular phenotype. Mol. Pharmacol. 2002;62:30–37. doi: 10.1124/mol.62.1.30. [DOI] [PubMed] [Google Scholar]
- 20.Kubale V., Abramovič Z., Pogačnik A., Heding A., Šentjurc M., Vrecl M. Evidence for a role of caveolin-1 in neurokinin-1 receptor plasma-membrane localization, efficient signaling, and interaction with β-arrestin 2. Cell. Tissue Res. 2007;330:231–245. doi: 10.1007/s00441-007-0462-y. [DOI] [PubMed] [Google Scholar]
- 21.Ramsay D., Kellett E., McVey M., Rees S., Milligan G. Homo- and hetero-oligomeric interactions between G-protein-coupled receptors in living cells monitored by two variants of bioluminescence resonance energy transfer (BRET): hetero-oligomers between receptor subtypes form more efficiently than between less closely related sequences. Biochem. J. 2002;365:429–440. doi: 10.1042/BJ20020251. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 22.Vrecl M., Anderson L., Hanyaloglu A., McGregor A.M., Groarke A.D., Milligan G., Taylor P.L., Eidne K.A. Agonist-induced endocytosis and recycling of the gonadotropin-releasing hormone receptor: effect of β-arrestin on internalization kinetics. Mol. Endocrinol. 1998;12:1818–1829. doi: 10.1210/me.12.12.1818. [DOI] [PubMed] [Google Scholar]
- 23.Bubb M.R., Senderowicz A.M., Sausville E.A., Duncan K.L., Korn E.D. Jasplakinolide, a cytotoxic natural product, induces actin polymerization and competitively inhibits the binding of phalloidin to F-actin. J. Biol. Chem. 1994;269:14869–14871. [PubMed] [Google Scholar]
- 24.Holst B., Zoffmann S., Elling C.E., Hjorth S.A., Schwartz T.W. Steric hindrance mutagenesis versus alanine scan in mapping of ligand binding sites in the tachykinin NK1 receptor. Mol. Pharmacol. 1998;53:166–175. doi: 10.1124/mol.53.1.166. [DOI] [PubMed] [Google Scholar]
- 25.Bubb M.R., Spector I., Beyer B.B., Fosen K.M. Effects of jasplakinolide on the kinetics of actin polymerization. An explanation for certain in vivo observations. J. Biol. Chem. 2000;275:5163–5170. doi: 10.1074/jbc.275.7.5163. [DOI] [PubMed] [Google Scholar]
- 26.Cramer L.P. Role of actin-filament disassembly in lamellipodium protrusion in motile cells revealed using the drug jasplakinolide. Curr. Biol. 1999;9:1095–1105. doi: 10.1016/S0960-9822(99)80478-3. [DOI] [PubMed] [Google Scholar]
- 27.Ostrom R. S., Insel P.A. The evolving role of lipid rafts and caveolae in G protein-coupled receptor signaling: implications for molecular pharmacology. Br. J. Pharmacol. 2004;143:235–245. doi: 10.1038/sj.bjp.0705930. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 28.Birchler J.A., Bhadra M.P., Bhadra U. Making noise about silence: repression of repeated genes in animals. Curr. Opin. Genet. Dev. 2000;10:211–216. doi: 10.1016/S0959-437X(00)00065-4. [DOI] [PubMed] [Google Scholar]
- 29.Hsieh C.L. Dynamics of DNA methylation pattern. Curr. Opin. Genet. Dev. 2000;10:224–228. doi: 10.1016/S0959-437X(00)00064-2. [DOI] [PubMed] [Google Scholar]
- 30.Leavitt J., Ng S.Y., Varma M., Latter G., Burbeck S., Gunning P., Kedes L. Expression of transfected mutant β-actin genes: transitions toward the stable tumorigenic state. Mol. Cell. Biol. 1987;7:2467–2476. doi: 10.1128/mcb.7.7.2467. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 31.Doyle T., Botstein D. Movement of yeast cortical actin cytoskeleton visualized in vivo. Proc. Natl. Acad. Sci. USA. 1996;93:3886–3891. doi: 10.1073/pnas.93.9.3886. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 32.Westphal M., Jungbluth A., Heidecker M., Muhlbauer B., Heizer C., Schwartz J.M., Marriott G., Gerisch G. Microfilament dynamics during cell movement and chemotaxis monitored using a GFP-actin fusion protein. Curr. Biol. 1997;7:176–183. doi: 10.1016/S0960-9822(97)70088-5. [DOI] [PubMed] [Google Scholar]
- 33.Ballestrem C., Wehrle-Haller B., Imhof B. A. Actin dynamics in living mammalian cells. J. Cell. Sci. 1998;111:1649–1658. doi: 10.1242/jcs.111.12.1649. [DOI] [PubMed] [Google Scholar]
- 34.Verkhusha V.V., Shavlovsky M.M., Nevzglyadova O.V., Gaivoronsky A.A., Artemov A.V., Stepanenko O.V., Kuznetsova I.M., Turoverov K.K. Expression of recombinant GFP-actin fusion protein in the methylotrophic yeast Pichia pastoris. FEMS Yeast Res. 2003;3:105–111. doi: 10.1016/s1567-1356(02)00160-5. [DOI] [PubMed] [Google Scholar]
- 35.Hrovat A., Frangež R., Pogačnik A., Vrecl M. Actin cytoskeleton rearrangement in cells after the activation of membrane-bound receptor for thyrotropin-releasing hormone. Slov. Vet. Res. 2003;40:181–189. [Google Scholar]
- 36.Visegrady B., Lorinczy D., Hild G., Somogyi B., Nyitrai M. The effect of phalloidin and jasplakinolide on the flexibility and thermal stability of actin filaments. FEBS Lett. 2004;565:163–166. doi: 10.1016/j.febslet.2004.03.096. [DOI] [PubMed] [Google Scholar]
