Skip to main content
Cellular & Molecular Biology Letters logoLink to Cellular & Molecular Biology Letters
. 2012 Dec 27;18(1):89–101. doi: 10.2478/s11658-012-0041-4

Gemini ester quat surfactants and their biological activity

Jacek Łuczyński 1,, Renata Frąckowiak 1, Aleksandra Włoch 2, Halina Kleszczyńska 2, Stanisław Witek 1
PMCID: PMC6275804  PMID: 23271433

Abstract

Cationic gemini surfactants are an important class of surface-active compounds that exhibit much higher surface activity than their monomeric counterparts. This type of compound architecture lends itself to the compound being easily adsorbed at interfaces and interacting with the cellular membranes of microorganisms. Conventional cationic surfactants have high chemical stability but poor chemical and biological degradability. One of the main approaches to the design of readily biodegradable and environmentally friendly surfactants involves inserting a bond with limited stability into the surfactant molecule to give a cleavable surfactant. The best-known example of such a compound is the family of ester quats, which are cationic surfactants with a labile ester bond inserted into the molecule. As part of this study, a series of gemini ester quat surfactants were synthesized and assayed for their biological activity. Their hemolytic activity and changes in the fluidity and packing order of the lipid polar heads were used as the measures of their biological activity. A clear correlation between the hemolytic activity of the tested compounds and their alkyl chain length was established. It was found that the compounds with a long hydrocarbon chain showed higher activity. Moreover, the compounds with greater spacing between their alkyl chains were more active. This proves that they incorporate more easily into the lipid bilayer of the erythrocyte membrane and affect its properties to a greater extent. A better understanding of the process of cell lysis by surfactants and of their biological activity may assist in developing surfactants with enhanced selectivity and in widening their range of application.

Key words: Gemini surfactants, Cationic amphiphiles, Hemolytic activity, Membrane fluidity, Generalized polarization, Anisotropy, Erythrocyte membrane, Lipid packing order, Hemolysis, Fluorescent probes

Full Text

The Full Text of this article is available as a PDF (401.5 KB).

Abbreviations used

DMALM-12

n-dodecylalaninate N,N,N-trimethyl ammonium bromide

DPH

1,6-diphenyl-1,3,5-hexatriene

GP

generalized polarization

Laurdan

6-dodecanoyl-2-dimethylaminonaphthalene

TMEAL-n (Br)

ethylene-bis-alanine-nalkylesterquats bromides

TMPAL-n (Br)

1,3-propylene-bis-alanine-n-alkylesterquats bromides

References

  • 1.Haldar J., Kondaiah P., Bhattacharya S. Synthesis and antibacterial properties of novel hydrolyzable cationic amphiphiles. Incorporation of multiple head groups leads to impressive antibacterial activity. J. Med. Chem. 2005;48:3823–3831. doi: 10.1021/jm049106l. [DOI] [PubMed] [Google Scholar]
  • 2.Meister A., Blume A. Self-assembly of bipolar amphiphiles. Curr. Opin. Colloid Interface Sci. 2007;12:138–147. [Google Scholar]
  • 3.Tucker I., Penfold J., Thomas R.K., Grillo I., Barker J.G., Mildner D.F.R. The surface and solution properties of dihexadecyl dimethylammonium bromide. Langmuir. 2008;24:6509–6520. doi: 10.1021/la703415m. [DOI] [PubMed] [Google Scholar]
  • 4.Para G., Hamerska-Dudra A., Wilk K.A., Warszyński P. Mechanism of cationic surfactant adsorption — Effect of molecular structure and multiple charge. Colloids Surf. A. 2011;383:67–72. [Google Scholar]
  • 5.Para G., Hamerska-Dudra A., Wilk K.A., Warszynski P. Surface activity of cationic surfactants, influence of molecular structure. Colloids Surf. A. 2010;365:215–221. [Google Scholar]
  • 6.Węgrzyńska J., Para G., Chlebicki J., Warszyński P., Wilk K.A. Adsorption of multiple ammonium salts at the air/solution interface. Langmuir. 2008;24:3171–3180. doi: 10.1021/la702619a. [DOI] [PubMed] [Google Scholar]
  • 7.Chlebicki J., Węgrzyńska J., Wilk K.A. Surface-active, micellar, and antielectrostatic properties of bis-ammonium salts. J. Colloid Interface Sci. 2008;323:372–378. doi: 10.1016/j.jcis.2008.04.011. [DOI] [PubMed] [Google Scholar]
  • 8.Llies M.A., Seitz W.A., Johnson B.H., Ezell E.L., Miller A.L., Thompson E.B., Balaban A.T. Lipophilic pyrylium salts in the synthesis of efficient pyridinium-based cationic lipids, gemini surfactants, and lipophilic oligomers for gene delivery. J. Med. Chem. 2006;49:3872–3887. doi: 10.1021/jm0601755. [DOI] [PubMed] [Google Scholar]
  • 9.Vyas S.M., Turánek J., Knötigová P., Kašná A., Kvardová V., Rankin E.S., Knutson B.L., Lehmler H. J. Synthesis and biocompatibility evaluation of partially fluorinated pyridinium bromides. New J. Chem. 2006;30:944–951. [Google Scholar]
  • 10.Heyes J.A., Nicolescu-Duvaz D., Cooper R.G., Springer C.J. Synthesis of novel cationic lipids: effect of structural modification on the efficiency of gene transfer. J. Med. Chem. 2002;45:99–114. doi: 10.1021/jm010918g. [DOI] [PubMed] [Google Scholar]
  • 11.Kirby A.J., Camilleri P., Engberts J.B.F.N., Feiters M.C., Nolte R.J.M., Söderman O., Bergsma M., Bell P.C., Fielden L.M., Rodriguez C.L.G., Guédat P., Kremer A., McGregor C., Perrin C., Ronsin G., van Eijk M.C.P. Gemini surfactants: new synthetic vectors for gene transfection. Angew. Chem. Int. Ed. Engl. 2003;42:1448–1457. doi: 10.1002/anie.200201597. [DOI] [PubMed] [Google Scholar]
  • 12.Stephenson B.C., Rangel-Yagui C.O., Pessoa A., Tavares L.C., Beers K., Blankschtein D. Experimental and theoretical investigation of the micellar-assisted solubilization of ibuprofen in aqueous media. Langmuir. 2006;22:1514–1525. doi: 10.1021/la052530k. [DOI] [PubMed] [Google Scholar]
  • 13.Bramer T., Dew N., Edsman K. Pharmaceutical applications for catanionic mixtures. J. Pharm. Pharmacol. 2007;59:1319–1334. doi: 10.1211/jpp.59.10.0001. [DOI] [PubMed] [Google Scholar]
  • 14.Bombelli C., Caracciolo G., Di Profio P., Diociaiuti M., Luciani P., Mancini G., Mazzuca C., Marra M., Molinari A., Monti D., Toccacieli L., Venanzi M. Inclusion of a photosensitizer in liposomes formed by DMPC/gemini surfactant: correlation between physicochemical and biological features of the complexes. J. Med. Chem. 2005;48:4882–4891. doi: 10.1021/jm050182d. [DOI] [PubMed] [Google Scholar]
  • 15.Sakai E.N.K., Takamatsu Y., Sharma S.C., Torigoe K., Yoshimura T., Esumi K., Sakai H., Abe M. Adsorption of cationic monomeric and gemini surfactants on montmorillonite and adsolubilization of vitamin E. J. Oleo Sci. 2008;57:423–429. doi: 10.5650/jos.57.423. [DOI] [PubMed] [Google Scholar]
  • 16.Macián M., Seguer J., Infante M.R., Selve C., Vinardell M.P. Preliminary studies of the toxic effects of non-ionic surfactants derived from lysine. Toxicology. 1996;106:1–9. doi: 10.1016/0300-483x(95)03131-x. [DOI] [PubMed] [Google Scholar]
  • 17.Caillier L., de Givenchy E.T., Levy R., Vandenberghe Y., Geribaldi S., Guittard F. Polymerizable semi-fluorinated gemini surfactants designed for antimicrobial materials. J. Colloid Interface Sci. 2009;332:201–207. doi: 10.1016/j.jcis.2008.12.038. [DOI] [PubMed] [Google Scholar]
  • 18.Obłąk E., Gamian A., Adamski R., Ułaszewski S. The physiological and morphological phenotype of a yeast mutant resistant to the quaternary ammonium salt N-(dodecyloxycarboxymethyl)-N,N,N-trimethyl ammonium chloride. Cell. Mol. Biol. Lett. 2010;15:215–233. doi: 10.2478/s11658-010-0002-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 19.Benavides T., Martinez V., Mitjans M., Infante M.R., Moran C., Clapes P., Clothier R., Vinardell M.P. Assessment of the potential irritation and photoirritation of novel amino acid-based surfactants by in vitro methods as alternative to the animal tests. Toxicology. 2004;201:87–93. doi: 10.1016/j.tox.2004.04.003. [DOI] [PubMed] [Google Scholar]
  • 20.Mitjans M., Martinez V., Clapes P., Perez L., Infante M.R., Vinardell M.P. Low potential ocular irritation of argininebased gemini surfactants and their mixtures with nonionic and zwitterionic surfactants. Pharm. Res. 2003;20:1697–1701. doi: 10.1023/a:1026164123938. [DOI] [PubMed] [Google Scholar]
  • 21.Tehrani-Bagha A.R., Holmberg K. Cleavable surfactants. Curr. Opin. Colloid Interface Sci. 2007;12:81–91. [Google Scholar]
  • 22.Tehrani-Bagha A.R., Oskarsson H., van Ginkel C.G., Holmberg K. Cationic ester-containing gemini surfactants: Chemical hydrolysis and biodegradation. J. Colloid Interface Sci. 2007;312:444–452. doi: 10.1016/j.jcis.2007.03.044. [DOI] [PubMed] [Google Scholar]
  • 23.Tehrani-Bagha A.R., Kärnbratt J., Löfroth J.E., Holmberg K. Cationic ester-containing gemini surfactants: Determination of aggregation numbers by time-resolved fluorescence quenching. J. Colloid Interface Sci. 2012;376:126–132. doi: 10.1016/j.jcis.2012.02.053. [DOI] [PubMed] [Google Scholar]
  • 24.Auzély-Velty R., Rinaudo M. Synthesis of starch derivation with labile cationic groups. Int. J. Biol. Macromol. 2003;31:123–129. doi: 10.1016/s0141-8130(02)00072-7. [DOI] [PubMed] [Google Scholar]
  • 25.Obłąk E., Lachowicz T.M., Łuczyński J., Witek S. Lysosomotropic N,N-dimethyl aminoesters and their quaternary ammonium salts as plasma membrane and mitochondrial ATPase inhibitors. Cell. Mol. Biol. Lett. 2002;7:1121–1129. [PubMed] [Google Scholar]
  • 26.Kołaczkowski M., Kołaczkowska A., Łuczyński J., Witek S., Goffeau A. In vivo characterization of the drug resistant profile of the major ABC transporters and other components of the yeast pleiotropic drug resistance network. Microb. Drug Resistance. 1998;4:143–158. doi: 10.1089/mdr.1998.4.143. [DOI] [PubMed] [Google Scholar]
  • 27.Kleszczyńska H., Sarapuk J., Przestalski S., Kilian M. Mechanical properties of red cells and blm in the presence of some mono- and bisquaternary ammonium salts. Studia Biophysica. 1990;135:191–199. [Google Scholar]
  • 28.Dodge J.T., Mitchell C., Hanahan D.J. The preparation and chemical characteristics of hemoglobin-free ghosts of erythrocytes. Arch. Biochem. Biophys. 1963;100:119–130. doi: 10.1016/0003-9861(63)90042-0. [DOI] [PubMed] [Google Scholar]
  • 29.Lakowicz J.R. Principles of fluorescence spectroscopy. New York. London: Plenum Press; 2006. Fluorescence polarization; pp. 353–382. [Google Scholar]
  • 30.Parasassi T., Krasnowska E.K., Bagatolli L., Gratton E. Laurdan and prodan as polarity-sensitive fluorescent membrane probes. J. Fluorescence. 1998;8:365–373. [Google Scholar]
  • 31.Kleszczyńska H., Łuczyński J., Witek S., Przestalski S. Hemolytic activity of aminoethyl — dodecanoates. Z. Naturforsch. 1998;53c:101–106. doi: 10.1515/znc-1998-1-218. [DOI] [PubMed] [Google Scholar]
  • 32.Kleszczyńska H., Sarapuk J., Przestalski S., Kilian M. Mechanical properties of red cel and BLM in the presence of some mono- and bis-quaternary ammonium salts. Studia Biophysica. 1990;135:191–199. [Google Scholar]
  • 33.Hagerstrand H., Isomaa B. Morphological characterization of exovesicles and endovesicles released from human erythrocytes following treatment with amphiphiles. Biochim. Biophys. Acta. 1992;1109:117–126. doi: 10.1016/0005-2736(92)90074-v. [DOI] [PubMed] [Google Scholar]
  • 34.Isomaa B. Interactions of surface-active alkyltrimethylammonium salts with the erythrocyte membrane. Biochem. Pharmacol. 1979;28:9975–9980. doi: 10.1016/0006-2952(79)90289-2. [DOI] [PubMed] [Google Scholar]

Articles from Cellular & Molecular Biology Letters are provided here courtesy of BMC

RESOURCES