Skip to main content
Cellular & Molecular Biology Letters logoLink to Cellular & Molecular Biology Letters
. 2009 Feb 4;14(3):377–394. doi: 10.2478/s11658-009-0007-3

An evaluation of a new approach to the regeneration of Helichrysum italicum (Roth) G. Don, and the molecular characterization of the variation among sets of differently derived regenerants

Rosaria Perrini 1, Vittorio Alba 2, Claudia Ruta 1, Irene Morone-Fortunato 1, Antonio Blanco 2, Cinzia Montemurro 2,
PMCID: PMC6275807  PMID: 19198762

Abstract

A protocol for the induction of regeneration from leaves of Helichrysum italicum was established. Calli were found to form on the basal medium only when it was supplemented with thidiazuron (TDZ) alone or in combination with naphthalene acetic acid (NAA), with a percentage ranking of at least 80%. The hormone-free medium showed the highest percentage of shoot regeneration (62%) even though no callus formed. AFLP markers were employed to verify tissue culture-induced variation in the regenerated plantlets obtained by direct shoot regeneration or the indirect shoot regeneration process (callus formation). Seven out of the eleven AFLP primer pairs yielded polymorphic patterns. The average number of fragments per primer pair was 64.1. Singletons were represented by 12 (2.7%) fragments. Student’s T-test was performed both on the average number of shared fragments and on the nucleotide diversity, and no significant statistical difference was observed between the two regeneration treatments.

Key words: Helichrysum italicum, in vitro culture, Tissue culture-induced variation, AFLP markers, Nucleotide diversity

Full Text

The Full Text of this article is available as a PDF (6.3 MB).

Abbreviation

AFLP

amplified fragment length polymorphism

BM

basal medium

NAA

naphthalene acetic acid

RAPD

random amplified polymorphic DNA

RFLP

restriction fragment length polymorphism

SSR

simple sequence repeats

TDZ

thidiazuron

Footnotes

These authors contributed equally to this work.

References

  • 1.Larkin P.J., Scowcroft W.R. Somaclonal variation - a novel source of variability from cell culture for plant improvement. Theor. Appl. Genet. 1981;60:197–214. doi: 10.1007/BF02342540. [DOI] [PubMed] [Google Scholar]
  • 2.Phillips R.L., Kaeppler S.M., Olhoft P. Genetic instability of plant tissue cultures: Breakdown of normal controls. Proc. Natl. Acad. Sci. USA. 1994;91:5222–5226. doi: 10.1073/pnas.91.12.5222. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 3.Bouman H., De Klerk G.J. Measurement of the extent of somaclonal variation in Begonia plants regenerated under various conditions. Comparison of three assays. Theor. Appl. Genet. 2001;102:111–117. doi: 10.1007/s001220051625. [DOI] [Google Scholar]
  • 4.Polanco C., Ruiz M.L. AFLP analysis of somaclonal variation in Arabidopsis thaliana regenerated plants. Plant Sci. 2002;162:817–824. doi: 10.1016/S0168-9452(02)00029-8. [DOI] [PubMed] [Google Scholar]
  • 5.Rival A., Bertrand L., Beule T., Combes M.C., Trouslot P., Lashermes P. Suitability of RAPD analysis for the detection of somaclonal variants in oil palm (Elaeis guineensis Jacq) Plant Breed. 1998;117:73–76. doi: 10.1111/j.1439-0523.1998.tb01451.x. [DOI] [Google Scholar]
  • 6.Ruiz M.L., Rueda J., Pelaez M.I., Espino F.J., Candela M., Sendino A.M., Vazquez A.M. Somatic embryogenesis. plant regeneration and somaclonal variation in barley. Plant Cell Tiss. Organ Cult. 1992;28:97–101. doi: 10.1007/BF00039921. [DOI] [Google Scholar]
  • 7.Cloutier S., Landry B.S. Molecular markers applied to plant tissue culture. In Vitro Cell. Dev. Biol. Plant. 1994;30:32–39. doi: 10.1007/BF02632117. [DOI] [Google Scholar]
  • 8.Wilhelm E. Somatic embryogenesis in oak (Quercus spp.) In Vitro Cell. Dev. Biol. Plant. 2000;36:349–357. doi: 10.1007/s11627-000-0062-y. [DOI] [Google Scholar]
  • 9.Vendrame W.A., Kochert G., Wetzstein H.Y. AFLP analysis of variation in pecan somatic embryos. Plant Cell Rep. 1999;18:853–857. doi: 10.1007/s002990050673. [DOI] [Google Scholar]
  • 10.Arencibia A.D., Carmona E.R., Cornide M.T. Somaclonal variation in insect-resistant transgenic sugarcane (Saccharum hybrid) plants produced by electroporation. Trans. Res. 1999;8:349–360. doi: 10.1023/A:1008900230144. [DOI] [Google Scholar]
  • 11.Hewezi T., Jardinaud F., Alibert G., Kallerhoff J. A new approach for efficient regeneration of a recalcitrant genotype of sunflower (Helianthus annuus) by organogenesis induction on split embryonic axes. Plant Cell Tiss. Organ Cult. 2003;73:81–86. doi: 10.1023/A:1022689229547. [DOI] [Google Scholar]
  • 12.Russel J.R., Fuller J.D., Macaulay M., Hatz B.G., Jahoor A., Powell W., Waugh R. Direct comparison of levels of genetic variation among barley accessions detected by RFLPs, AFLPs, SSRs and RAPDs. Theor. Appl. Genet. 1997;95:714–722. doi: 10.1007/s001220050617. [DOI] [Google Scholar]
  • 13.Garcia-Mas J., Oliver M., Gomez-Paniagua H., de Vicente M.C. Comparing AFLP, RAPD and RFLP markers for measuring genetic diversity in melon. Theor. Appl. Genet. 2000;101:860–864. doi: 10.1007/s001220051553. [DOI] [Google Scholar]
  • 14.Angioni A., Barra A., Arlorio M., Coisson J.D., Russo M.T., Pirisi F.M., Satta M., Cabras P. Chemical composition, plant genetic differences and antifungal activity of the essential oil of Helichrysum italicum G. Don ssp. microphyllum (Willd) Nym. J. Agric. Food Chem. 2003;51:1030–1034. doi: 10.1021/jf025940c. [DOI] [PubMed] [Google Scholar]
  • 15.Sala A., Recio M.C., Schinella G.R., Manez S., Giner R.M., Cerda-Nicolas M., Rios J.L. Assessment of the anti-inflammatory activity and free radical scavenger activity of tiliroside. Eur. J. Pharmacol. 2003;461:53–61. doi: 10.1016/S0014-2999(02)02953-9. [DOI] [PubMed] [Google Scholar]
  • 16.Nostro A., Cannatelli M.A., Crisafi G., Musolino A.D., Procopio F., Alonzo V. Modification of hydrophobicity, in vitro adherence and cellular aggregation of Streptococcus mutants by Helichrysum italicum extract. Lett. Appl. Microbiol. 2004;38:423–427. doi: 10.1111/j.1472-765X.2004.01509.x. [DOI] [PubMed] [Google Scholar]
  • 17.Tundis R., Statti G.A., Conforti F., Bianchi A., Agrimonti C., Sacchetti G., Muzzoli M., Ballero M., Manichini F., Poli F. Influence of environmental factors on composition of volatile constituents and biological activity of Helichrysum italicum (Roth) Don (Asteraceae) Nat. Prod. Res. 2005;19:379–387. doi: 10.1080/1478641042000261969. [DOI] [PubMed] [Google Scholar]
  • 18.Appendino G., Ottino M., Marquez N., Bianchi F., Giana A., Ballero M., Sterner O., Fiebich Bernd L., Munoz E. Arzanol, an anti-inflammatory and anti-HIV-1 phloroglucinol α-pyrone from Helichrysum italicum ssp. microphyllum. J. Nat. Prod. 2007;70:608–612. doi: 10.1021/np060581r. [DOI] [PubMed] [Google Scholar]
  • 19.Giovannini A., Amoretti M., Savona M., Di Guardo A., Ruffoni B. Tissue culture in Helichrysum spp. Acta Hortic. 2003;616:115–119. [Google Scholar]
  • 20.Morone-Fortunato I., Avato P. Plant development and synthesis of essential oils in micropropagated and mycorrhiza inoculated plants of Origanum vulgare L. ssp. Hirtum (Link) Ietswaart. Plant Cell Tiss. Organ Cult. 2008;93:139–149. doi: 10.1007/s11240-008-9353-5. [DOI] [Google Scholar]
  • 21.Vos P., Hogers R., Bleeker M., Reijans M., Van de Lee T., Hornes M., Frijters A., Plot J., Peleman J., Kuiper M., Zabeau M. AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res. 1995;23:4407–4414. doi: 10.1093/nar/23.21.4407. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 22.Bagley M.J., Anderson S.L., May B. choice of methodology for assessing genetic impacts of environmental stressors: polymorphism and reproducibility of RAPD and AFLP fingerprints. Ecotoxicology. 2001;10:239–244. doi: 10.1023/A:1016625612603. [DOI] [PubMed] [Google Scholar]
  • 23.Jaccard P. Etude comparative de la distribution florale dans une portion des Alpes et des Jura. Bull. Soc. Vaucloise Sc. Nat. 1901;37:547–579. [Google Scholar]
  • 24.Innan H., Terauchi R., Kahl G., Tajima F. A method for estimating nucleotide diversity from AFLP data. Genetics. 1999;151:1157–1164. doi: 10.1093/genetics/151.3.1157. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 25.Nei M., Li W.H. Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc. Natl. Acad. Sci. USA. 1979;76:5273–5296. doi: 10.1073/pnas.76.10.5269. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 26.Mithila J., Hall J.C., Victor J.M.R., Saxena P.K. Thidiazuron induces shoot organogenesis at low concentrations and somatic embryogenesis at high concentrations on leaf and petiole explants of African violet (Saintpaulia ionantha Wendl.) Plant Cell Rep. 2003;21:408–414. doi: 10.1007/s00299-002-0544-y. [DOI] [PubMed] [Google Scholar]
  • 27.Landi L., Mezzetti B. TDZ, auxin and genotype effects on leaf organogenesis in Fragaria. Plant Cell Rep. 2005;25:281–288. doi: 10.1007/s00299-005-0066-5. [DOI] [PubMed] [Google Scholar]
  • 28.Karam N.S., Al-Majathoub M. In vitro shoot regeneration from mature tissue of wild Cyclamen persicum Mill. Sci. Hort. 2000;86:323–333. doi: 10.1016/S0304-4238(00)00160-6. [DOI] [Google Scholar]
  • 29.Singh D.N., Sahoo L., Sarin N.B., Jaiwal P.K. The effect of TDZ on organogenesis and somatic embryogenesis in pigeonpea (Cajanus cajan L. Millsp) Plant Sci. 2003;164:341–347. doi: 10.1016/S0168-9452(02)00418-1. [DOI] [Google Scholar]
  • 30.Chitra D.S., Padmaja G. Shoot regeneration via direct organogenesis from in vitro derived leaves of mulberry using thidiazuron and 6-benzylaminopurine. Sci. Hort. 2005;106:593–602. doi: 10.1016/j.scienta.2005.05.008. [DOI] [Google Scholar]
  • 31.Sriskandarajah S., Frello S., Serek M. Induction of adventitious shoots in vitro in Campanula carpatic. Plant Cell Tiss. Organ Cult. 2001;67:295–298. doi: 10.1023/A:1012786818689. [DOI] [Google Scholar]
  • 32.Casanova E., Valdés A.E., Fernández B., Moysset L., Trillas M.I. Levels and immunolocalization of endogenous cytokinins in thidiazuron induced shoot organogenesis in carnation. J. Plant Physiol. 2004;161:95–104. doi: 10.1078/0176-1617-00957. [DOI] [PubMed] [Google Scholar]
  • 33.Çöçü S., Uranbey S., İpek A., Khawar K.M., Sarihan E.O., Kaya M.D., Parmaksiz, Özcan S. Adventitious shoot regeneration and micropropagation in Calendula officinalis L. Biol. Plant. 2004;48:449–451. doi: 10.1023/B:BIOP.0000041102.79647.b6. [DOI] [Google Scholar]
  • 34.Thorpe T.A. Organogenesis in vitro: structural, physiological and biochemical aspects. In: Vasil I.K., editor. International Review of Cytology, suppl. 11A. Perspectives in Plant Cell and Tissue Culture. New York: Academic Press; 1980. pp. 71–111. [Google Scholar]
  • 35.Hicks G.S. Patterns of organ development in tissue culture and problem of organ determination. Bot. Rev. 1980;46:1–23. doi: 10.1007/BF02860865. [DOI] [Google Scholar]
  • 36.Thorpe, T.A. Physiological and biochemical aspects of organogenesis in vitro. Proceedings of 5thInternational Congress in Plant Tissue and Cell Culture, Japanese Association for Plant Tissue Culture, Tokyo, (1982) 121–124.
  • 37.Christianson M.L., Warnick D.A. Competence and determination in the process of in vitro shoot organogenesis. Dev. Biol. 1983;95:288–293. doi: 10.1016/0012-1606(83)90029-5. [DOI] [PubMed] [Google Scholar]
  • 38.McDaniel C.N. Competence, determination and induction in plant development. In: Malacinski C.M., Bryant S.V., editors. Pattern Formation a Primer in Developmental Biology. New York: Macmillan Publishing; 1984. pp. 393–411. [Google Scholar]
  • 39.Christianson M.L., Warnick D.A. Organogenesis in vitro as a developmental process. Hort. Sci. 1988;23:515–519. [Google Scholar]
  • 40.Martin K.P., Joseph D., Madasser J., Philip V.J. Direct shoot regeneration from lamina explants of two commercial cut flower cultivars of Anthurium andraeanum Hort. In Vitro Cell. Dev. Biol. Plant. 2003;39:500–504. doi: 10.1079/IVP2003460. [DOI] [PubMed] [Google Scholar]
  • 41.Martin K.P., Sunandakumari C., Chithra M., Madhusoodanan P.V. Influence of auxins in direct in vitro morphogenesis of Euphorbia nivulia, a lectinaceous medicinal plant. In Vitro Cell. Dev. Biol. Plant. 2005;41:314–319. doi: 10.1079/IVP2004615. [DOI] [Google Scholar]
  • 42.Burdyn L., Luna C., Tarrago J., Sansberro P., Dudit N., Gonzalez A., Mroginski L. Direct shoot regeneration from leaf and internode explants of Aloysia polystachya [gris.] mold. (Verbenaceae) In Vitro Cell. Dev. Biol. Plant. 2006;42:235–239. [Google Scholar]
  • 43.de Almeida W.A.B., Mourão Filho A.A., Mendes B.M.J., Rodriguez A.P.M. Histological characterization of in vitro adventitious organogenesis in Citrus sinensis. Biol. Plant. 2006;50:321–325. doi: 10.1007/s10535-006-0044-y. [DOI] [Google Scholar]
  • 44.Gill R., Malhotra P.K., Gosal S.S. Direct plant regeneration from cultured young leaf segments of sugarcane. Plant Cell Tiss. Organ Cult. 2006;84:227–231. doi: 10.1007/s11240-005-9015-9. [DOI] [Google Scholar]
  • 45.Lakshmanan P., Geijskes R.J., Wang L., Elliot A., Grof C.P.L., Berding N., Smith G.R. Developmental and hormonal regulation of direct shoot organogenesis and somatic embryogenesis in sugarcane (Saccharum spp. interspecific hybrids) leaf culture. Plant Cell Rep. 2006;25:1007–1015. doi: 10.1007/s00299-006-0154-1. [DOI] [PubMed] [Google Scholar]
  • 46.Yang L., Xu C.J., Hu G.B., Chen K.S. Direct shoot organogenesis and plant regeneration in Fortunella crassifolia. Biol. Plant. 2006;50:729–732. doi: 10.1007/s10535-006-0117-y. [DOI] [Google Scholar]
  • 47.Sujatha M., Dinesh Kumar V. In vitro bud regeneration of Carthamus tinctorius and wild Carthamus species from leaf explants and axillary buds. Biol. Plant. 2007;51:782–786. doi: 10.1007/s10535-007-0160-3. [DOI] [Google Scholar]
  • 48.Vendrame W.A., Kochert G., Sparks D., Wetzstein H.Y. Field performance and molecular evaluations of pecan trees regenerated from somatic embryogenic cultures. J. Am. Soc. Hortic. Sci. 2000;125:542–546. [Google Scholar]
  • 49.Chen J., Henny R.J., Devanand P.S., Chao C.T. AFLP analysis of nephthytis (Syngonium podophyllum Schott) selected from somaclonal variants. Plant Cell Rep. 2006;24:743–749. doi: 10.1007/s00299-005-0032-2. [DOI] [PubMed] [Google Scholar]
  • 50.Gonzalez G., Aleman S., Infante D. Asexual genetic variability in Agave fourcroydes II: selection among individuals in clonally propagated population. Plant Sci. 2003;165:595–601. doi: 10.1016/S0168-9452(03)00227-9. [DOI] [Google Scholar]
  • 51.Matthes M., Singh R., Cheah S.C., Karp A. Variation in oil palm (Elaeis guineensis Jacq.) tissue culture-derived regenerants revealed by AFLPs woth methylation-sensitive enzymes. Theor. Appl. Genet. 2001;102:971–979. doi: 10.1007/s001220000491. [DOI] [Google Scholar]
  • 52.Prado M.J., Gonzalez M.V., Romo S., Herrera M.T. Adventitious plant regeneration on leaf explants from adult male kiwifruit and AFLP analysis of genetic variation. Plant Cell Tiss. Organ Cult. 2007;88:1–10. doi: 10.1007/s11240-006-9116-0. [DOI] [Google Scholar]
  • 53.Saker M.M., Adawy S.S., Mohamed A.A., El-Itriby H.A. Monitoring of cultivar identity in tissue culture-derived date palms using RAPD and AFLP analysis. Biol. Plant. 2006;50:198–204. doi: 10.1007/s10535-006-0007-3. [DOI] [Google Scholar]
  • 54.Bednarek P.T., Orłowska R., Kobener M.D.R., Zimny J. Quantification of the tissue-culture induced variation in barley (Hordeum vulgare L.) BMC Plant Biol. 2007;7:10. doi: 10.1186/1471-2229-7-10. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 55.Linacero R., Vazquez A.M. Genetic analysis of chlorophyll-deficient somaclonal variation in rye. Genome. 1992;35:981–984. [Google Scholar]
  • 56.Xie Q.J., Oard J.H., Rush M.C. Genetic analysis of a purple-red hull rice mutation derived from tissue culture. J. Hered. 1995;86:154–156. [Google Scholar]
  • 57.Linacero R., Freitas Alves E., Vazquez A.M. Hot spots of DNA instability revealed through the study of somaclonal variation in rye. Theor. Appl. Genet. 2000;100:506–511. doi: 10.1007/s001220050066. [DOI] [Google Scholar]

Articles from Cellular & Molecular Biology Letters are provided here courtesy of BMC

RESOURCES