Abstract
The aim of this study was to evaluate the immunoregulatory effects of recombinant human lactoferrin (rhLF) in two in vitro models: (1) the secondary humoral immune response to sheep erythrocytes (SRBC); and (2) the mixed lymphocyte reaction (MLR). We compared the non-sialylated glycoform of rhLF as expressed by glycoengineered Pichia pastoris with one that was further chemically sialylated. In an earlier study, we showed that sialylated rhLF could reverse methotrexate-induced suppression of the secondary immune response of mouse splenocytes to SRBC, and that the phenomenon is dependent on the interaction of lactoferrin (LF) with sialoadhesin (CD169). We found that the immunorestorative activity of sialylated rhLF is also dependent on its interaction with the CD22 antigen, a member of the immunoglobulin superfamily that is expressed by B lymphocytes. We also demonstrated that only sialylated rhLF was able to inhibit the MLR reaction. MLR was inhibited by bovine lactoferrin (bLF), a glycoform that has a more complex glycan structure. Desialylated bLF and lactoferricin, a bLF-derived peptide devoid of carbohydrates, did not express such inhibitory activity. We showed that the interaction of LF with sialic acid receptors is essential for at least some of the immunoregulatory activity of this glycoprotein.
Keywords: Human recombinant lactoferrin, CD22, Sialic acid, Humoral immune response, Mixed lymphocyte reaction, CD169, Glycoproteins, Immune suppression
Full Text
The Full Text of this article is available as a PDF (1.7 MB).
Abbreviations used
- AFC
antibody-forming cells
- bLF
bovine milk lactoferrin
- ConA
concanavalin A
- DegbLF
deglycosylated bovine lactoferrin
- FCS
fetal calf serum
- hLF
human lactoferrin
- LF
lactoferrin
- LPS
lipopolysaccharide
- MLR
mixed lymphocyte reaction
- MTX
methotrexate
- PBMC
peripheral blood mononuclear cell
- rhLF
recombinant human lactoferrin
- rhLF A
non-sialylated recombinant human lactoferrin
- rhLF B
sialylated recombinant human lactoferrin
- SRBC
sheep red blood cells
References
- 1.Legrand D, Pierce A, Elass E, Carpentier M, Mariller C, Mazurier J. Lactoferrin structure and functions. Adv. Exp. Med. Biol. 2008;606:163–194. doi: 10.1007/978-0-387-74087-4_6. [DOI] [PubMed] [Google Scholar]
- 2.Vogel HJ. Lactoferrin, a bird’s eye view. Biochem. Cell Biol. 2012;90:233–244. doi: 10.1139/o2012-016. [DOI] [PubMed] [Google Scholar]
- 3.Kruzel ML, Actor JK, Boldogh I, Zimecki M. Lactoferrin in health and disease. Postepy Hig. Med. Dosw. 2007;61:261–267. [PubMed] [Google Scholar]
- 4.Kruzel ML, Actor JK, Radak Z, Bacsi A, Saavedra-Molina A, Boldogh I. Lactoferrin decreases LPS-induced mitochondrial dysfunction in cultured cells and in animal endotoxemia model. Innate Immun. 2010;16:67–79. doi: 10.1177/1753425909105317. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 5.Jonasch E, Stadler WM, Bukowski RM, Hayes TG, Varadhachary A, Malik R, Figlin RA, Srinivas S. Phase 2 trial of talactoferrin in previously treated patients with metastatic renal cell carcinoma. Cancer. 2008;113:72–77. doi: 10.1002/cncr.23519. [DOI] [PubMed] [Google Scholar]
- 6.Baldi A, Ioannis P, Chiara P, Eleonora F, Roubini C, Vittorio D. Biological effects of milk proteins and their peptides with emphasis on those related to the gastrointestinal ecosystem. J. Dairy Res. 2005;72:66–72. doi: 10.1017/s002202990500110x. [DOI] [PubMed] [Google Scholar]
- 7.Weinberg ED. Iron, infection, and neoplasia. Clin. Physiol. Biochem. 1986;4:50–60. [PubMed] [Google Scholar]
- 8.Hendrixson DR, Qiu J, Shewry SC, Fink DL, Petty S, Baker EN, Plaut AG, St Geme JW., 3rd Human milk lactoferrin is a serine protease that cleaves Haemophilus surface proteins at arginine-rich sites. Mol. Microbiol. 2003;47:607–617. doi: 10.1046/j.1365-2958.2003.03327.x. [DOI] [PubMed] [Google Scholar]
- 9.Appelmelk BJ, An YQ, Geerts M, Thijs BG, de Boer HA, MacLaren DM, de Graaff J, Nuijens JH. Lactoferrin is a lipid A-binding protein. Infect. Immun. 1994;62:2628–2632. doi: 10.1128/iai.62.6.2628-2632.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 10.Zimecki M, Mazurier J, Machnicki M, Wieczorek Z, Montreuil J, Spik G. Immunostimulatory activity of lactotransferrin and maturation of CD4-CD8-murine thymocytes. Immunol. Lett. 1991;30:119–123. doi: 10.1016/0165-2478(91)90099-v. [DOI] [PubMed] [Google Scholar]
- 11.Zimecki M, Mazurier J, Spik G, Kapp JA. Human lactoferrin induces phenotypic and functional changes in murine splenic B cells. Immunology. 1995;86:122–127. [PMC free article] [PubMed] [Google Scholar]
- 12.Artym J, Zimecki M. The effects of lactoferrin on myelopoiesis: can we resolve the controversy? Postepy Hig. Med. Dosw. 2007;61:129–150. [PubMed] [Google Scholar]
- 13.Legrand D, Elass E, Carpentier M, Mazurier J. Interactions of lactoferrin with cells involved in immune function. Biochem. Cell Biol. 2006;84:282–290. doi: 10.1139/o06-045. [DOI] [PubMed] [Google Scholar]
- 14.Fischer R, Debbabi H, Dubarry M, Boyaka P, Tome D. Regulation of physiological and pathological Th1 and Th2 responses by lactoferrin. Biochem. Cell Biol. 2006;84:303–311. doi: 10.1139/o06-058. [DOI] [PubMed] [Google Scholar]
- 15.Zimecki M, Stepniak D, Szynol A, Kruzel ML. Lactoferrin regulates proliferative response of human peripheral blood mononuclear cells to phytohemagglutinin and mixed lymphocyte reaction. Arch. Immunol. Ther. Exp. (Warsz.). 2001;49:147–154. [PubMed] [Google Scholar]
- 16.Suzuki YA, Lopez V, Lonnerdal B. Mammalian lactoferrin receptors: structure and function. Cell. Mol. Life Sci. 2005;62:2560–2575. doi: 10.1007/s00018-005-5371-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 17.Curran CS, Demick KP, Mansfield JM. Lactoferrin activates macrophages via TLR4-dependent and -independent signaling pathways. Cell. Immunol. 2006;242:23–30. doi: 10.1016/j.cellimm.2006.08.006. [DOI] [PubMed] [Google Scholar]
- 18.Ando K, Hasegawa K, Shindo K, Furusawa T, Fujino T, Kikugawa K, Nakano H, Takeuchi O, Akira S, Akiyama T, Gohda J, Inoue J, Hayakawa M. Human lactoferrin activates NF-kappaB through the Toll-like receptor 4 pathway while it interferes with the lipopolysaccharide-stimulated TLR4 signaling. FEBS J. 2010;277:2051–2066. doi: 10.1111/j.1742-4658.2010.07620.x. [DOI] [PubMed] [Google Scholar]
- 19.Chien YJ, Chen WJ, Hsu WL, Chiou SS. Bovine lactoferrin inhibits Japanese encephalitis virus by binding to heparan sulfate and receptor for low density lipoprotein. Virology. 2008;379:143–151. doi: 10.1016/j.virol.2008.06.017. [DOI] [PubMed] [Google Scholar]
- 20.van Berkel PH, Geerts ME, van Veen HA, Mericskay M, de Boer HA, Nuijens JH. N-terminal stretch Arg2, Arg3, Arg4 and Arg5 of human lactoferrin is essential for binding to heparin, bacterial lipopolysaccharide, human lysozyme and DNA. Biochem. J. 1997;328(Pt1):145–151. doi: 10.1042/bj3280145. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 21.Elass-Rochard E, Legrand D, Salmon V, Roseanu A, Trif M, Tobias PS, Mazurier J, Spik G. Lactoferrin inhibits the endotoxin interaction with CD14 by competition with the lipopolysaccharide-binding protein. Infect. Immun. 1998;66:486–491. doi: 10.1128/iai.66.2.486-491.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 22.Legrand D, Vigie K, Said EA, Elass E, Masson M, Slomianny MC, Carpentier M, Briand JP, Mazurier J, Hovanessian AG. Surface nucleolin participates in both the binding and endocytosis of lactoferrin in target cells. Eur. J. Biochem. 2004;271:303–317. doi: 10.1046/j.1432-1033.2003.03929.x. [DOI] [PubMed] [Google Scholar]
- 23.Shin K, Wakabayashi H, Yamauchi K, Yaeshima T, Iwatsuki K. Recombinant human intelectin binds bovine lactoferrin and its peptides. Biol. Pharm. Bull. 2008;31:1605–1608. doi: 10.1248/bpb.31.1605. [DOI] [PubMed] [Google Scholar]
- 24.Kerrigan AM, Brown GD. C-type lectins and phagocytosis. Immunobiology. 2009;214:562–575. doi: 10.1016/j.imbio.2008.11.003. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 25.Paulson JC, Macauley MS, Kawasaki N. Siglecs as sensors of self in innate and adaptive immune responses. Ann. N.Y. Acad. Sci. 2012;1253:37–48. doi: 10.1111/j.1749-6632.2011.06362.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 26.Kocieba M, Zimecki M, Kruzel M, Actor J. The adjuvant activity of lactoferrin in the generation of DTH to ovalbumin can be inhibited by bovine serum albumin bearing alpha-D-mannopyranosyl residues. Cell. Mol. Biol. Lett. 2002;7:1131–1136. [PubMed] [Google Scholar]
- 27.Groot F, Geijtenbeek TB, Sanders RW, Baldwin CE, Sanchez-Hernandez M, Floris R, van Kooyk Y, de Jong EC, Berkhout B. Lactoferrin prevents dendritic cell-mediated human immunodeficiency virus type 1 transmission by blocking the DC-SIGN-gp120 interaction. J. Virol. 2005;79:3009–3015. doi: 10.1128/JVI.79.5.3009-3015.2005. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 28.Choi BK, Actor JK, Rios S, d’Anjou M, Stadheim TA, Warburton S, Giaccone E, Cukan M, Li H, Kull A, Sharkey N, Gollnick P, Kocieba M, Artym J, Zimecki M, Kruzel ML, Wildt S. Recombinant human lactoferrin expressed in glycoengineered Pichia pastoris: effect of terminal N-acetylneuraminic acid on in vitro secondary humoral immune response. Glycoconj. J. 2008;25:581–593. doi: 10.1007/s10719-008-9123-y. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 29.Baveye S, Elass E, Fernig DG, Blanquart C, Mazurier J, Legrand D. Human lactoferrin interacts with soluble CD14 and inhibits expression of endothelial adhesion molecules, E-selectin and ICAM-1, induced by the CD14-lipopolysaccharide complex. Infect. Immun. 2000;68:6519–6525. doi: 10.1128/iai.68.12.6519-6525.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 30.Hwang SA, Wilk K, Kruzel ML, Actor JK. A novel recombinant human lactoferrin augments the BCG vaccine and protects alveolar integrity upon infection with Mycobacterium tuberculosis in mice. Vaccine. 2009;27:3026–3034. doi: 10.1016/j.vaccine.2009.03.036. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 31.Artym J, Zimecki M, Kruzel ML. Effect of lactoferrin on the methotrexate-induced suppression of the cellular and humoral immune response in mice. Anticancer Res. 2004;24:3831–3836. [PubMed] [Google Scholar]
- 32.O’Neill AS, van den Berg TK, Mullen GE. Sialoadhesin — a macrophage-restricted marker of immunoregulation and inflammation. Immunology. 2013;138:198–207. doi: 10.1111/imm.12042. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 33.Sunshine GH, Katz DR, Czitrom AA. Heterogeneity of stimulator cells in the murine mixed leukocyte response. Eur. J. Immunol. 1982;12:9–15. doi: 10.1002/eji.1830120105. [DOI] [PubMed] [Google Scholar]
- 34.Unanue ER. Antigen-presenting function of the macrophage. Annu. Rev. Immunol. 1984;2:395–428. doi: 10.1146/annurev.iy.02.040184.002143. [DOI] [PubMed] [Google Scholar]
- 35.Nitschke L. CD22 and Siglec-G: B-cell inhibitory receptors with distinct functions. Immunol. Rev. 2009;230:128–143. doi: 10.1111/j.1600-065X.2009.00801.x. [DOI] [PubMed] [Google Scholar]
- 36.Lisowska E, Duk M, Wu AM. Preparation of biotinylated lectins and application in microtiter plate assays and Western blotting. A Laboratory Guide to Biotin-Labeling in Biomolecule Analysis, BioMethods. 1996;7:115–129. [Google Scholar]
- 37.Endo Y, Kobata A. Partial purification and characterization of an endoalpha-N-acetylgalactosaminidase from the culture of medium of Diplococcus pneumoniae. J. Biochem. 1976;80:1–8. doi: 10.1093/oxfordjournals.jbchem.a131240. [DOI] [PubMed] [Google Scholar]
- 38.Drzeniek Z, Krotkiewski H, Syper D, Lisowska E. Reactivity of glycosidase-treated, blood-group M and N glycopeptides with lectins. Carbohydr. Res. 1983;120:315–321. doi: 10.1016/0008-6215(83)88025-2. [DOI] [PubMed] [Google Scholar]
- 39.Mishell RI, Dutton RW. Immunization of dissociated spleen cell cultures from normal mice. J. Exp. Med. 1967;126:423–442. doi: 10.1084/jem.126.3.423. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 40.Hansen MB, Nielsen SE, Berg K. Re-examination and further development of a precise and rapid dye method for measuring cell growth/cell kill. J. Immunol. Methods. 1989;119:203–210. doi: 10.1016/0022-1759(89)90397-9. [DOI] [PubMed] [Google Scholar]
- 41.Vogel HJ, Schibli DJ, Jing W, Lohmeier-Vogel EM, Epand RF, Epand RM. Towards a structure-function analysis of bovine lactoferricin and related tryptophan- and arginine-containing peptides. Biochem. Cell Biol. 2002;80:49–63. doi: 10.1139/o01-213. [DOI] [PubMed] [Google Scholar]
- 42.Sato S, Tuscano JM, Inaoki M, Tedder TF. CD22 negatively and positively regulates signal transduction through the B lymphocyte antigen receptor. Semin. Immunol. 1998;10:287–297. doi: 10.1006/smim.1998.0121. [DOI] [PubMed] [Google Scholar]
- 43.Rosenthal GJ, Weigand GW, Germolec DR, Blank JA, Luster MI. Suppression of B cell function by methotrexate and trimetrexate. Evidence for inhibition of purine biosynthesis as a major mechanism of action. J. Immunol. 1988;141:410–416. [PubMed] [Google Scholar]
- 44.Genestier L, Paillot R, Fournel S, Ferraro C, Miossec P, Revillard JP. Immunosuppressive properties of methotrexate: apoptosis and clonal deletion of activated peripheral T cells. J. Clin. Invest. 1998;102:322–328. doi: 10.1172/JCI2676. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 45.Danzer CP, Collins BE, Blixt O, Paulson JC, Nitschke L. Transitional and marginal zone B cells have a high proportion of unmasked CD22: implications for BCR signaling. Int. Immunol. 2003;15:1137–1147. doi: 10.1093/intimm/dxg114. [DOI] [PubMed] [Google Scholar]
- 46.Kawasaki Y, Sato K, Shinmoto H, Dosako S. Role of basic residues of human lactoferrin in the interaction with B lymphocytes. Biosci. Biotechnol. Biochem. 2000;64:314–318. doi: 10.1271/bbb.64.314. [DOI] [PubMed] [Google Scholar]
- 47.Artym J, Zimecki M, Paprocka M, Kruzel ML. Orally administered lactoferrin restores humoral immune response in immunocompromised mice. Immunol. Lett. 2003;89:9–15. doi: 10.1016/s0165-2478(03)00102-0. [DOI] [PubMed] [Google Scholar]
- 48.Actor JK, Hwang SA, Olsen M, Zimecki M, Hunter RL, Jr., Kruzel ML. Lactoferrin immunomodulation of DTH response in mice. Int. Immunopharmacol. 2002;2:475–486. doi: 10.1016/s1567-5769(01)00189-8. [DOI] [PubMed] [Google Scholar]
- 49.Boswell HS, Nerenberg MI, Scher I, Singer A. Role of accessory cells in B cell activation. III. Cellular analysis of primary immune response deficits in CBA/N mice: presence of an accessory cell-B cell interaction defect. J. Exp. Med. 1980;152:1194–1309. doi: 10.1084/jem.152.5.1194. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 50.Nakae S, Asano M, Horai R, Iwakura Y. Interleukin-1 beta, but not interleukin-1 alpha, is required for T-cell-dependent antibody production. Immunology. 2001;104:402–409. doi: 10.1046/j.1365-2567.2001.01337.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 51.Zucali JR, Broxmeyer HE, Levy D, Morse C. Lactoferrin decreases monocyte-induced fibroblast production of myeloid colony-stimulating activity by suppressing monocyte release of interleukin-1. Blood. 1989;74:1531–1536. [PubMed] [Google Scholar]
- 52.Leutwyler C, Schalch L, Jungi TW. Evidence for interleukin-1 beta being a necessary but not sufficient co-stimulatory signal in monocytedependent anti-CD3-mediated T-cell triggering. Immunol. Lett. 1993;38:33–39. doi: 10.1016/0165-2478(93)90115-i. [DOI] [PubMed] [Google Scholar]
- 53.Zimecki M, Kocieba M, Kruzel M. Immunoregulatory activities of lactoferrin in the delayed type hypersensitivity in mice are mediated by a receptor with affinity to mannose. Immunobiology. 2002;205:120–131. doi: 10.1078/0171-2985-00115. [DOI] [PubMed] [Google Scholar]