Skip to main content
Cellular & Molecular Biology Letters logoLink to Cellular & Molecular Biology Letters
. 2011 Dec 28;17(1):153–170. doi: 10.2478/s11658-011-0039-3

Developmental expression of P5 ATPase mRNA in the mouse

Lisa S Weingarten 1, Hardi Dave 2, Hongyan Li 2, Dorota A Crawford 1,2,3,
PMCID: PMC6275865  PMID: 22207337

Abstract

P5 ATPases (ATP13A1 through ATP13A5) are found in all eukaryotes. They are currently poorly characterized and have unknown substrate specificity. Recent evidence has linked two P5 ATPases to diseases of the nervous system, suggesting possible importance of these proteins within the nervous system. In this study we determined the relative expression of mouse P5 ATPases in development using quantitative real time PCR. We have shown that ATP13A1 and ATP13A2 were both expressed similarly during development, with the highest expression levels at the peak of neurogenesis. ATP13A3 was expressed highly during organogenesis with one of its isoforms playing a more predominant role during the period of neuronal development. ATP13A5 was expressed most highly in the adult mouse brain. We also assessed the expression of these genes in various regions of the adult mouse brain. ATP13A1 to ATP13A4 were expressed differentially in the cerebral cortex, hippocampus, brainstem and cerebellum while levels of ATP13A5 were fairly constant between these brain regions. Moreover, we demonstrated expression of the ATP13A4 protein in the corresponding brain regions using immunohistochemistry. In summary, this study furthers our knowledge of P5-type ATPases and their potentially important role in the nervous system.

Key words: P5-type ATPases, mRNA expression, Neurogenesis, Parkinson’s disease, Autism spectrum disorders, Real-time PCR, Immunohistochemistry

Full Text

The Full Text of this article is available as a PDF (2.2 MB).

Abbreviations used

ASD

autism spectrum disorders

B2m

beta-2-microglobulin

DAB

3,3′-diaminobenzidine

DTT

dithiothreitol

Gapdh

glyceraldehyde 3-phosphate dehydrogenase

Gusb

beta-glucuronidase

HPRT

hypoxanthine phosphoribosyl transferase

NGS

normal goat serum

PBS

phosphate buffered saline

PBS-T

phosphate buffered saline Tween 20

PCR

polymerase chain reaction

PD

Parkinson’s disease

PFA

paraformaldehyde

Pgk1

phosphoglycerate kinase 1

qPCR

quantitative polymerase chain reaction

Tfrc

transferring receptor

References

  • 1.Lutsenko S., Kaplan J.H. Organization of P-type ATPases: significance of structural diversity. Biochemistry (N.Y.) 1995;48:15607–15613. doi: 10.1021/bi00048a001. [DOI] [PubMed] [Google Scholar]
  • 2.Axelsen K.B., Palmgren M.G. Evolution of substrate specificities in the P-type ATPase superfamily. J. Mol. Evol. 1998;1:84–101. doi: 10.1007/PL00006286. [DOI] [PubMed] [Google Scholar]
  • 3.Kuhlbrandt W. Biology, structure and mechanism of P-type ATPases. Nat. Rev. Mol. Cell Biol. 2004;4:282–295. doi: 10.1038/nrm1354. [DOI] [PubMed] [Google Scholar]
  • 4.Paulusma C.C., Oude Elferink R.P. The type 4 subfamily of P-type ATPases, putative aminophospholipid translocases with a role in human disease. Biochim. Biophys. Acta. 2005;1–2:11–24. doi: 10.1016/j.bbadis.2005.04.006. [DOI] [PubMed] [Google Scholar]
  • 5.Folmer D.E., Elferink R.P., Paulusma C.C. P4 ATPases — lipid flippases and their role in disease. Biochim. Biophys. Acta. 2009;7:628–635. doi: 10.1016/j.bbalip.2009.02.008. [DOI] [PubMed] [Google Scholar]
  • 6.Cronin S.R., Khoury A., Ferry D.K., Hampton R.Y. Regulation of HMG-CoA reductase degradation requires the P-type ATPase Cod1p/Spf1p. J. Cell Biol. 2000;5:915–924. doi: 10.1083/jcb.148.5.915. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 7.Cronin S.R., Rao R., Hampton R.Y. Cod1p/Spf1p is a P-type ATPase involved in ER function and Ca2+ homeostasis. J. Cell Biol. 2002;6:1017–1028. doi: 10.1083/jcb.200203052. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 8.Vallipuram J., Grenville J., Crawford D.A. The E646D-ATP13A4 mutation associated with autism reveals a defect in calcium regulation. Cell. Mol. Neurobiol. 2010;30:233–246. doi: 10.1007/s10571-009-9445-8. [DOI] [PubMed] [Google Scholar]
  • 9.Suzuki C., Shimma Y.I. P-type ATPase spf1 mutants show a novel resistance mechanism for the killer toxin SMKT. Mol. Microbiol. 1999;4:813–823. doi: 10.1046/j.1365-2958.1999.01400.x. [DOI] [PubMed] [Google Scholar]
  • 10.Vashist S., Frank C.G., Jakob C.A., Ng D.T. Two distinctly localized p-type ATPases collaborate to maintain organelle homeostasis required for glycoprotein processing and quality control. Mol. Biol. Cell. 2002;11:3955–3966. doi: 10.1091/mbc.02-06-0090. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 11.Jakobsen M.K., Poulsen L.R., Schulz A., Fleurat-Lessard P., Moller A., Husted S., Schiott M., Amtmann A., Palmgren M.G. Pollen development and fertilization in Arabidopsis is dependent on the MALE GAMETOGENESIS IMPAIRED ANTHERS gene encoding a type V P-type ATPase. Genes Dev. 2005;22:2757–2769. doi: 10.1101/gad.357305. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12.Suzuki C. Immunochemical and mutational analyses of P-type ATPase Spf1p involved in the yeast secretory pathway. Biosci. Biotechnol. Biochem. 2001;11:2405–2411. doi: 10.1271/bbb.65.2405. [DOI] [PubMed] [Google Scholar]
  • 13.Rand J.D., Grant C.M. The thioredoxin system protects ribosomes against stress-induced aggregation. Mol. Biol. Cell. 2006;1:387–401. doi: 10.1091/mbc.E05-06-0520. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 14.Moller A.B., Asp T., Holm P.B., Palmgren M.G. Phylogenetic analysis of P5 P-type ATPases, a eukaryotic lineage of secretory pathway pumps. Mol. Phylogenet. Evol. 2008;2:619–634. doi: 10.1016/j.ympev.2007.10.023. [DOI] [PubMed] [Google Scholar]
  • 15.Kwasnicka-Crawford D.A., Carson A.R., Roberts W., Summers A.M., Rehnstrom K., Jarvela I., Scherer S.W. Characterization of a novel cation transporter ATPase gene (ATP13A4) interrupted by 3q25-q29 inversion in an individual with language delay. Genomics. 2005;2:182–194. doi: 10.1016/j.ygeno.2005.04.002. [DOI] [PubMed] [Google Scholar]
  • 16.Schultheis P.J., Hagen T.T., O’Toole K.K., Tachibana A., Burke C.R., McGill D.L., Okunade G.W., Shull G.E. Characterization of the P5 subfamily of P-type transport ATPases in mice. Biochem. Biophys. Res. Commun. 2004;3:731–738. doi: 10.1016/j.bbrc.2004.08.156. [DOI] [PubMed] [Google Scholar]
  • 17.Ramirez A., Heimbach A., Grundemann J., Stiller B., Hampshire D., Cid L.P., Goebel I., Mubaidin A.F., Wriekat A.L., Roeper J., Al-Din A., Hillmer A.M., Karsak M., Liss B., Woods C.G., Behrens M.I., Kubisch C. Hereditary parkinsonism with dementia is caused by mutations in ATP13A2, encoding a lysosomal type 5 P-type ATPase. Nat. Genet. 2006;10:1184–1191. doi: 10.1038/ng1884. [DOI] [PubMed] [Google Scholar]
  • 18.Di Fonzo A., Chien H.F., Socal M., Giraudo S., Tassorelli C., Iliceto G., Fabbrini G., Marconi R., Fincati E., Abbruzzese G., Marini P., Squitieri F., Horstink M.W., Montagna P., Libera A.D., Stocchi F., Goldwurm S., Ferreira J.J., Meco G., Martignoni E., Lopiano L., Jardim L.B., Oostra B.A., Barbosa E.R., Bonifati V. A. m. m. i. j. p. o. P. disease. Neurology. 2007;19:1557–1562. doi: 10.1212/01.wnl.0000260963.08711.08. [DOI] [PubMed] [Google Scholar]
  • 19.Lin C.H., Tan E.K., Chen M.L., Tan L.C., Lim H.Q., Chen G.S., Wu R.M. Novel ATP13A2 variant associated with Parkinson disease in Taiwan and Singapore. Neurology. 2008;21:1727–1732. doi: 10.1212/01.wnl.0000335167.72412.68. [DOI] [PubMed] [Google Scholar]
  • 20.Rakovic A., Stiller B., Djarmati A., Flaquer A., Freudenberg J., Toliat M.R., Linnebank M., Kostic V., Lohmann K., Paus S., Nurnberg P., Kubisch C., Klein C., Wullner U., Ramirez A. Genetic association study of the P-type ATPase ATP13A2 in late-onset Parkinson’s disease. Mov. Disord. 2009;3:429–433. doi: 10.1002/mds.22399. [DOI] [PubMed] [Google Scholar]
  • 21.Santos A.R., Duarte C.B. Validation of internal control genes for expression studies: effects of the neurotrophin BDNF on hippocampal neurons. J. Neurosci. Res. 2008;16:3684–3692. doi: 10.1002/jnr.21796. [DOI] [PubMed] [Google Scholar]
  • 22.de Kok J.B., Roelofs R.W., Giesendorf B.A., Pennings J.L., Waas E.T., Feuth T., Swinkels D.W., Span P.N. Normalization of gene expression measurements in tumor tissues: comparison of 13 endogenous control genes. Lab. Invest. 2005;1:154–159. doi: 10.1038/labinvest.3700208. [DOI] [PubMed] [Google Scholar]
  • 23.Thal S.C., Wyschkon S., Pieter D., Engelhard K., Werner C. Selection of endogenous control genes for normalization of gene expression analysis after experimental brain trauma in mice. J. Neurotrauma. 2008;7:785–794. doi: 10.1089/neu.2007.0497. [DOI] [PubMed] [Google Scholar]
  • 24.Mwacharo J., Dunachie S.J., Kai O., Hill A.V., Bejon P., Fletcher H.A. Quantitative PCR evaluation of cellular immune responses in Kenyan children vaccinated with a candidate malaria vaccine. PloS One. 2009;12:e8434. doi: 10.1371/journal.pone.0008434. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 25.Xing W., Deng M., Zhang J., Huang H., Dirsch O., Dahmen U. Quantitative evaluation and selection of reference genes in a rat model of extended liver resection. J. Biomol. Tech. 2009;2:109–115. [PMC free article] [PubMed] [Google Scholar]
  • 26.Boda E., Pini A., Hoxha E., Parolisi R., Tempia F. Selection of reference genes for quantitative real-time RT-PCR studies in mouse brain. J. Mol. Neurosci. 2009;3:238–253. doi: 10.1007/s12031-008-9128-9. [DOI] [PubMed] [Google Scholar]
  • 27.Vandesompele J., De Preter K., Pattyn F., Poppe B., Van Roy N., De Paepe A., Speleman F. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol. 2002;3:RESEARCH0034. doi: 10.1186/gb-2002-3-7-research0034. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 28.Daston G., Faustman E., Ginsberg G., Fenner-Crisp P., Olin S., Sonawane B., Bruckner J., Breslin W., McLaughlin T.J. A framework for assessing risks to children from exposure to environmental agents. Environ. Health Perspect. 2004;2:238–256. doi: 10.1289/ehp.6182. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 29.Rodier P.M. Chronology of neuron development: animal studies and their clinical implications. Dev. Med. Child Neurol. 1980;4:525–545. doi: 10.1111/j.1469-8749.1980.tb04363.x. [DOI] [PubMed] [Google Scholar]
  • 30.Angevine J.B., Jr. Time of neuron origin in the diencephalon of the mouse. An autoradiographic study. J. Comp. Neurol. 1970;2:129–187. doi: 10.1002/cne.901390202. [DOI] [PubMed] [Google Scholar]
  • 31.Gerfen C.R., Baimbridge K.G., Thibault J. The neostriatal mosaic: III. Biochemical and developmental dissociation of patch-matrix mesostriatal systems. J. Neurosci. 1987;12:3935–3944. doi: 10.1523/JNEUROSCI.07-12-03935.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 32.Bayer S.A., Wills K.V., Triarhou L.C., Ghetti B. Time of neuron origin and gradients of neurogenesis in midbrain dopaminergic neurons in the mouse. Exp. Brain Res. 1995;2:191–199. doi: 10.1007/BF00240955. [DOI] [PubMed] [Google Scholar]
  • 33.Kawano H., Ohyama K., Kawamura K., Nagatsu I. Migration of dopaminergic neurons in the embryonic mesencephalon of mice. Brain Res. Dev. Brain Res. 1995;1–2:101–113. doi: 10.1016/0165-3806(95)00018-9. [DOI] [PubMed] [Google Scholar]
  • 34.Carper R.A., Moses P., Tigue Z.D., Courchesne E. Cerebral lobes in autism: early hyperplasia and abnormal age effects. Neuroimage. 2002;4:1038–1051. doi: 10.1006/nimg.2002.1099. [DOI] [PubMed] [Google Scholar]
  • 35.Carper R.A., Courchesne E. Localized enlargement of the frontal cortex in early autism. Biol. Psychiatry. 2005;2:126–133. doi: 10.1016/j.biopsych.2004.11.005. [DOI] [PubMed] [Google Scholar]
  • 36.Courchesne E., Saitoh O., Yeung-Courchesne R., Press G.A., Lincoln A.J., Haas R.H., Schreibman L. Abnormality of cerebellar vermian lobules VI and VII in patients with infantile autism: identification of hypoplastic and hyperplastic subgroups with MR imaging. AJR Am. J. Roentgenol. 1994;1:123–130. doi: 10.2214/ajr.162.1.8273650. [DOI] [PubMed] [Google Scholar]
  • 37.Hashimoto T., Tayama M., Murakawa K., Yoshimoto T., Miyazaki M., Harada M., Kuroda Y. Development of the brainstem and cerebellum in autistic patients. J. Autism Dev. Disord. 1995;1:1–18. doi: 10.1007/BF02178163. [DOI] [PubMed] [Google Scholar]

Articles from Cellular & Molecular Biology Letters are provided here courtesy of BMC

RESOURCES