Abstract
The aim of this study was to evaluate the effect of carvedilol on the enzymatic antioxidative defence and plasma antioxidative activity in patients with stable angina. The study comprised 30 patients, aged 37–49 years with stable angina. Patients received carvedilol in escalating doses of 12.5 mg/24 h, 25 mg/24 h, and 50 mg/24 h for 4 weeks each. The control group was matched for age and gender, and consisted of 12 healthy volunteers, aged 39-49 years. Blood samples were collected from the cubital vein before and 4, 8 and 12 weeks after the therapy from the patients and once from the control group. For all the subjects, the superoxide dismutase (SOD-1), glutathione peroxidase (GSH-Px), catalase (CAT) activities in the erythrocytes and the antioxidant activity of the blood plasma were determined. The enzymatic antioxidative defence was significantly decreased in patients with stable angina in comparison to the healthy subjects. During the carvedilol therapy, an increase in the SOD-1, GSH-Px and CAT activities was observed. Moreover, 8 and 12 weeks after carvedilol therapy, the GSH-Px activity did not differ significantly from that observed in the group of healthy subjects. Carvedilol also increased the plasma antioxidative activity in patients with stable angina, but its level remained significantly lower than in the control group. In conclusion, carvedilol enhances antioxidant defense mechanisms in patients with chronic stable angina pectoris.
Key words: Stable angina, Carvedilol, Superoxide dismutase, Peroxidase, Catalase, Plasma antioxidative activity
Full Text
The Full Text of this article is available as a PDF (512.6 KB).
Abbreviations used
- catalase
CAT
- CHD
coronary heart disease
- GSH-Px
glutathione peroxidase
- ROS
reactive oxygen species
- SOD-1
superoxide dismutase
References
- 1.Gilbert E.M., Abraham W.T., Olsen S. Comparative hemodynamic, left ventricular functional, and antiadrenergic effects of chronic treatment with metoprolol versus carvedilol in the failing heart. Circulation. 1996;94:2817–2825. doi: 10.1161/01.cir.94.11.2817. [DOI] [PubMed] [Google Scholar]
- 2.Banach M., Goch A., Misztal M., Rysz J., Barylski M., Jaszewski R., Goch J.H. Low output syndrome following aortic valve replacement. Predictors and prognosis. Arch. Med. Sci. 2007;3:117–122. [Google Scholar]
- 3.Ruffolo R.R., Jr., Feurwstein G.Z. Pharmacology of carvedilol: rationale for use in hypertension, coronary artery disease, and congestive heart failure. Cardiovasc. Drugs Ther. 1997;11:247–256. doi: 10.1023/A:1007735729121. [DOI] [PubMed] [Google Scholar]
- 4.Heusch F., Skyschally A., Leineweber K., Haude M., Erbel R., Heusch G. The interaction of coronary microembolization and ischemic preconditioning: A third window of cardioprotection through TNF-alpha. Arch. Med. Sci. 2007;3:83–92. [Google Scholar]
- 5.Hauf-Zachariou U. A double-blind comparison of the effects of carvedilol and captopril on the lipid profile in patients with mild to moderate hypertension and dyslipidemia. Eur. J. Clin. Pharmacol. 1993;45:95–100. doi: 10.1007/BF00315487. [DOI] [PubMed] [Google Scholar]
- 6.Misra H.P., Fridovich I. The role of superoxide anion in the autooxidation of epinephrine and simple assay for superoxide dismutase. J. Biol. Chem. 1972;247:3170–3175. [PubMed] [Google Scholar]
- 7.Little C., O’Brien P.J. An intracellular GSH-peroxidase with a lipid peroxide substrate. Bioch. Biophys. Res. Comm. 1968;31:145–150. doi: 10.1016/0006-291X(68)90721-3. [DOI] [PubMed] [Google Scholar]
- 8.Beers R., Sizer J.W. Spectrofotometric method for measuring the breakdown of hydrogen peroxide by catalase. J. Biol. Chem. 1952;195:133–140. [PubMed] [Google Scholar]
- 9.Bartosz G., Janaszewska A., Ertel D. Spectrophotometric determination of peroxyl radical-trapping capacity with ABAP and ABTS. Curr. Topics. Biophys. 1998;22:11–13. [Google Scholar]
- 10.Landmesser U., Merten R., Spiekermann S., Büttner K., Drexler H., Hornig B. Vascular extracellular superoxide dismutase activity in patients with coronary artery disease: relation to endothelium-dependent vasodilation. Circulation. 2000;101:2264–2270. doi: 10.1161/01.cir.101.19.2264. [DOI] [PubMed] [Google Scholar]
- 11.Janssen M., Yandermeer P., Dejong J.W. Antioxidant defences in rat, pig, guinea pig and human hearts — comparison with xanthine oxidoreductase activity. Cardiovasc. Res. 1993;27:2052–2057. doi: 10.1093/cvr/27.11.2052. [DOI] [PubMed] [Google Scholar]
- 12.Hapyn E., Czerwonka-Szaflarska M., Drewa G. Enzymatic efficiency of erythrocyte antioxidant barrier and lipid peroxidation in children from families with high risk of early atherosclerosis. Med. Sci. Monit. 2000;6:112–116. [PubMed] [Google Scholar]
- 13.Rogowicz A., Litwinowicz M., Pilacinski S., Zozulinska D., Wierusz-Wysocka B. Does early insulin treatment decrease the risk of microangiopathy in non-obese adults with diabetes. Arch. Med. Sci. 2007;3:129–135. [Google Scholar]
- 14.Luciak M., Pawlicki L., Kędziora J., Trznadel K., Błaszczyk J., Buczyński A. Whole blood superoxide anion generation and efficiency of some erythrocyte antioxidant systems during recombinant human erythropoietin therapy of uremic anemia. Free Radic. Biol. Med. 1991;15:397–401. doi: 10.1016/0891-5849(91)90048-8. [DOI] [PubMed] [Google Scholar]
- 15.Rysz, J., Blaszczak, R., Banach, M., Kedziora-Kornatowska, K., Kornatowski, T., Tanski, W. and Kedziora, J. Evaluation of chosen parameters of antioxidative system in patients with type 2 diabetes in different periods of metabolic compensation. Arch. Immunol. Ther. Exp.55 (2007) in press. [DOI] [PMC free article] [PubMed]
- 16.Kowalski J., Barylski M., Banach M., Grycewicz J., Irzmanski R., Pawlicki L. Neutrophil superoxide anion generation during atorvastatin and fluvastatin therapy used in coronary heart disease primary prevention. J. Cardiovasc. Pharmacol. 2006;48:143–147. doi: 10.1097/01.fjc.0000246150.52382.07. [DOI] [PubMed] [Google Scholar]
- 17.Jayakumari N., Ambikakumari V., Balakrishnan K.G. Antioxidant status in relation to free radical production during stable and unstable anginal syndromes. Atherosclerosis. 1992;94:183–190. doi: 10.1016/0021-9150(92)90243-A. [DOI] [PubMed] [Google Scholar]
- 18.Cai H., Harrison D.G. Endothelial dysfunction in cardiovascular diseases: the role of oxidant stress. Circ. Res. 2000;87:840–840. doi: 10.1161/01.res.87.10.840. [DOI] [PubMed] [Google Scholar]
- 19.Harrison D.G. Cellular and molecular mechanisms of endothelial dysfunction. J. Clin. Invest. 1998;100:2153–2157. doi: 10.1172/JCI119751. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 20.Santos D.J., Moreno A.J. Inhibition of heart mitochondrial lipid peroxidation by non-toxic concentrations of carvediolol and its analog BM-910228. Biochem. Pharmacol. 2001;61:155–164. doi: 10.1016/S0006-2952(00)00522-0. [DOI] [PubMed] [Google Scholar]
- 21.Banach M., Okonski P., Kosmider A., Irzmanski R., Rysz J., Olszewski R., Zwolinski R., Zasłonka J. Aortic valve replacement in patients with heart failure. Pol. Merkur. Lekarski. 2006;20:642–645. [PubMed] [Google Scholar]
- 22.Feuerstein G.Z., Ruffolo R.R. Carvedilol, a novel vasodilating beta-blocker with the potential for cardiovascular organ protection. Eur. Heart J. 1996;17:24–29. doi: 10.1093/eurheartj/17.suppl_b.24. [DOI] [PubMed] [Google Scholar]
- 23.Kowalski J., Błaszczyk J., Petecka E., Irzmański R., Kowalczyk E., Kowalska E., Cegliński T., Pawlicki L. Neutrophils superoxide anion generation during carvedilol therapy in patients with stable angina. Int. J. Cardiol. 2005;102:397–402. doi: 10.1016/j.ijcard.2004.05.041. [DOI] [PubMed] [Google Scholar]
- 24.Tadolini B., Franconi F. Carvedilol inhibition of lipid peroxidation. A new antioxidative mechanism. Free. Radic. Res. 1998;5:377–387. doi: 10.1080/10715769800300421. [DOI] [PubMed] [Google Scholar]
- 25.Banach M., Drozdz J., Okonski P., Rysz J. Immunological aspects of the statins’ function in patients with heart failure. A raport from the Annual Conference of ESC — Heart Failure 2005. Cell. Mol. Immunol. 2005;2:433–437. [PubMed] [Google Scholar]
- 26.Irzmanski R., Piechota M., Barylski M., Banach M., Gławęda B., Kowalski J., Cierniewski C., Kośmider M., Pawlicki L. Dynamics of changes of the BNP concentration in patients with stable angina pectoris qualified for PTCA. Dependence on the selected morphological and haemodynamic parameters. Arch. Med. Sci. 2006;2:15–19. [Google Scholar]
- 27.Irzmanski R., Barylski M., Banach M., Piechota M., Kowalski J., Cierniewski C., Pawlicki L. The concentration of atrial and brain natriuretic peptide in patients with idiopathic arterial hypertension. Med. Sci. Monit. 2007;13:CR449–456. [PubMed] [Google Scholar]
