Abstract
The term Interactome describes the set of all molecular interactions in cells, especially in the context of protein-protein interactions. These interactions are crucial for most cellular processes, so the full representation of the interaction repertoire is needed to understand the cell molecular machinery at the system biology level. In this short review, we compare various methods for predicting protein-protein interactions using sequence and structure information. The ultimate goal of those approaches is to present the complete methodology for the automatic selection of interaction partners using their amino acid sequences and/or three dimensional structures, if known. Apart from a description of each method, details of the software or web interface needed for high throughput prediction on the whole genome scale are also provided. The proposed validation of the theoretical methods using experimental data would be a better assessment of their accuracy.
Key words: Protein-protein interactions, Protein complexes, Docking, PDB Database, Interactome, Protein interaction networks, Physical protein interactions
Full Text
The Full Text of this article is available as a PDF (484.3 KB).
Abbreviations used
- 3D
three dimensional
- BIND
Biomolecular Interaction Network Database
- BLAST
Basic Local Alignment Search Tool
- CAPRI
Critical Assessment of PRediction of Interactions
- DBID
database of interacting domains
- DIP
Database of Interacting Proteins
- DNA
deoxyribonucleic acid
- GO
Gene Ontology
- HPRD
Human Protein Reference Database
- KEGG
Kyoto Encyclopedia of Genes and Genomes
- KO
KEGG Orthology
- MetaBASIC
Bilaterally Amplified Sequence Information Comparison
- MINT
Molecular Interaction Database
- OPHID
Online Predicted Human Interaction Database
- PDB
Protein Data Bank
- RNA
ribonucleic acid
References
- 1.Berman H.M., Westbrook J., Feng Z., Gilliland G., Bhat T.N., Weissig H., Shindyalov I.N., Bourne P.E. The Protein Data Bank. Nucleic Acids Res. 2000;28:235–242. doi: 10.1093/nar/28.1.235. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 2.Ginalski K., von Grotthuss M., Grishin N.V., Rychlewski L. Detecting distant homology with Meta-BASIC. Nucleic Acids Res. 2004;32:W576–W581. doi: 10.1093/nar/gkh370. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 3.Sprinzak E., Sattath S., Margalit H. How reliable are experimental protein-protein interaction data? J. Mol. Biol. 2003;327:919–923. doi: 10.1016/s0022-2836(03)00239-0. [DOI] [PubMed] [Google Scholar]
- 4.von Mering C., Krause R., Snel B., Cornell M., Oliver S.G., Fields S., Bork P. Comparative assessment of large-scale data sets of protein-protein interactions. Nature. 2002;417:399–403. doi: 10.1038/nature750. [DOI] [PubMed] [Google Scholar]
- 5.Carter P., Lesk V.I., Islam S.A., Sternberg M.J. Protein-protein docking using 3D-Dock in rounds 3, 4, and 5 of CAPRI. Proteins. 2005;60:281–288. doi: 10.1002/prot.20571. [DOI] [PubMed] [Google Scholar]
- 6.Fariselli P., Pazos F., Valencia A., Casadio R. Prediction of protein-protein interaction sites in heterocomplexes with neural networks. Eur. J. Biochem. 2002;269:1356–1361. doi: 10.1046/j.1432-1033.2002.02767.x. [DOI] [PubMed] [Google Scholar]
- 7.Hoskins J., Lovell S., Blundell T.L. An algorithm for predicting protein-protein interaction sites: Abnormally exposed amino acid residues and secondary structure elements. Protein Sci. 2006;15:1017–1029. doi: 10.1110/ps.051589106. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 8.Jothi R., Cherukuri P.F., Tasneem A., Przytycka T.M. Coevolutionary analysis of domains in interacting proteins reveals insights into domain-domain interactions mediating protein-protein interactions. J. Mol. Biol. 2006;362:861–875. doi: 10.1016/j.jmb.2006.07.072. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 9.Tan K., Shlomi T., Feizi H., Ideker T., Sharan R. Transcriptional regulation of protein complexes within and across species. Proc. Natl. Acad. Sci. USA. 2007;104:1283–1288. doi: 10.1073/pnas.0606914104. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 10.Teichmann S.A. Principles of protein-protein interactions. Bioinformatics. 2002;18(Suppl2):S249. doi: 10.1093/bioinformatics/18.suppl_2.s249. [DOI] [PubMed] [Google Scholar]
- 11.Cusick M.E., Klitgord N., Vidal M., Hill D.E. Interactome: gateway into systems biology. Hum. Mol. Genet. 2005;14:R171–R181. doi: 10.1093/hmg/ddi335. [DOI] [PubMed] [Google Scholar]
- 12.Goh C.S., Cohen F.E. Co-evolutionary analysis reveals insights into protein-protein interactions. J. Mol. Biol. 2002;324:177–192. doi: 10.1016/s0022-2836(02)01038-0. [DOI] [PubMed] [Google Scholar]
- 13.Sharan R., Ideker T., Kelley B., Shamir R., Karp R.M. Identification of protein complexes by comparative analysis of yeast and bacterial protein interaction data. J. Comput. Biol. 2005;12:835–846. doi: 10.1089/cmb.2005.12.835. [DOI] [PubMed] [Google Scholar]
- 14.Barash Y., Elidan G., Kaplan T., Friedman N. CIS: compound importance sampling method for protein-DNA binding site p-value estimation. Bioinformatics. 2005;21:596–600. doi: 10.1093/bioinformatics/bti041. [DOI] [PubMed] [Google Scholar]
- 15.Sharan R., Suthram S., Kelley R.M., Kuhn T., McCuine S., Uetz P., Sittler T., Karp R.M., Ideker T. Conserved patterns of protein interaction in multiple species. Proc. Natl. Acad. Sci. USA. 2005;102:1974–1979. doi: 10.1073/pnas.0409522102. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 16.Kelley B.P., Sharan R., Karp R.M., Sittler T., Root D.E., Stockwell B.R., Ideker T. Conserved pathways within bacteria and yeast as revealed by global protein network alignment. Proc. Natl. Acad. Sci. USA. 2003;100:11394–11399. doi: 10.1073/pnas.1534710100. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 17.Salwinski L., Miller C.S., Smith A.J., Pettit F.K., Bowie J.U., Eisenberg D. The Database of Interacting Proteins: 2004 update. Nucleic Acids Res. 2004;32:D449–D451. doi: 10.1093/nar/gkh086. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 18.Alfarano C., Andrade C.E., Anthony K., Bahroos N., Bajec M., Bantoft K., Betel D., Bobechko B., Boutilier K., Burgess E., Buzadzija K., Cavero R., D’Abreo C., Donaldson I., Dorairajoo D., Dumontier M.J., Dumontier M.R., Earles V., Farrall R., Feldman H., Garderman E., Gong Y., Gonzaga R., Grytsan V., Gryz E., Gu V., Haldorsen E., Halupa A., Haw R., Hrvojic A., Hurrell L., Isserlin R., Jack F., Juma F., Khan A., Kon T., Konopinsky S., Le V., Lee E., Ling S., Magidin M., Moniakis J., Montojo J., Moore S., Muskat B., Ng I., Paraiso J.P., Parker B., Pintilie G., Pirone R., Salama J.J., Sgro S., Shan T., Shu Y., Siew J., Skinner D., Snyder K., Stasiuk R., Strumpf D., Tuekam B., Tao S., Wang Z., White M., Willis R., Wolting C., Wong S., Wrong A., Xin C., Yao R., Yates B., Zhang S., Zheng K., Pawson T., Ouellette B.F., Hogue C.W. The Biomolecular Interaction Network Database and related tools 2005 update. Nucleic Acids Res. 2005;33:D418–D424. doi: 10.1093/nar/gki051. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 19.Chatr-Aryamontri A., Ceol A., Palazzi L.M., Nardelli G., Schneider M.V., Castagnoli L., Cesareni G. MINT: the Molecular INTeraction database. Nucleic Acids Res. 2007;35:D572–574. doi: 10.1093/nar/gkl950. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 20.Hermjakob H., Montecchi-Palazzi L., Lewington C., Mudali S., Kerrien S., Orchard S., Vingron M., Roechert B., Roepstorff P., Valencia A., Margalit H., Armstrong J., Bairoch A., Cesareni G., Sherman D., Apweiler R. IntAct: an open source molecular interaction database. Nucleic Acids Res. 2004;32:D452–D455. doi: 10.1093/nar/gkh052. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 21.Kerrien S., Alam-Faruque Y., Aranda B., Bancarz I., Bridge A., Derow C., Dimmer E., Feuermann M., Friedrichsen A., Huntley R., Kohler C., Khadake J., Leroy C., Liban A., Lieftink C., Montecchi-Palazzi L., Orchard S., Risse J., Robbe K., Roechert B., Thorneycroft D., Zhang Y., Apweiler R., Hermjakob H. IntAct - open source resource for molecular interaction data. Nucleic Acids Res. 2007;35:D561–565. doi: 10.1093/nar/gkl958. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 22.Peri S., Navarro J.D., Amanchy R., Kristiansen T.Z., Jonnalagadda C.K., Surendranath V., Niranjan V., Muthusamy B., Gandhi T.K., Gronborg M., Ibarrola N., Deshpande N., Shanker K., Shivashankar H.N., Rashmi B.P., Ramya M.A., Zhao Z., Chandrika K.N., Padma N., Harsha H.C., Yatish A.J., Kavitha M.P., Menezes M., Choudhury D.R., Suresh S., Ghosh N., Saravana R., Chandran S., Krishna S., Joy M., Anand S.K., Madavan V., Joseph A., Wong G.W., Schiemann W.P., Constantinescu S.N., Huang L., Khosravi-Far R., Steen H., Tewari M., Ghaffari S., Blobe G.C., Dang C.V., Garcia J.G., Pevsner J., Jensen O.N., Roepstorff P., Deshpande K.S., Chinnaiyan A.M., Hamosh A., Chakravarti A., Pandey A. Development of human protein reference database as an initial platform for approaching systems biology in humans. Genome Res. 2003;13:2363–2371. doi: 10.1101/gr.1680803. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 23.Hoffmann R., Valencia A. Implementing the iHOP concept for navigation of biomedical literature. Bioinformatics. 2005;21(Suppl2):ii252–ii258. doi: 10.1093/bioinformatics/bti1142. [DOI] [PubMed] [Google Scholar]
- 24.von Mering C., Jensen L.J., Snel B., Hooper S.D., Krupp M., Foglierini M., Jouffre N., Huynen M.A., Bork P. STRING: known and predicted protein-protein associations, integrated and transferred across organisms. Nucleic Acids Res. 2005;33:D433–D437. doi: 10.1093/nar/gki005. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 25.Finn R.D., Mistry J., Schuster-Bockler B., Griffiths-Jones S., Hollich V., Lassmann T., Moxon S., Marshall M., Khanna A., Durbin R., Eddy S.R., Sonnhammer E.L., Bateman A. Pfam: clans, web tools and services. Nucleic Acids Res. 2006;34:D247–D251. doi: 10.1093/nar/gkj149. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 26.Altschul S.F., Madden T.L., Schaffer A.A., Zhang J., Zhang Z., Miller W., Lipman D.J. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997;25:3389–3402. doi: 10.1093/nar/25.17.3389. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 27.Jones D.T. Protein secondary structure prediction based on position-specific scoring matrices. J. Mol. Biol. 1999;292:195–202. doi: 10.1006/jmbi.1999.3091. [DOI] [PubMed] [Google Scholar]
- 28.Tatusov R.L., Fedorova N.D., Jackson J.D., Jacobs A.R., Kiryutin B., Koonin E.V., Krylov D.M., Mazumder R., Mekhedov S.L., Nikolskaya A.N., Rao B.S., Smirnov S., Sverdlov A.V., Vasudevan S., Wolf Y.I., Yin J.J., Natale D.A. The COG database: an updated version includes eukaryotes. BMC Bioinformatics. 2003;4:41. doi: 10.1186/1471-2105-4-41. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 29.Ashburner M., Ball C.A., Blake J.A., Botstein D., Butler H., Cherry J.M., Davis A.P., Dolinski K., Dwight S.S., Eppig J.T., Harris M.A., Hill D.P., Issel-Tarver L., Kasarskis A., Lewis S., Matese J.C., Richardson J.E., Ringwald M., Rubin G.M., Sherlock G. Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat. Genet. 2000;25:25–29. doi: 10.1038/75556. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 30.Camon E., Barrell D., Lee V., Dimmer E., Apweiler R. The Gene Ontology Annotation (GOA) Database - an integrated resource of GO annotations to the UniProt Knowledgebase. In Silico Biol. 2004;4:5–6. [PubMed] [Google Scholar]
- 31.Camon E., Magrane M., Barrell D., Binns D., Fleischmann W., Kersey P., Mulder N., Oinn T., Maslen J., Cox A., Apweiler R. The Gene Ontology Annotation (GOA) project: implementation of GO in SWISS-PROT, TrEMBL, and InterPro. Genome Res. 2003;13:662–672. doi: 10.1101/gr.461403. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 32.Mao X., Cai T., Olyarchuk J.G., Wei L. Automated genome annotation and pathway identification using the KEGG Orthology (KO) as a controlled vocabulary. Bioinformatics. 2005;21:3787–3793. doi: 10.1093/bioinformatics/bti430. [DOI] [PubMed] [Google Scholar]
- 33.Kanehisa M., Goto S., Kawashima S., Okuno Y., Hattori M. The KEGG resource for deciphering the genome. Nucleic Acids Res. 2004;32:D277–D280. doi: 10.1093/nar/gkh063. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 34.Jeong H., Mason S.P., Barabasi A.L., Oltvai Z.N. Lethality and centrality in protein networks. Nature. 2001;411:41–42. doi: 10.1038/35075138. [DOI] [PubMed] [Google Scholar]
- 35.Sprinzak E., Altuvia Y., Margalit H. Characterization and prediction of protein-protein interactions within and between complexes. Proc. Natl. Acad. Sci. USA. 2006;103:14718–14723. doi: 10.1073/pnas.0603352103. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 36.Brown K.R., Jurisica I. Online predicted human interaction database. Bioinformatics. 2005;21:2076–2082. doi: 10.1093/bioinformatics/bti273. [DOI] [PubMed] [Google Scholar]
- 37.Cagney G., Uetz P., Fields S. High-throughput screening for protein-protein interactions using two-hybrid assay. Methods Enzymol. 2000;328:3–14. doi: 10.1016/s0076-6879(00)28386-9. [DOI] [PubMed] [Google Scholar]
- 38.Uetz P., Giot L., Cagney G., Mansfield T.A., Judson R.S., Knight J.R., Lockshon D., Narayan V., Srinivasan M., Pochart P., Qureshi-Emili A., Li Y., Godwin B., Conover D., Kalbfleisch T., Vijayadamodar G., Yang M., Johnston M., Fields S., Rothberg J.M. A comprehensive analysis of protein-protein interactions in Saccharomyces cerevisiae. Nature. 2000;403:623–627. doi: 10.1038/35001009. [DOI] [PubMed] [Google Scholar]
- 39.Ito T., Chiba T., Ozawa R., Yoshida M., Hattori M., Sakaki Y. A comprehensive two-hybrid analysis to explore the yeast protein interactome. Proc. Natl. Acad. Sci. USA. 2001;98:4569–4574. doi: 10.1073/pnas.061034498. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 40.Ito T., Chiba T., Yoshida M. Exploring the protein interactome using comprehensive two-hybrid projects. Trends Biotechnol. 2001;19:S23–S27. doi: 10.1016/S0167-7799(01)01790-5. [DOI] [PubMed] [Google Scholar]
- 41.Rigaut G., Shevchenko A., Rutz B., Wilm M., Mann M., Seraphin B. A generic protein purification method for protein complex characterization and proteome exploration. Nat. Biotechnol. 1999;17:1030–1032. doi: 10.1038/13732. [DOI] [PubMed] [Google Scholar]
- 42.Bader G.D., Hogue C.W. Analyzing yeast protein-protein interaction data obtained from different sources. Nat. Biotechnol. 2002;20:991–997. doi: 10.1038/nbt1002-991. [DOI] [PubMed] [Google Scholar]
- 43.Chen T., Jaffe J.D., Church G.M. Algorithms for identifying protein cross-links via tandem mass spectrometry. J. Comput. Biol. 2001;8:571–583. doi: 10.1089/106652701753307494. [DOI] [PubMed] [Google Scholar]
- 44.Ito T., Ota K., Kubota H., Yamaguchi Y., Chiba T., Sakuraba K., Yoshida M. Roles for the two-hybrid system in exploration of the yeast protein interactome. Mol. Cell. Proteomics. 2002;1:561–566. doi: 10.1074/mcp.r200005-mcp200. [DOI] [PubMed] [Google Scholar]
- 45.McDermott J., Bumgarner R., Samudrala R. Functional annotation from predicted protein interaction networks. Bioinformatics. 2005;21:3217–3226. doi: 10.1093/bioinformatics/bti514. [DOI] [PubMed] [Google Scholar]
- 46.Morrison J.L., Breitling R., Higham D.J., Gilbert D.R. A lock-and-key model for protein-protein interactions. Bioinformatics. 2006;22:2012–2019. doi: 10.1093/bioinformatics/btl338. [DOI] [PubMed] [Google Scholar]
- 47.Schweitzer B., Predki P., Snyder M. Microarrays to characterize protein interactions on a whole-proteome scale. Proteomics. 2003;3:2190–2199. doi: 10.1002/pmic.200300610. [DOI] [PubMed] [Google Scholar]
- 48.Tong A.H., Drees B., Nardelli G., Bader G.D., Brannetti B., Castagnoli L., Evangelista M., Ferracuti S., Nelson B., Paoluzi S., Quondam M., Zucconi A., Hogue C.W., Fields S., Boone C., Cesareni G. A combined experimental and computational strategy to define protein interaction networks for peptide recognition modules. Science. 2002;295:321–324. doi: 10.1126/science.1064987. [DOI] [PubMed] [Google Scholar]
- 49.Walhout A.J., Boulton S.J., Vidal M. Yeast two-hybrid systems and protein interaction mapping projects for yeast and worm. Yeast. 2000;17:88–94. doi: 10.1002/1097-0061(20000630)17:2<88::AID-YEA20>3.0.CO;2-Y. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 50.Wehr M.C., Laage R., Bolz U., Fischer T.M., Grunewald S., Scheek S., Bach A., Nave K.A., Rossner M.J. Monitoring regulated protein-protein interactions using split TEV. Nat. Methods. 2006;3:985–993. doi: 10.1038/nmeth967. [DOI] [PubMed] [Google Scholar]
- 51.Wu X., Zhu L., Guo J., Zhang D.Y., Lin K. Prediction of yeast protein-protein interaction network: insights from the Gene Ontology and annotations. Nucleic Acids Res. 2006;34:2137–2150. doi: 10.1093/nar/gkl219. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 52.Yarmush M.L., Jayaraman A. Advances in proteomic technologies. Annu. Rev. Biomed. Eng. 2002;4:349–373. doi: 10.1146/annurev.bioeng.4.020702.153443. [DOI] [PubMed] [Google Scholar]
- 53.Marcotte E.M., Pellegrini M., Ng H.L., Rice D.W., Yeates T.O., Eisenberg D. Detecting protein function and protein-protein interactions from genome sequences. Science. 1999;285:751–753. doi: 10.1126/science.285.5428.751. [DOI] [PubMed] [Google Scholar]
- 54.Troyanskaya O.G., Dolinski K., Owen A.B., Altman R.B., Botstein D. A Bayesian framework for combining heterogeneous data sources for gene function prediction (in Saccharomyces cerevisiae) Proc. Natl. Acad. Sci. USA. 2003;100:8348–8353. doi: 10.1073/pnas.0832373100. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 55.Lu L., Lu H., Skolnick J. MULTIPROSPECTOR: an algorithm for the prediction of protein-protein interactions by multimeric threading. Proteins. 2002;49:350–364. doi: 10.1002/prot.10222. [DOI] [PubMed] [Google Scholar]
- 56.Smith G.R., Sternberg M.J. Prediction of protein-protein interactions by docking methods. Curr. Opin. Struct. Biol. 2002;12:28–35. doi: 10.1016/s0959-440x(02)00285-3. [DOI] [PubMed] [Google Scholar]
- 57.Wodak S.J., Mendez R. Prediction of protein-protein interactions: the CAPRI experiment, its evaluation and implications. Curr. Opin. Struct. Biol. 2004;14:242–249. doi: 10.1016/j.sbi.2004.02.003. [DOI] [PubMed] [Google Scholar]
- 58.Jones S., Thornton J.M. Analysis of protein-protein interaction sites using surface patches. J. Mol. Biol. 1997;272:121–132. doi: 10.1006/jmbi.1997.1234. [DOI] [PubMed] [Google Scholar]
- 59.Lo Conte L., Chothia C., Janin J. The atomic structure of protein-protein recognition sites. J. Mol. Biol. 1999;285:2177–2198. doi: 10.1006/jmbi.1998.2439. [DOI] [PubMed] [Google Scholar]
- 60.Glaser F., Steinberg D.M., Vakser I.A., Ben-Tal N. Residue frequencies and pairing preferences at protein-protein interfaces. Proteins. 2001;43:89–102. [PubMed] [Google Scholar]
- 61.Hu Z., Ma B., Wolfson H., Nussinov R. Conservation of polar residues as hot spots at protein interfaces. Proteins. 2000;39:331–342. [PubMed] [Google Scholar]
- 62.DeLano W.L. Unraveling hot spots in binding interfaces: progress and challenges. Curr. Opin. Struct. Biol. 2002;12:14–20. doi: 10.1016/s0959-440x(02)00283-x. [DOI] [PubMed] [Google Scholar]
- 63.Pellegrini M., Marcotte E.M., Yeates T.O. A fast algorithm for genome-wide analysis of proteins with repeated sequences. Proteins. 1999;35:440–446. [PubMed] [Google Scholar]
- 64.Eisen M.B., Spellman P.T., Brown P.O., Botstein D. Cluster analysis and display of genome-wide expression patterns. Proc. Natl. Acad. Sci. USA. 1998;95:14863–14868. doi: 10.1073/pnas.95.25.14863. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 65.Sprinzak E., Margalit H. Correlated sequence-signatures as markers of protein-protein interaction. J. Mol. Biol. 2001;311:681–692. doi: 10.1006/jmbi.2001.4920. [DOI] [PubMed] [Google Scholar]
- 66.Bock J.R., Gough D.A. Predicting protein-protein interactions from primary structure. Bioinformatics. 2001;17:455–460. doi: 10.1093/bioinformatics/17.5.455. [DOI] [PubMed] [Google Scholar]
- 67.Gallet X., Charloteaux B., Thomas A., Brasseur R. A fast method to predict protein interaction sites from sequences. J. Mol. Biol. 2000;302:917–926. doi: 10.1006/jmbi.2000.4092. [DOI] [PubMed] [Google Scholar]
- 68.Ofran Y., Rost B. Predicted protein-protein interaction sites from local sequence information. FEBS Lett. 2003;544:236–239. doi: 10.1016/s0014-5793(03)00456-3. [DOI] [PubMed] [Google Scholar]
- 69.Jones S., Thornton J.M. Principles of protein-protein interactions. Proc. Natl. Acad. Sci. USA. 1996;93:13–20. doi: 10.1073/pnas.93.1.13. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 70.Nooren I.M., Thornton J.M. Diversity of protein-protein interactions. Embo J. 2003;22:3486–3492. doi: 10.1093/emboj/cdg359. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 71.Nooren I.M., Thornton J.M. Structural characterisation and functional significance of transient protein-protein interactions. J. Mol. Biol. 2003;325:991–1018. doi: 10.1016/s0022-2836(02)01281-0. [DOI] [PubMed] [Google Scholar]
- 72.Bahadur R.P., Chakrabarti P., Rodier F., Janin J. A dissection of specific and non-specific protein-protein interfaces. J. Mol. Biol. 2004;336:943–955. doi: 10.1016/j.jmb.2003.12.073. [DOI] [PubMed] [Google Scholar]
- 73.Ofran Y., Rost B. Analysing six types of protein-protein interfaces. J. Mol. Biol. 2003;325:377–387. doi: 10.1016/s0022-2836(02)01223-8. [DOI] [PubMed] [Google Scholar]
- 74.Saha R.P., Bahadur R.P., Chakrabarti P. Interresidue contacts in proteins and protein-protein interfaces and their use in characterizing the homodimeric interface. J. Proteome Res. 2005;4:1600–1609. doi: 10.1021/pr050118k. [DOI] [PubMed] [Google Scholar]
- 75.Bordner A.J., Abagyan R. Statistical analysis and prediction of protein-protein interfaces. Proteins. 2005;60:353–366. doi: 10.1002/prot.20433. [DOI] [PubMed] [Google Scholar]
- 76.Neuvirth H., Raz R., Schreiber G. ProMate: a structure based prediction program to identify the location of protein-protein binding sites. J. Mol. Biol. 2004;338:181–199. doi: 10.1016/j.jmb.2004.02.040. [DOI] [PubMed] [Google Scholar]
- 77.Chung J.L., Wang W., Bourne P.E. Exploiting sequence and structure homologs to identify protein-protein binding sites. Proteins. 2006;62:630–640. doi: 10.1002/prot.20741. [DOI] [PubMed] [Google Scholar]
- 78.Valdar W.S., Thornton J.M. Protein-protein interfaces: analysis of amino acid conservation in homodimers. Proteins. 2001;42:108–124. [PubMed] [Google Scholar]
- 79.Yao H., Kristensen D.M., Mihalek I., Sowa M.E., Shaw C., Kimmel M., Kavraki L., Lichtarge O. An accurate, sensitive, and scalable method to identify functional sites in protein structures. J. Mol. Biol. 2003;326:255–261. doi: 10.1016/s0022-2836(02)01336-0. [DOI] [PubMed] [Google Scholar]
- 80.Aloy P., Querol E., Aviles F.X., Sternberg M.J. Automated structure-based prediction of functional sites in proteins: applications to assessing the validity of inheriting protein function from homology in genome annotation and to protein docking. J. Mol. Biol. 2001;311:395–408. doi: 10.1006/jmbi.2001.4870. [DOI] [PubMed] [Google Scholar]
- 81.Berezin C., Glaser F., Rosenberg J., Paz I., Pupko T., Fariselli P., Casadio R., Ben-Tal N. ConSeq: the identification of functionally and structurally important residues in protein sequences. Bioinformatics. 2004;20:1322–1324. doi: 10.1093/bioinformatics/bth070. [DOI] [PubMed] [Google Scholar]
- 82.Caffrey D.R., Somaroo S., Hughes J.D., Mintseris J., Huang E.S. Are protein-protein interfaces more conserved in sequence than the rest of the protein surface? Protein Sci. 2004;13:190–202. doi: 10.1110/ps.03323604. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 83.Yan C., Dobbs D., Honavar V. A two-stage classifier for identification of protein-protein interface residues. Bioinformatics. 2004;20(Suppl1):I371–I378. doi: 10.1093/bioinformatics/bth920. [DOI] [PubMed] [Google Scholar]
- 84.Porollo A., Meller J. Prediction-based fingerprints of protein-protein interactions. Proteins. 2006;66:630–645. doi: 10.1002/prot.21248. [DOI] [PubMed] [Google Scholar]
- 85.Koike A., Takagi T. Prediction of protein-protein interaction sites using support vector machines. Protein Eng. Des. Sel. 2004;17:165–173. doi: 10.1093/protein/gzh020. [DOI] [PubMed] [Google Scholar]
- 86.Jansen R., Yu H., Greenbaum D., Kluger Y., Krogan N.J., Chung S., Emili A., Snyder M., Greenblatt J.F., Gerstein M. A Bayesian networks approach for predicting protein-protein interactions from genomic data. Science. 2003;302:449–453. doi: 10.1126/science.1087361. [DOI] [PubMed] [Google Scholar]
- 87.Liu X., Zhang L.M., Zheng W.M. Prediction of protein secondary structure based on residue pairs. J. Bioinform. Comput. Biol. 2004;2:343–352. doi: 10.1142/s0219720004000594. [DOI] [PubMed] [Google Scholar]
- 88.Zhang L.V., Wong S.L., King O.D., Roth F.P. Predicting co-complexed protein pairs using genomic and proteomic data integration. BMC Bioinformatics. 2004;5:38. doi: 10.1186/1471-2105-5-38. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 89.Zhou H.X., Shan Y. Prediction of protein interaction sites from sequence profile and residue neighbor list. Proteins. 2001;44:336–343. doi: 10.1002/prot.1099. [DOI] [PubMed] [Google Scholar]
- 90.Hesse H., Hoefgen R. On the way to understand biological complexity in plants: S-nutrition as a case study for systems biology. Cell. Mol. Biol. Lett. 2006;11:37–56. doi: 10.2478/s11658-006-0004-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 91.Hsieh C.J., Chen M.J., Liao Y.L., Liao T.N. Polymorphisms of the uridine-diphosphoglucuronosyltransferase 1A1 gene and coronary artery disease. Cell. Mol. Biol. Lett. 2008;13:1–10. doi: 10.2478/s11658-007-0030-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 92.Huang B., Chu C.H., Chen S.L., Juan H.F., Chen Y.M. A proteomics study of the mung bean epicotyl regulated by brassinosteroids under conditions of chilling stress. Cell. Mol. Biol. Lett. 2006;11:264–278. doi: 10.2478/s11658-006-0021-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 93.Knizewski L., Steczkiewicz K., Kuchta K., Wyrwicz L., Plewczynski D., Kolinski A., Rychlewski L., Ginalski K. Uncharacterized DUF1574 leptospira proteins are SGNH hydrolases. Cell Cycle. 2008;7:542–544. doi: 10.4161/cc.7.4.5386. [DOI] [PubMed] [Google Scholar]
- 94.Korohoda W., Wilk A. Cell electrophoresis - a method for cell separation and research into cell surface properties. Cell. Mol. Biol. Lett. 2008;13:312–326. doi: 10.2478/s11658-008-0004-y. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 95.Li J., Ji C., Zheng H., Fei X., Zheng M., Dai J., Gu S., Xie Y., Mao Y. Molecular cloning and characterization of a novel human gene containing 4 ankyrin repeat domains. Cell. Mol. Biol. Lett. 2005;10:185–193. [PubMed] [Google Scholar]
- 96.Liu S.J., Zhang D.Q., Sui X.M., Zhang L., Cai Z.W., Sun L.Q., Liu Y.J., Xue Y., Hu G.F. The inhibition of in vivo tumorigenesis of osteosarcoma (OS)-732 cells by antisense human osteopontin RNA. Cell. Mol. Biol. Lett. 2008;13:11–19. doi: 10.2478/s11658-007-0031-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 97.Miyamato T., Sato H., Yogev L., Kleiman S., Namiki M., Koh E., Sakugawa N., Hayashi H., Ishikawa M., Lamb D.J., Sengoku K. Is a genetic defect in Fkbp6 a common cause of azoospermia in humans? Cell. Mol. Biol. Lett. 2006;11:557–569. doi: 10.2478/s11658-006-0043-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 98.Wisniewska A., Draus J., Subczynski W.K. Is a fluid-mosaic model of biological membranes fully relevant? Studies on lipid organization in model and biological membranes. Cell. Mol. Biol. Lett. 2003;8:147–159. [PubMed] [Google Scholar]
- 99.Wladyka B., Pustelny K. Regulation of bacterial protease activity. Cell. Mol. Biol. Lett. 2008;13:212–229. doi: 10.2478/s11658-007-0048-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 100.Cottage A., Mullan L., Portela M.B., Hellen E., Carver T., Patel S., Vavouri T., Elgar G., Edwards Y.J. Molecular characterisation of the SAND protein family: a study based on comparative genomics, structural bioinformatics and phylogeny. Cell. Mol. Biol. Lett. 2004;9:739–753. [PubMed] [Google Scholar]
- 101.Gronemeyer H., Miturski R. Molecular mechanisms of retinoid action. Cell. Mol. Biol. Lett. 2001;6:3–52. [PubMed] [Google Scholar]
- 102.Agoston V., Cemazar M., Kajan L., Pongor S. Graph-representation of oxidative folding pathways. BMC Bioinformatics. 2005;6:19. doi: 10.1186/1471-2105-6-19. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 103.Kajan L., Kertesz-Farkas A., Franklin D., Ivanova N., Kocsor A., Pongor S. Application of a simple likelihood ratio approximant to protein sequence classification. Bioinformatics. 2006;22:2865–2869. doi: 10.1093/bioinformatics/btl512. [DOI] [PubMed] [Google Scholar]
- 104.Kocsor A., Kertesz-Farkas A., Kajan L., Pongor S. Application of compression-based distance measures to protein sequence classification: a methodological study. Bioinformatics. 2006;22:407–412. doi: 10.1093/bioinformatics/bti806. [DOI] [PubMed] [Google Scholar]
- 105.Vlahovicek K., Kajan L., Agoston V., Pongor S. The SBASE domain sequence resource, release 12: prediction of protein domain-architecture using support vector machines. Nucleic Acids Res. 2005;33:D223–D225. doi: 10.1093/nar/gki112. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 106.Vlahovicek K., Kajan L., Murvai J., Hegedus Z., Pongor S. The SBASE domain sequence library, release 10: domain architecture prediction. Nucleic Acids Res. 2003;31:403–405. doi: 10.1093/nar/gkg098. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 107.von Grotthuss M., Plewczynski D., Ginalski K., Rychlewski L., Shakhnovich E.I. PDB-UF: database of predicted enzymatic functions for unannotated protein structures from structural genomics. BMC Bioinformatics. 2006;7:53. doi: 10.1186/1471-2105-7-53. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 108.Wyrwicz L.S., Koczyk G., Rychlewski L., Plewczynski D. ProteinSplit: splitting of multi-domain proteins using prediction of ordered and disordered regions in protein sequences for virtual structural genomics. J. Phys. Condens. Matter. 2007;19:285222. [Google Scholar]
- 109.Grabarkiewicz T., Grobelny P., Hoffmann M., Mielcarek J. DFT study on hydroxy acid-lactone interconversion of statins: The case of fluvastatin. Org. Biomol. Chem. 2006;4:4299–4306. doi: 10.1039/b612999b. [DOI] [PubMed] [Google Scholar]
- 110.Grabarkiewicz T., Hoffmann M. Syn- and anti-conformations of 5′- deoxy- and 5′-O-methyl-uridine 2′,3′-cyclic monophosphate. J. Mol. Model. 2006;12:205–212. doi: 10.1007/s00894-005-0019-5. [DOI] [PubMed] [Google Scholar]
- 111.Hoffmann M., Chrzanowska M., Hermann T., Rychlewski J. Modeling of purine derivatives transport across cell membranes based on their partition coefficient determination and quantum chemical calculations. J. Med. Chem. 2005;48:4482–4486. doi: 10.1021/jm0495273. [DOI] [PubMed] [Google Scholar]
- 112.Hoffmann M., Marciniec B. Quantum chemical study of the mechanism of ethylene elimination in silylative coupling of olefins. J. Mol. Model. 2007;13:477–483. doi: 10.1007/s00894-006-0166-3. [DOI] [PubMed] [Google Scholar]
- 113.Hoffmann M., Plutecka A., Rychlewska U., Kucybala Z., Paczkowski J., Pyszka I. New type of bonding formed from an overlap between pi aromatic and pi C=O molecular orbitals stabilizes the coexistence in one molecule of the ionic and neutral meso-ionic forms of imidazopyridine. J. Phys. Chem. A Mol. Spectrosc. Kinet. Environ. Gen. Theory. 2005;109:4568–4574. doi: 10.1021/jp0447892. [DOI] [PubMed] [Google Scholar]
- 114.Hoffmann M., Rychlewski J. Effects of substituting a OH group by a F atom in D-glucose. Ab initio and DFT analysis. J. Am. Chem. Soc. 2001;123:2308–2316. doi: 10.1021/ja003198w. [DOI] [PubMed] [Google Scholar]
- 115.Hoffmann M., Rychlewski J., Chrzanowska M., Hermann T. Mechanism of activation of an immunosuppressive drug: azathioprine. Quantum chemical study on the reaction of azathioprine with cysteine. J. Am. Chem. Soc. 2001;123:6404–6409. doi: 10.1021/ja010378c. [DOI] [PubMed] [Google Scholar]
- 116.Plutecka A., Hoffmann M., Rychlewska U., Kucybala Z., Paczkowski J., Pyszka I. Relationship between structure and photoinitiating abilities of selected bromide salts of 2-oxo-2,3-dihydro-1H-imidazo[1,2-a]pyridine (IMP): influence of the solvent and the substitution in benzaldehyde on the course of its reaction with IMP. Acta Crystallogr. B. 2006;62:135–142. doi: 10.1107/S0108768105033884. [DOI] [PubMed] [Google Scholar]
- 117.Hoffmann M., Eitner K., von Grotthuss M., Rychlewski L., Banachowicz E., Grabarkiewicz T., Szkoda T., Kolinski A. Three dimensional model of severe acute respiratory syndrome coronavirus helicase ATPase catalytic domain and molecular design of severe acute respiratory syndrome coronavirus helicase inhibitors. J. Comput. Aided Mol. Des. 2006;20:305–319. doi: 10.1007/s10822-006-9057-z. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 118.Ostrowski J., Rubel T., Wyrwicz L.S., Mikula M., Bielasik A., Butruk E., Regula J. Three clinical variants of gastroesophageal reflux disease form two distinct gene expression signatures. J. Mol. Med. 2006;84:872–882. doi: 10.1007/s00109-006-0083-z. [DOI] [PubMed] [Google Scholar]
- 119.Paziewska A., Wyrwicz L.S., Bujnicki J.M., Bomsztyk K., Ostrowski J. Cooperative binding of the hnRNP K three KH domains to mRNA targets. FEBS Lett. 2004;577:134–140. doi: 10.1016/j.febslet.2004.08.086. [DOI] [PubMed] [Google Scholar]
- 120.Paziewska A., Wyrwicz L.S., Ostrowski J. The binding activity of yeast RNAs to yeast Hek2p and mammalian hnRNP K proteins, determined using the three-hybrid system. Cell. Mol. Biol. Lett. 2005;10:227–235. [PubMed] [Google Scholar]
- 121.von Grotthuss M., Koczyk G., Pas J., Wyrwicz L.S., Rychlewski L. Ligand-Info small-molecule Meta-Database. Comb. Chem. High. Throughput Screen. 2004;7:757–761. doi: 10.2174/1386207043328265. [DOI] [PubMed] [Google Scholar]
- 122.von Grotthuss M., Pas J., Rychlewski L. Ligand-Info, searching for similar small compounds using index profiles. Bioinformatics. 2003;19:1041–1042. doi: 10.1093/bioinformatics/btg117. [DOI] [PubMed] [Google Scholar]
- 123.von Grotthuss M., Wyrwicz L.S., Rychlewski L. mRNA cap-1 methyltransferase in the SARS genome. Cell. 2003;113:701–702. doi: 10.1016/S0092-8674(03)00424-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 124.Wyrwicz L.S., Rychlewski L. Herpes glycoprotein gL is distantly related to chemokine receptor ligands. Antiviral Res. 2007;75:83–86. doi: 10.1016/j.antiviral.2006.11.015. [DOI] [PubMed] [Google Scholar]
- 125.Zemojtel T., Frohlich A., Palmieri M.C., Kolanczyk M., Mikula I., Wyrwicz L.S., Wanker E.E., Mundlos S., Vingron M., Martasek P., Durner J. Plant nitric oxide synthase: a never-ending story? Trends Plant Sci. 2006;11:524–525. doi: 10.1016/j.tplants.2006.09.008. [DOI] [PubMed] [Google Scholar]
- 126.Plewczynski D., Hoffmann M., von Grotthuss M., Ginalski K., Rychewski L. In silico prediction of SARS protease inhibitors by virtual high throughput screening. Chem. Biol. Drug Design. 2007;69:269–279. doi: 10.1111/j.1747-0285.2007.00475.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 127.Plewczynski D., Hoffmann M., von Grotthuss M., Knizewski L., Rychewski L., Eitner K., Ginalski K. Modelling of potentially promising SARS protease inhibitors. J. Phys. Condens. Matter. 2007;19:285207. [Google Scholar]
- 128.Feder M., Pas J., Wyrwicz L.S., Bujnicki J.M. Molecular phylogenetics of the RrmJ/fibrillarin superfamily of ribose 2′-Omethyltransferases. Gene. 2003;302:129–138. doi: 10.1016/s0378-1119(02)01097-1. [DOI] [PubMed] [Google Scholar]
- 129.Ginalski K., Pas J., Wyrwicz L.S., von Grotthuss M., Bujnicki J.M., Rychlewski L. ORFeus: Detection of distant homology using sequence profiles and predicted secondary structure. Nucleic Acids Res. 2003;31:3804–3807. doi: 10.1093/nar/gkg504. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 130.Klimek-Tomczak K., Mikula M., Dzwonek A., Paziewska A., Wyrwicz L.S., Hennig E.E., Ostrowski J. Mitochondria-associated satellite I RNA binds to hnRNP K protein. Acta Biochim. Pol. 2006;53:169–178. [PubMed] [Google Scholar]
- 131.Klimek-Tomczak K., Wyrwicz L.S., Jain S., Bomsztyk K., Ostrowski J. Characterization of hnRNP K protein-RNA interactions. J. Mol. Biol. 2004;342:1131–1141. doi: 10.1016/j.jmb.2004.07.099. [DOI] [PubMed] [Google Scholar]
- 132.Pas J., von Grotthuss M., Wyrwicz L.S., Rychlewski L., Barciszewski J. Structure prediction, evolution and ligand interaction of CHASE domain. FEBS Lett. 2004;576:287–290. doi: 10.1016/j.febslet.2004.09.020. [DOI] [PubMed] [Google Scholar]
- 133.von Grotthuss M., Pas J., Wyrwicz L., Ginalski K., Rychlewski L. Application of 3D-Jury, GRDB, and Verify3D in fold recognition. Proteins. 2003;53(Suppl6):418–423. doi: 10.1002/prot.10547. [DOI] [PubMed] [Google Scholar]
- 134.von Grotthuss M., Plewczynski D., Ginalski K., Rychlewski L., Shakhnovich E.I. PDB-UF: database of predicted enzymatic functions for unannotated protein structures from structural genomics. BMC Bioinformatics. 2006;7:53. doi: 10.1186/1471-2105-7-53. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 135.von Grotthuss M., Wyrwicz L.S., Pas J., Rychlewski L. Predicting protein structures accurately. Science. 2004;304:1597–1599. doi: 10.1126/science.304.5677.1597b. [DOI] [PubMed] [Google Scholar]
- 136.Wyrwicz L.S., von Grotthuss M., Pas J., Rychlewski L. How unique is the rice transcriptome? Science. 2004;303:168. doi: 10.1126/science.303.5655.168b. [DOI] [PubMed] [Google Scholar]
- 137.Plewczynski D., Jaroszewski L., Godzik A., Kloczkowski A., Rychlewski L. Molecular modeling of phosphorylation sites in proteins using a database of local structure segments. J. Mol. Mod. 2005;11:431–438. doi: 10.1007/s00894-005-0235-z. [DOI] [PubMed] [Google Scholar]
- 138.Plewczynski D., Tkacz A., Godzik A., Rychlewski L. A support vector machine approach to the identification of phosphorylation sites. Cell. Mol. Biol. Lett. 2005;10:73–89. [PubMed] [Google Scholar]
- 139.Plewczynski D., Tkacz A., Wyrwicz L., Godzik A., Kloczkowski A., Rychlewski L. Support-vector-machine classification of linear functional motifs in proteins. J. Mol. Mod. 2006;12:453–461. doi: 10.1007/s00894-005-0070-2. [DOI] [PubMed] [Google Scholar]
- 140.Plewczynski D., Tkacz A., Wyrwicz L.S., Rychlewski L. AutoMotif server: prediction of single residue post-translational modifications in proteins. Bioinformatics. 2005;21:2525–2527. doi: 10.1093/bioinformatics/bti333. [DOI] [PubMed] [Google Scholar]
- 141.Plewczynski D., Tkacz A., Wyrwicz L.S., Rychlewski L., Ginalski K. AutoMotif Server for prediction of phosphorylation sites in proteins using support vector machine: 2007 update. J. Mol. Mod. 2008;14:69–76. doi: 10.1007/s00894-007-0250-3. [DOI] [PubMed] [Google Scholar]
- 142.Plewczynski D., Slabinski L., Tkacz A., Kajan L., Holm L., Ginalski K., Rychlewski L. The RPSP: Web server for prediction of signal peptides. Polymer. 2007;48:5493–5496. [Google Scholar]
- 143.Fernandez-Ballester G., Serrano L. Prediction of protein-protein interaction based on structure. Methods Mol. Biol. 2006;340:207–234. doi: 10.1385/1-59745-116-9:207. [DOI] [PubMed] [Google Scholar]
- 144.Plewczynski D., Pas J., von Grotthuss M., Rychlewski L. Comparison of proteins based on segments structural similarity) Acta Bioch. Pol. 2004;51:161–172. [PubMed] [Google Scholar]
- 145.Plewczynski D., Rychlewski L., Ye Y.Z., Jaroszewski L., Godzik A. Integrated web service for improving alignment quality based on segments comparison. BMC Bioinformatics. 2004;5:98. doi: 10.1186/1471-2105-5-98. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 146.Kinch L.N., Ginalski K., Rychlewski L., Grishin N.V. Identification of novel restriction endonuclease-like fold families among hypothetical proteins. Nucleic Acids Res. 2005;33:3598–3605. doi: 10.1093/nar/gki676. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 147.Ginalski K., Elofsson A., Fischer D., Rychlewski L. 3D-Jury: a simple approach to improve protein structure predictions. Bioinformatics. 2003;19:1015–1018. doi: 10.1093/bioinformatics/btg124. [DOI] [PubMed] [Google Scholar]
- 148.Ginalski K., Rychlewski L. Detection of reliable and unexpected protein fold predictions using 3D-Jury. Nucleic Acids Res. 2003;31:3291–3292. doi: 10.1093/nar/gkg503. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 149.Bu D., Zhao Y., Cai L., Xue H., Zhu X., Lu H., Zhang J., Sun S., Ling L., Zhang N., Li G., Chen R. Topological structure analysis of the protein-protein interaction network in budding yeast. Nucleic Acids Res. 2003;31:2443–2450. doi: 10.1093/nar/gkg340. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 150.Sen T.Z., Kloczkowski A., Jernigan R.L. Functional clustering of yeast proteins from the protein-protein interaction network. BMC Bioinformatics. 2006;7:355. doi: 10.1186/1471-2105-7-355. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 151.Ogmen U., Keskin O., Aytuna A.S., Nussinov R., Gursoy A. PRISM: protein interactions by structural matching. Nucleic Acids Res. 2005;33:W331–W336. doi: 10.1093/nar/gki585. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 152.Aytuna A.S., Gursoy A., Keskin O. Prediction of protein-protein interactions by combining structure and sequence conservation in protein interfaces. Bioinformatics. 2005;21:2850–2855. doi: 10.1093/bioinformatics/bti443. [DOI] [PubMed] [Google Scholar]
- 153.Aloy, P., Bottcher, B., Ceulemans, H., Leutwein, C., Mellwig, C., Fischer, S., Gavin, A.C., Bork, P., Superti-Furga, G., Serrano, L. and Russell, R.B. Structure-based assembly of protein complexes in yeast. Science303 (2004) 2026-2029. [DOI] [PubMed]
- 154.Aloy P., Russell R.B. Interrogating protein interaction networks through structural biology. Proc. Natl. Acad. Sci. USA. 2002;99:5896–5901. doi: 10.1073/pnas.092147999. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 155.Aloy P., Russell R.B. InterPreTS: protein interaction prediction through tertiary structure. Bioinformatics. 2003;19:161–162. doi: 10.1093/bioinformatics/19.1.161. [DOI] [PubMed] [Google Scholar]
- 156.Ben-Hur A., Noble W.S. Kernel methods for predicting protein-protein interactions. Bioinformatics. 2005;21(Suppl1):i38–46. doi: 10.1093/bioinformatics/bti1016. [DOI] [PubMed] [Google Scholar]
- 157.Ben-Hur A., Noble W.S. Choosing negative examples for the prediction of protein-protein interactions. BMC Bioinformatics. 2006;7(Suppl1):S2. doi: 10.1186/1471-2105-7-S1-S2. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 158.Gomez S.M., Noble W.S., Rzhetsky A. Learning to predict proteinprotein interactions from protein sequences. Bioinformatics. 2003;19:1875–1881. doi: 10.1093/bioinformatics/btg352. [DOI] [PubMed] [Google Scholar]
- 159.Nanni L., Lumini A. An ensemble of K-local hyperplanes for predicting protein-protein interactions. Bioinformatics. 2006;22:1207–1210. doi: 10.1093/bioinformatics/btl055. [DOI] [PubMed] [Google Scholar]
- 160.Sun S., Zhao Y., Jiao Y., Yin Y., Cai L., Zhang Y., Lu H., Chen R., Bu D. Faster and more accurate global protein function assignment from protein interaction networks using the MFGO algorithm. FEBS Lett. 2006;580:1891–1896. doi: 10.1016/j.febslet.2006.02.053. [DOI] [PubMed] [Google Scholar]
- 161.Bordner A.J., Abagyan R.A. Large-scale prediction of protein geometry and stability changes for arbitrary single point mutations. Proteins. 2004;57:400–413. doi: 10.1002/prot.20185. [DOI] [PubMed] [Google Scholar]
- 162.Lu H., Zhu X., Liu H., Skogerbo G., Zhang J., Zhang Y., Cai L., Zhao Y., Sun S., Xu J., Bu D., Chen R. The interactome as a tree-an attempt to visualize the protein-protein interaction network in yeast. Nucleic Acids Res. 2004;32:4804–4811. doi: 10.1093/nar/gkh814. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 163.Plewczynski D., Spieser S.A.H., Koch U. Assessing different classification methods for virtual screening. J. Chem. Inf. Mod. 2006;46:1098–1106. doi: 10.1021/ci050519k. [DOI] [PubMed] [Google Scholar]
- 164.Plewczynski D., von Grotthuss M., Spieser S.A.H., Rychlewski L., Wyrwicz L.S., Ginalski K., Koch U. Target specific compound identification using a support vector machine. Comb. Chem. High Throughput Screen. 2007;10:189–196. doi: 10.2174/138620707780126705. [DOI] [PubMed] [Google Scholar]
- 165.Plewczynski D., Spieser S.A., Koch U. Assessing different classification methods for virtual screening. J. Chem. Inf. Model. 2006;46:1098–1106. doi: 10.1021/ci050519k. [DOI] [PubMed] [Google Scholar]
- 166.Sen T.Z., Kloczkowski A., Jernigan R.L., Yan C., Honavar V., Ho K.M., Wang C.Z., Ihm Y., Cao H., Gu X., Dobbs D. Predicting binding sites of hydrolase-inhibitor complexes by combining several methods. BMC Bioinformatics. 2004;5:205. doi: 10.1186/1471-2105-5-205. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 167.Donald J.E., Hubner I.A., Rotemberg V.M., Shakhnovich E.I., Mirny L.A. CoC: a database of universally conserved residues in protein folds. Bioinformatics. 2005;21:2539–2540. doi: 10.1093/bioinformatics/bti360. [DOI] [PubMed] [Google Scholar]
- 168.Mirny L.A., Abkevich V.I., Shakhnovich E.I. How evolution makes proteins fold quickly. Proc. Natl. Acad. Sci. USA. 1998;95:4976–4981. doi: 10.1073/pnas.95.9.4976. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 169.Mirny L.A., Shakhnovich E.I. Universally conserved positions in protein folds: reading evolutionary signals about stability, folding kinetics and function. J. Mol. Biol. 1999;291:177–196. doi: 10.1006/jmbi.1999.2911. [DOI] [PubMed] [Google Scholar]