Abstract
Tumour development is a process resulting from the disturbance of various cellular functions including cell proliferation, adhesion and motility. While the role of these cell parameters in tumour promotion and progression has been widely recognized, the mechanisms that influence gap junctional coupling during tumorigenesis remain elusive. Neoplastic cells usually display decreased levels of connexin expression and/or gap junctional coupling. Thus, impaired intercellular communication via gap junctions may facilitate the release of a potentially neoplastic cell from the controlling regime of the surrounding tissue, leading to tumour promotion. However, recent data indicates that metastatic tumour cell lines are often characterized by relatively high levels of connexin expression and gap junctional coupling. This review outlines current knowledge on the role of connexins in tumorigenesis and the possible mechanisms of the interference of gap junctional coupling with the processes of tumour invasion and metastasis.
Key words: Gap junctions, Connexin, Tumour, Neoplasia, Metastasis
Full Text
The Full Text of this article is available as a PDF (439.2 KB).
Abbreviations used
- Cx
connexin
- FACS
fluorescence-activated cell sorting
Footnotes
Paper authored by participants of the international conference: XXXIV Winter School of the Faculty of Biochemistry, Biophysics and Biotechnology of Jagiellonian University, Zakopane, March 7–11, 2007, “The Cell and Its Environment”. Publication costs were covered by the organisers of this meeting.
References
- 1.Sohl G., Willecke K. Gap junctions and the connexin protein family. Cardiovasc. Res. 2004;62:228–232. doi: 10.1016/j.cardiores.2003.11.013. [DOI] [PubMed] [Google Scholar]
- 2.Niessen H., Harz H., Bedner P., Kramer K., Willecke K. Selective permeability of different connexin channels to the second messenger inositol 1,4,5-trisphosphate. J. Cell Sci. 2000;113:1365–1372. doi: 10.1242/jcs.113.8.1365. [DOI] [PubMed] [Google Scholar]
- 3.Plum A., Hallas G., Magin T., Dombrowski F., Hagendorff A., Schumacher B., Wolpert C., Kim J., Lamers W.H., Evert M., Meda P., Traub O., Willecke K. Unique and shared functions of different connexins in mice. Curr. Biol. 2000;10:1083–1091. doi: 10.1016/S0960-9822(00)00690-4. [DOI] [PubMed] [Google Scholar]
- 4.Bedner P., Niessen H., Odermatt B., Kretz M., Willecke K., Harz H. Selective permeability of different connexin channels to the second messenger cyclic AMP. J. Biol. Chem. 2006;281:6673–6681. doi: 10.1074/jbc.M511235200. [DOI] [PubMed] [Google Scholar]
- 5.Sohl G., Maxeiner S., Willecke K. Expression and functions of neuronal gap junctions. Nat. Rev. Neurosci. 2005;6:191–200. doi: 10.1038/nrn1627. [DOI] [PubMed] [Google Scholar]
- 6.Alexander D.B., Goldberg G.S. Transfer of biologically important molecules between cells through gap junction channels. Curr. Med. Chem. 2003;10:2045–2058. doi: 10.2174/0929867033456927. [DOI] [PubMed] [Google Scholar]
- 7.White T.W., Paul D.L. Genetic diseases and gene knockouts reveal diverse connexin functions. Annu. Rev. Physiol. 1999;61:283–310. doi: 10.1146/annurev.physiol.61.1.283. [DOI] [PubMed] [Google Scholar]
- 8.Laird D.W. Life cycle of connexins in health and disease. Biochem. J. 2006;394:527–543. doi: 10.1042/BJ20051922. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 9.Wei C.J., Xu X., Lo C.W. Connexins and Cell Signaling in Development and Disease. Annu. Rev. Cell Dev. Biol. 2004;20:811–838. doi: 10.1146/annurev.cellbio.19.111301.144309. [DOI] [PubMed] [Google Scholar]
- 10.Nelles E., Butzler C., Jung D., Temme A., Gabriel H.D., Dahl U., Traub O., Stumpel F., Jungermann K., Zielasek J., Toyka K.V., Dermietzel R., Willecke K. Defective propagation of signals generated by sympathetic nerve stimulation in the liver of connexin32-deficient mice. Proc. Natl. Acad. Sci. USA. 1996;93:9565–9570. doi: 10.1073/pnas.93.18.9565. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 11.Oyamada M., Oyamada Y., Takamatsu T. Regulation of connexin expression. Biochim. Biophys. Acta. 2005;1719:6–23. doi: 10.1016/j.bbamem.2005.11.002. [DOI] [PubMed] [Google Scholar]
- 12.Peracchia C. Chemical gating of gap junction channels; roles of calcium, pH and calmodulin. Biochim. Biophys. Acta. 2004;1662:61–80. doi: 10.1016/j.bbamem.2003.10.020. [DOI] [PubMed] [Google Scholar]
- 13.Luebeck E.G., Buchmann A., Schneider D., Moolgavkar S.H., Schwarz M. Modulation of liver tumorigenesis in Connexin32-deficient mouse. Mutat. Res. 2005;570:33–47. doi: 10.1016/j.mrfmmm.2004.09.008. [DOI] [PubMed] [Google Scholar]
- 14.Naus C.C., Bechberger J.F., Caveney S., Wilson J.X. Expression of gap junction genes in astrocytes and C6 glioma cells. Neurosci. Lett. 1991;126:33–36. doi: 10.1016/0304-3940(91)90364-Y. [DOI] [PubMed] [Google Scholar]
- 15.Jamieson S., Going J.J., D’Arcy R., George W.D. Expression of gap junction proteins connexin 26 and connexin 43 in normal human breast and in breast tumours. J. Pathol. 1998;184:37–43. doi: 10.1002/(SICI)1096-9896(199801)184:1<37::AID-PATH966>3.0.CO;2-D. [DOI] [PubMed] [Google Scholar]
- 16.Yamasaki H., Krutovskikh V., Mesnil M., Tanaka T., Zaidan-Dagli M.L., Omori Y. Role of connexin (gap junction) genes in cell growth control and carcinogenesis. C. R. Acad. Sci. III. 1999;322:151–159. doi: 10.1016/s0764-4469(99)80038-9. [DOI] [PubMed] [Google Scholar]
- 17.Saunders M.M., Seraj M.J., Li Z., Zhou Z., Winter C.R., Welch D.R., Donahue H.J. Breast cancer metastatic potential correlates with a breakdown in homospecific and heterospecific gap junctional intercellular communication. Cancer Res. 2001;61:1765–1767. [PubMed] [Google Scholar]
- 18.Zhu D., Caveney S., Kidder G.M., Naus C.C. Transfection of C6 glioma cells with connexin 43 cDNA: analysis of expression, intercellular coupling, and cell proliferation. Proc. Natl. Acad. Sci. USA. 1991;88:1883–1887. doi: 10.1073/pnas.88.5.1883. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 19.Hirschi K.K., Xu C.E., Tsukamoto T., Sager R. Gap junction genes Cx26 and Cx43 individually suppress the cancer phenotype of human mammary carcinoma cells and restore differentiation potential. Cell Growth Differ. 1996;7:861–870. [PubMed] [Google Scholar]
- 20.Yamasaki H., Omori Y., Zaidan-Dagli M.L., Mironov N., Mesnil M., Krutovskikh V. Genetic and epigenetic changes of intercellular communication genes during multistage carcinogenesis. Cancer Detect. Prev. 1999;23:273–279. doi: 10.1046/j.1525-1500.1999.99037.x. [DOI] [PubMed] [Google Scholar]
- 21.Goldberg G.S., Bechberger J.F., Tajima Y., Merritt M., Omori Y., Gawinowicz M.A., Narayanan R., Tan Y., Sanai Y., Yamasaki H., Naus C.C., Tsuda H., Nicholson B.J. Connexin43 suppresses MFG-E8 while inducing contact growth inhibition of glioma cells. Cancer Res. 2000;60:6018–6026. [PubMed] [Google Scholar]
- 22.Chen S.C., Pelletier D.B., Ao P., Boynton A.L. Connexin43 reverses the phenotype of transformed cells and alters their expression of cyclin/cyclin-dependent kinases. Cell Growth Differ. 1995;6:681–690. [PubMed] [Google Scholar]
- 23.Fujimoto E., Satoh H., Negishi E., Ueno K., Nagashima Y., Hagiwara K., Yamasaki H., Yano T. Negative growth control of renal cell carcinoma cell by connexin 32: possible involvement of Her-2. Mol. Carcinog. 2004;40:135–142. doi: 10.1002/mc.20025. [DOI] [PubMed] [Google Scholar]
- 24.Loewenstein W.R., Rose B. The cell-cell channel in the control of growth. Semin. Cell Biol. 1992;3:59–79. doi: 10.1016/S1043-4682(10)80008-X. [DOI] [PubMed] [Google Scholar]
- 25.Rose B., Mehta P.P., Loewenstein W.R. Gap-junction protein gene suppresses tumorigenicity. Carcinogenesis. 1993;14:1073–1075. doi: 10.1093/carcin/14.5.1073. [DOI] [PubMed] [Google Scholar]
- 26.Moorby C., Patel M. Dual functions for connexins: Cx43 regulates growth independently of gap junction formation. Exp. Cell Res. 2001;271:238–248. doi: 10.1006/excr.2001.5357. [DOI] [PubMed] [Google Scholar]
- 27.Lesueur F., Mesnil M., Delouvee A., Girault J. M., Yamasaki H., Thiery J.P., Jouanneau J. NBT-II carcinoma behaviour is not dependent on cell-cell communication through gap junctions. Biochem. Biophys. Res. Commun. 2002;294:108–115. doi: 10.1016/S0006-291X(02)00451-5. [DOI] [PubMed] [Google Scholar]
- 28.Qin H., Shao Q., Curtis H., Galipeau J., Belliveau D.J., Wang T., Alaoui-Jamali M.A., Laird D.W. Retroviral delivery of connexin genes to human breast tumor cells inhibits in vivo tumor growth by a mechanism that is independent of significant gap junctional intercellular communication. J. Biol. Chem. 2002;277:29132–29138. doi: 10.1074/jbc.M200797200. [DOI] [PubMed] [Google Scholar]
- 29.Alexander D.B., Ichikawa H., Bechberger J.F., Valiunas V., Ohki M., Naus C. C., Kunimoto T., Tsuda H., Miller W.T., Goldberg G.S. Normal cells control the growth of neighboring transformed cells independent of gap junctional communication and SRC activity. Cancer Res. 2004;64:1347–1358. doi: 10.1158/0008-5472.CAN-03-2558. [DOI] [PubMed] [Google Scholar]
- 30.Zhang Y.W., Kaneda M., Morita I. The gap junction-independent tumor-suppressing effect of connexin 43. J. Biol. Chem. 2003;278:44852–44856. doi: 10.1074/jbc.M305072200. [DOI] [PubMed] [Google Scholar]
- 31.Zhang Y. W., Nakayama K., Nakayama K., Morita I. A novel route for connexin 43 to inhibit cell proliferation: negative regulation of S-phase kinase-associated protein (Skp 2) Cancer Res. 2003;63:1623–1630. [PubMed] [Google Scholar]
- 32.Dang X., Jeyaraman M., Kardami E. Regulation of connexin-43-mediated growth inhibition by a phosphorylatable amino-acid is independent of gap junction-forming ability. Mol. Cell Biochem. 2006;289:201–207. doi: 10.1007/s11010-006-9162-2. [DOI] [PubMed] [Google Scholar]
- 33.Chambers A.F. The metastatic process: basic research and clinical implications. Oncol. Res. 1999;11:161–168. [PubMed] [Google Scholar]
- 34.Guo W., Giancotti F.G. Integrin signalling during tumour progression. Nat. Rev. Mol. Cell Biol. 2004;5:816–826. doi: 10.1038/nrm1490. [DOI] [PubMed] [Google Scholar]
- 35.Kanczuga-Koda L., Sulkowski S., Lenczewski A., Koda M., Wincewicz A., Baltaziak M., Sulkowska M. Increased expression of connexins 26 and 43 in lymph node metastases of breast cancer. J. Clin. Pathol. 2006;59:429–433. doi: 10.1136/jcp.2005.029272. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 36.Kamibayashi Y., Oyamada Y., Mori M., Oyamada M. Aberrant expression of gap junction proteins (connexins) is associated with tumor progression during multistage mouse skin carcinogenesis in vivo. Carcinogenesis. 1995;16:1287–1297. doi: 10.1093/carcin/16.6.1287. [DOI] [PubMed] [Google Scholar]
- 37.Miekus K., Czernik M., Sroka J., Czyz J., Madeja Z. Contact stimulation of prostate cancer cell migration: the role of gap junctional coupling and migration stimulated by heterotypic cell-to-cell contacts in determination of the metastatic phenotype of Dunning rat prostate cancer cells. Biol. Cell. 2005;97:893–903. doi: 10.1042/BC20040129. [DOI] [PubMed] [Google Scholar]
- 38.Tate A.W., Lung T., Radhakrishnan A., Lim S.D., Lin X., Edlund M. Changes in gap junctional connexin isoforms during prostate cancer progression. Prostate. 2006;66:19–31. doi: 10.1002/pros.20317. [DOI] [PubMed] [Google Scholar]
- 39.Zhang W., Nwagwu C., Le D.M., Yong V.W., Song H., Couldwell W.T. Increased invasive capacity of connexin43-overexpressing malignant glioma cells. J. Neurosurg. 2003;99:1039–1046. doi: 10.3171/jns.2003.99.6.1039. [DOI] [PubMed] [Google Scholar]
- 40.El Sabban M.E., Pauli B.U. Cytoplasmic dye transfer between metastatic tumor cells and vascular endothelium. J. Cell Biol. 1991;115:1375–1382. doi: 10.1083/jcb.115.5.1375. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 41.Ito A., Katoh F., Kataoka T.R., Okada M., Tsubota N., Asada H., Yoshikawa K., Maeda S., Kitamura Y., Yamasaki H., Nojima H. A role for heterologous gap junctions between melanoma and endothelial cells in metastasis. J. Clin. Invest. 2000;105:1189–1197. doi: 10.1172/JCI8257. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 42.Graeber S.H., Hulser D.F. Connexin transfection induces invasive properties in HeLa cells. Exp. Cell Res. 1998;243:142–149. doi: 10.1006/excr.1998.4130. [DOI] [PubMed] [Google Scholar]
- 43.Czyz J., Irmer U., Zappe C., Mauz M., Hulser D.F. Hierarchy of carcinoma cell responses to apigenin: gap junctional coupling versus proliferation. Oncol. Rep. 2004;11:739–744. [PubMed] [Google Scholar]
- 44.Czyz J., Madeja Z., Irmer U., Korohoda W., Hulser D. F. Flavonoid apigenin inhibits motility and invasiveness of carcinoma cells in vitro. Int. J. Cancer. 2005;114:12–18. doi: 10.1002/ijc.20620. [DOI] [PubMed] [Google Scholar]
- 45.Traub O., Eckert R., Lichtenberg-Frate H., Elfgang C., Bastide B., Scheidtmann K.H., Hulser D.F., Willecke K. Immunochemical and electrophysiological characterization of murine connexin40 and-43 in mouse tissues and transfected human cells. Eur. J. Cell Biol. 1994;64:101–112. [PubMed] [Google Scholar]
- 46.Koffler L., Roshong S., Kyu P.I., Cesen-Cummings K., Thompson D.C., Dwyer-Nield L.D., Rice P., Mamay C., Malkinson A.M., Ruch R.J. . Growth inhibition in G(1) and altered expression of cyclin D1 and p27(kip-1) after forced connexin expression in lung and liver carcinoma cells. J. Cell Biochem. 2000;79:347–354. doi: 10.1002/1097-4644(20001201)79:3<347::AID-JCB10>3.0.CO;2-2. [DOI] [PubMed] [Google Scholar]
- 47.Madeja Z., Szymkiewicz I., Zaczek A., Sroka J., Miekus K., Korohoda W. Contact-activated migration of melanoma B16 and sarcoma XC cells. Biochem. Cell Biol. 2001;79:425–440. doi: 10.1139/bcb-79-4-425. [DOI] [PubMed] [Google Scholar]
- 48.Sroka J., Kaminski R., Michalik M., Madeja Z., Przestalski S., Korohoda W. The effect of triethyllead on the motile activity of walker 256 carcinosarcoma cells. Cell. Mol. Biol. Lett. 2004;9:15–30. [PubMed] [Google Scholar]
- 49.Czyz J., Irmer U., Schulz G., Mindermann A., Hulser D.F. Gap-junctional coupling measured by flow cytometry. Exp. Cell Res. 2000;255:40–46. doi: 10.1006/excr.1999.4760. [DOI] [PubMed] [Google Scholar]
- 50.Madeja Z., Miekus K., Sroka J., Djamgoz M.B., Korohoda W. Homotypic cell-cell contacts stimulate the motile activity of rat prostate cancer cells. BJU Int. 2001;88:776–786. doi: 10.1046/j.1464-410X.2001.02349.x. [DOI] [PubMed] [Google Scholar]
- 51.Eugenin E.A., Branes M.C., Berman J.W., Saez J.C. TNF-alpha plus IFN-gamma induce connexin43 expression and formation of gap junctions between human monocytes/macrophages that enhance physiological responses. J. Immunol. 2003;170:1320–1328. doi: 10.4049/jimmunol.170.3.1320. [DOI] [PubMed] [Google Scholar]
- 52.Van Rijen H.V., van Kempen M.J., Postma S., Jongsma H.J. Tumour necrosis factor alpha alters the expression of connexin43, connexin40, and connexin37 in human umbilical vein endothelial cells. Cytokine. 1998;10:258–264. doi: 10.1006/cyto.1997.0287. [DOI] [PubMed] [Google Scholar]
- 53.Van Kempen M.J., Jongsma H.J. Distribution of connexin37, connexin40 and connexin43 in the aorta and coronary artery of several mammals. Histochem. Cell Biol. 1999;112:479–486. doi: 10.1007/s004180050432. [DOI] [PubMed] [Google Scholar]
- 54.Kwak B.R., Mulhaupt F., Veillard N., Gros D.B., Mach F. Altered pattern of vascular connexin expression in atherosclerotic plaques. Arterioscler. Thromb. Vasc. Biol. 2002;22:225–230. doi: 10.1161/hq0102.104125. [DOI] [PubMed] [Google Scholar]
- 55.Lewalle J.M., Cataldo D., Bajou K., Lambert C.A., Foidart J.M. Endothelial cell intracellular Ca2+ concentration is increased upon breast tumor cell contact and mediates tumor cell transendothelial migration. Clin. Exp. Metastasis. 1998;16:21–29. doi: 10.1023/A:1006555800862. [DOI] [PubMed] [Google Scholar]
