Skip to main content
Cellular & Molecular Biology Letters logoLink to Cellular & Molecular Biology Letters
. 2010 Jun 4;15(3):485–495. doi: 10.2478/s11658-010-0022-4

Study of the interaction of the C-reactive protein monomer with the U937 monocyte

Jing Zhao 1, Xin-He Shi 2,
PMCID: PMC6275878  PMID: 20526747

Abstract

C-reactive protein (CRP) has two structurally distinct isoforms, the CRP pentamer and the CRP monomer. A role for the CRP monomer in atherosclerosis is emerging, but the underlying mechanisms are only beginning to be understood. Monocytes are an important contributor to atherosclerosis, and foam cell formation is the hallmark of atherogenesis. However, whether the CRP monomer can directly interact with the monocytes and modulate their responses remains unknown. Furthermore, although FcγRIII (CD16) has been identified as the receptor for the CRP monomer on neutrophils, its role in mediating the CRP monomer’s biological effects in other cell types has been questioned. In this study, we investigated the interaction of the CRP monomer with the monocytes using the U937 monocytic cell line. The CRP monomer specifically binds to U937 cells. This binding is unique in that it is independent of FcγRs and insensitive to protease digestion of the cell surface proteins. Further assays revealed that the CRP monomer directly incorporates into the plasma membrane. Interestingly, the presence of the CRP monomer efficiently retards oxidized low-density lipoprotein-induced foam cell formation of PMA-differentiated U937 macrophages and peripheral blood monocytic cell-derived macrophages. These findings provide additional evidence for the notion that the CRP monomer is an active CRP isoform that plays a role in atherogenesis via the direct modulation of the behavior of the monocytes.

Key words: C-reactive protein, Monocyte, Low-density lipoprotein, Foam cell

Full Text

The Full Text of this article is available as a PDF (4.1 MB).

Abbreviations used

CRP

C-reactive protein

FcγR

Fc gamma receptor

LDL

low-density lipoprotein

ox-LDL

oxidized low-density lipoprotein

PBMC

peripheral blood monocytic cell

TBARS

thiobarbituric acid reactive substances

References

  • 1.Pepys M.B., Hirschfield G.M. C-reactive protein: a critical update. J. Clin. Invest. 2003;111:1805–1812. doi: 10.1172/JCI18921. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 2.Boncler M., Watala C. Regulation of cell function by isoforms of C-reactive protein: a comparative analysis. Acta Biochim. Pol. 2009;56:17–31. [PubMed] [Google Scholar]
  • 3.Schwedler S.B., Filep J.G., Galle J., Wanner C., Potempa L.A. C-reactive protein: a family of proteins to regulate cardiovascular function. Am. J. Kidney Dis. 2006;47:212–222. doi: 10.1053/j.ajkd.2005.10.028. [DOI] [PubMed] [Google Scholar]
  • 4.Verma S., Devaraj S., Jialal I. C-reactive protein promotes atherothrombosis. Circulation. 2006;113:2135–2151. [PubMed] [Google Scholar]
  • 5.Casas J.P., Shah T., Hingorani A.D., Danesh J., Pepys M.B. C-reactive protein and coronary heart disease: a critical review. J. Intern. Med. 2008;264:295–314. doi: 10.1111/j.1365-2796.2008.02015.x. [DOI] [PubMed] [Google Scholar]
  • 6.Ji S.R., Wu Y., Zhu L., Potempa L.A., Sheng F.L., Lu W., Zhao J. Cell membranes and liposomes dissociate C-reactive protein (CRP) to form a new, biologically active structural intermediate: mCRP(m) FASEB J. 2007;21:284–294. doi: 10.1096/fj.06-6722com. [DOI] [PubMed] [Google Scholar]
  • 7.Khreiss T., Jozsef L., Potempa L.A., Filep J.G. Conformational rearrangement in C-reactive protein is required for proinflammatory actions on human endothelial cells. Circulation. 2004;109:2016–2022. doi: 10.1161/01.CIR.0000125527.41598.68. [DOI] [PubMed] [Google Scholar]
  • 8.Molins B., Pena E., Vilahur G., Mendieta C., Slevin M., Badimon L. C-Reactive Protein Isoforms Differ in Their Effects on Thrombus Growth. Arterioscler. Thromb. Vasc. Biol. 2008;28:2239–2246. doi: 10.1161/ATVBAHA.108.174359. [DOI] [PubMed] [Google Scholar]
  • 9.Khreiss T., Jozsef L., Potempa L.A., Filep J.G. Opposing effects of C-reactive protein isoforms on shear-induced neutrophil-platelet adhesion and neutrophil aggregation in whole blood. Circulation. 2004;110:2713–2720. doi: 10.1161/01.CIR.0000146846.00816.DD. [DOI] [PubMed] [Google Scholar]
  • 10.Khreiss T., Jozsef L., Potempa L.A., Filep J.G. Loss of pentameric symmetry in C-reactive protein induces interleukin-8 secretion through peroxynitrite signaling in human neutrophils. Circ. Res. 2005;97:690–697. doi: 10.1161/01.RES.0000183881.11739.CB. [DOI] [PubMed] [Google Scholar]
  • 11.Khreiss T., Jozsef L., Hossain S., Chan J.S., Potempa L.A., Filep J.G. Loss of pentameric symmetry of C-reactive protein is associated with delayed apoptosis of human neutrophils. J. Biol. Chem. 2002;277:40775–40781. doi: 10.1074/jbc.M205378200. [DOI] [PubMed] [Google Scholar]
  • 12.Li A.C., Glass C.K. The macrophage foam cell as a target for therapeutic intervention. Nat. Med. 2002;8:1235–1242. doi: 10.1038/nm1102-1235. [DOI] [PubMed] [Google Scholar]
  • 13.Heuertz R.M., Schneider G.P., Potempa L.A., Webster R.O. Native and modified C-reactive protein bind different receptors on human neutrophils. Int. J. Biochem. Cell Biol. 2005;37:320–335. doi: 10.1016/j.biocel.2004.07.002. [DOI] [PubMed] [Google Scholar]
  • 14.Potempa L.A., Maldonado B.A., Laurent P., Zemel E.S., Gewurz H. Antigenic, electrophoretic and binding alterations of human C-reactive protein modified selectively in the absence of calcium. Mol. Immunol. 1983;20:1165–1175. doi: 10.1016/0161-5890(83)90140-2. [DOI] [PubMed] [Google Scholar]
  • 15.Taskinen S., Kovanen P.T., Jarva H., Meri S., Pentikainen M.O. Binding of C-reactive protein to modified low-density-lipoprotein particles: identification of cholesterol as a novel ligand for C-reactive protein. Biochem. J. 2002;367:403–412. doi: 10.1042/BJ20020492. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16.Nagano Y., Arai H., Kita T. High density lipoprotein loses its effect to stimulate efflux of cholesterol from foam cell after oxidative modification. Proc. Natl. Acad. Sci. USA. 1991;88:6457–6461. doi: 10.1073/pnas.88.15.6457. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 17.Olsson U., Camejo G., Hurt-Camejo E., Elfsber K., Wiklund O., Bondjers G. Possible functional interactions of apolipoprotein B-100 segments that associate with cell proteoglycans and the ApoB/E receptor. Arterioscler. Thromb. Vasc. Biol. 1997;17:149–155. doi: 10.1161/01.atv.17.1.149. [DOI] [PubMed] [Google Scholar]
  • 18.Bickel P.E., Scherer P.E., Schnitzer J.E., Oh P., Lisanti M.P., Lodish H.F. Flotillin and epidermal surface antigen define a new family of caveolae-associated integral membrane proteins. J. Biol. Chem. 1997;272:13793–13802. doi: 10.1074/jbc.272.21.13793. [DOI] [PubMed] [Google Scholar]
  • 19.Fu T., Borensztajn J. Macrophage uptake of low-density lipoprotein bound to aggregated C-reactive protein: possible mechanism of foam-cell formation in atherosclerotic lesions. Biochem. J. 2002;366:195–201. doi: 10.1042/BJ20020045. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 20.Greenspan P., Mayer E.P., Fowler S.D. Nile red: a selective fluorescent stain for intracellular lipid droplets. J. Cell Biol. 1985;100:965–973. doi: 10.1083/jcb.100.3.965. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 21.Ryu J., Lee C.W., Shin J.A., Park C.S., Kim J.J., Park S.J., Han K.H. FcgammaRIIa mediates C-reactive protein-induced inflammatory responses of human vascular smooth muscle cells by activating NADPH oxidase 4. Cardiovasc. Res. 2007;75:555–565. doi: 10.1016/j.cardiores.2007.04.027. [DOI] [PubMed] [Google Scholar]
  • 22.Looney R.J., Abraham G.N., Anderson C.L. Human monocytes and U937 cells bear two distinct Fc receptors for IgG. J. Immunol. 1986;136:1641–1647. [PubMed] [Google Scholar]
  • 23.Bharadwaj D., Stein M.P., Volzer M., Mold C., Du Clos T.W. The major receptor for C-reactive protein on leukocytes is fcgamma receptor II. J. Exp. Med. 1999;190:585–590. doi: 10.1084/jem.190.4.585. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 24.Crowell R.E., Du Clos T.W., Montoya G., Heaphy E., Mold C. C-reactive protein receptors on the human monocytic cell line U-937. Evidence for additional binding to Fc gamma RI. J. Immunol. 1991;147:3445–3451. [PubMed] [Google Scholar]
  • 25.Ji S.R., Ma L., Bai C.J., Shi J.M., Li H.Y., Potempa L.A., Filep J.G., Zhao J., Wu Y. Monomeric C-reactive protein activates endothelial cells via interaction with lipid raft micro-domains. FASEB J. 2009;23:1806–1816. doi: 10.1096/fj.08-116962. [DOI] [PubMed] [Google Scholar]
  • 26.Eisenhardt S.U., Habersberger J., Murphy A., Chen Y.C., Woollard K.J., Bassler N., Qian H., von Zur Muhlen C., Hagemeyer C.E., Ahrens I., Chin-Dusting J., Bobik A., Peter K. Dissociation of pentameric to monomeric C-reactive protein on activated platelets localizes inflammation to atherosclerotic plaques. Circ. Res. 2009;105:128–137. doi: 10.1161/CIRCRESAHA.108.190611. [DOI] [PubMed] [Google Scholar]
  • 27.Singh S.K., Suresh M.V., Prayther D.C., Moorman J.P., Rusinol A.E., Agrawal A. C-reactive protein-bound enzymatically modified low-density lipoprotein does not transform macrophages into foam cells. J. Immunol. 2008;180:4316–4322. doi: 10.4049/jimmunol.180.6.4316. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 28.Ji S.R., Wu Y., Potempa L.A., Liang Y.H., Zhao J. Effect of modified C-reactive protein on complement Activation. A possible complement regulatory role of modified or monomeric C-reactive protein in atherosclerotic lesions. Arterioscler. Thromb. Vasc. Biol. 2006;26:935–941. doi: 10.1161/01.ATV.0000206211.21895.73. [DOI] [PubMed] [Google Scholar]
  • 29.Schwedler S.B., Amann K., Wernicke K., Krebs A., Nauck M., Wanner C., Potempa L.A., Galle J. Native C-reactive protein increases whereas modified C-reactive protein reduces atherosclerosis in apolipoprotein E-knockout mice. Circulation. 2005;112:1016–1023. doi: 10.1161/CIRCULATIONAHA.105.556530. [DOI] [PubMed] [Google Scholar]
  • 30.Ji S.R., Wu Y., Potempa L.A., Qiu Q., Zhao J. Interactions of C-reactive protein with low density lipoproteins: implications for an active role of modified C-reactive protein in atherosclerosis. Int. J. Biochem. Cell Biol. 2006;38:648–661. doi: 10.1016/j.biocel.2005.11.004. [DOI] [PubMed] [Google Scholar]

Articles from Cellular & Molecular Biology Letters are provided here courtesy of BMC

RESOURCES