Skip to main content
Cellular & Molecular Biology Letters logoLink to Cellular & Molecular Biology Letters
. 2007 Apr 6;12(4):473–481. doi: 10.2478/s11658-007-0015-0

The neuroprotective effect of Withania somnifera root extract in MPTP-intoxicated mice: An analysis of behavioral and biochemical varibles

Srinivasagam Raja Sankar 1,, Thamilarasan Manivasagam 2, Arumugam Krishnamurti 1, Manickam Ramanathan 3
PMCID: PMC6275882  PMID: 17415533

Abstract

We studied the influence of Withania somnifera (Ws) root extract (100 mg/kg body weight) on parkinsonism induced by 1-methyl 4-phenyl 1,2,3,6-tetrahydropyridine (MPTP; i.p, 20 mg/kg body weight for 4 days), via the analysis of behavioral features and the oxidant-antioxidant imbalance in the midbrain of mice. A significant alteration in behavior, increased levels of thiobarbituric acid reactive substance (TBARS), and increased activities of superoxide dismutase (SOD) and catalase (CAT) were noticed in this region of brain in MPTP-treated mice. Oral treatment with the root extract resulted in a significant improvement in the mice’s behavoiur and antioxidant status, along with a significant reduction in the level of lipid peroxidation. The results indicated that at least part of the chronic stress-induced pathology may be due to oxidative stress, which is mitigated by Ws. Further studies are needed to assess the precise mechanism to support the clinical use of the plant as an antiparkinsonic drug.

Key Words: MPTP, Withania somnifera, TBARS, Antioxidants, Behaviour, Midbrain

Full Text

The Full Text of this article is available as a PDF (524.2 KB).

Abbreviations used

CAT

catalase

MPTP

1-methyl-4-phenyl-1,2,3,6 tetrahydro-pyridine

PD

Parkinson’s disease

SOD

superoxide dismutase

TBARS

thiobarbituric acid reactive substances

Ws

Withania somnifera root extract

References

  • 1.Agid Y. Parkinson’s disease: Pathophysiology. Lancet. 1991;337:1321–1324. doi: 10.1016/0140-6736(91)92989-F. [DOI] [PubMed] [Google Scholar]
  • 2.Tillerson J.L., Miller G.W. Grid performance test to measure behavioral impairment in the MPTP-treated mouse model of Parkinsonism. J. Neurosci. Methods. 2003;123:189–200. doi: 10.1016/S0165-0270(02)00360-6. [DOI] [PubMed] [Google Scholar]
  • 3.Oida Y., Kitaichi K., Nakayama H., Ito Y., Fujimoto Y., Shimazawa M., Nagai H., Hara H. Rifampicin attenuates the MPTP induced neurotoxicity in mouse brain. Brain Res. 2006;1082:196–204. doi: 10.1016/j.brainres.2006.01.116. [DOI] [PubMed] [Google Scholar]
  • 4.Gao Z.G., Cui W.Y., Zhang H.T., Liu C.G. Effects of nicotine on 1-methyl,4-phenyl 1,2,3,6 tetrahydropyridine induced depression of striatal dopamine content and spontaneous locomotor activity in C57 black mice. Pharmacol. Res. 1998;38:101–106. doi: 10.1006/phrs.1998.0337. [DOI] [PubMed] [Google Scholar]
  • 5.Sindhu M.K., Saravanan K.S., Mohanakumar K.P. Behavioral differences in a rotenone-induced hemiparkinsonism rat model developed following intranigral or median forebrain bundle infusion. Brain Res. 2005;1051:25–34. doi: 10.1016/j.brainres.2005.05.051. [DOI] [PubMed] [Google Scholar]
  • 6.Gerlach M., Riederer P., Przuntek H., Youdim M.B.H. MPTP mechanisms of neurotoxicity and their implications for Parkinson’s disease. Eur. J. Pharmacol. 1991;208:273–286. doi: 10.1016/0922-4106(91)90073-Q. [DOI] [PubMed] [Google Scholar]
  • 7.Schmidt N., Ferger B. Neurochemical findings in the MPTP model of Parkinson’s disease. J. Neural Transm. 2001;108:1263–1282. doi: 10.1007/s007020100004. [DOI] [PubMed] [Google Scholar]
  • 8.Rozas G., Lopez-Martin E., Guerra M.J., Labanderia-Garcia J.L. The overall rod performance test in the MPTP-treated moue model of parkinsonism. J. Neurosci. Methods. 1998;83:165–175. doi: 10.1016/S0165-0270(98)00078-8. [DOI] [PubMed] [Google Scholar]
  • 9.Muralikrishnan D., Samantarary S., Mohanakumar K.P. D-deprenyl protects nigrostriatal neurons against 1-methyl 4-phenbyl 1,2,3,6-tetrahyropyridine induced dopaminergic neurotoxicity. Synapse. 2003;50:7–13. doi: 10.1002/syn.10239. [DOI] [PubMed] [Google Scholar]
  • 10.Bhattacharya S.K., Satyan K.S., Ghosal S. Antioxidant activity of glycowithanolides from Withania somnifera. Indian J. Exp. Biol. 1997;35:236–239. [PubMed] [Google Scholar]
  • 11.Panda S., Kar A. Evidence for free radical scavenging activity of Ashwagandha root powder in mice. Indian J. Physiol. Pharmacol. 1997;41:424–426. [PubMed] [Google Scholar]
  • 12.Raja Sankar S., Manivasagam T., Albert Singh V., Krishnamurti A., Ramanathan M. Prophylatic efficacy of Withania somnifera against MPTP-induced Parkinson’s disease in mice. J. Cell Tissue Res. 2007;7:975–979. [Google Scholar]
  • 13.Mohanasundari M., Srinivasan M.S., Sethupathy S., Sabesan M. Enhanced neuroprotective effect by combination of bromocriptine and Hypericum perforatum extract against MPTP-induced neurotoxicity in mice. J. Neurol. Sci. 2006;249:140–144. doi: 10.1016/j.jns.2006.06.018. [DOI] [PubMed] [Google Scholar]
  • 14.Fernagut P.O., Diguet E., Labattu B., Tison F. A simple method to measure stride length as an index of nigrostriatal dysfunction in mice. J. Neurosci. Methods. 2002;113:123–130. doi: 10.1016/S0165-0270(01)00485-X. [DOI] [PubMed] [Google Scholar]
  • 15.Glowinski J., Iversen L.L. Regional studies of cateholamines in the rat brain-I. J. Neurochem. 1966;13:655–669. doi: 10.1111/j.1471-4159.1966.tb09873.x. [DOI] [PubMed] [Google Scholar]
  • 16.Fraga C.G., Leibovitz B.E., Tappel A.L. Lipid peroxidation measured as thiobarbituric acid-reactive substances in tissue slices: characterization and comparison with homogenates and microsomes. Free Radic. Biol. Med. 1988;4:155–161. doi: 10.1016/0891-5849(88)90023-8. [DOI] [PubMed] [Google Scholar]
  • 17.Kakkar P., Das B., Viswanathan P.N. A modified spectrophotometric assay of superoxide dismutase. Indian J. Biochem. Biophys. 1984;21:130–132. [PubMed] [Google Scholar]
  • 18.Sinha A.K. Colorimetric assay of catalase. Anal. Biochem. 1972;47:389–394. doi: 10.1016/0003-2697(72)90132-7. [DOI] [PubMed] [Google Scholar]
  • 19.Lowry O.H., Rosebrough N.J., Farr A.L., Randall R.J. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 1951;193:265–275. [PubMed] [Google Scholar]
  • 20.Shimazu S., Takahata K., Tamashiro A., Yoneda F., Iida Y., Saji H. Recovery of motor function and dopaminergic parameters in a mouse model of Parkinson’s disease induced by co-administration of 1-methyl 4-phenyl 1,2,3,6 tetrahydropyridine and diethyldithiocarbamate. J. Neural Transm. 2003;110:871–883. doi: 10.1007/s00702-003-0002-1. [DOI] [PubMed] [Google Scholar]
  • 21.Hanakawa T., Katsumi Y., Fukuyuma H., Honda M., Hayashi T., Kimura J., Shibasaki H. Mechanisms underlying gait disturbance in Parkinson’s disease: a single photon emission computed tomography study. Brain. 1999;122:1271–1282. doi: 10.1093/brain/122.7.1271. [DOI] [PubMed] [Google Scholar]
  • 22.Ahmad M., Saleem S., Ahmad A.S., Ansari M.A., Yousuf S., Hoda M.N., Islam F. Neuroprotective effects of Withania somnifera on 6-hydroxydopamine induced Parkinsonism in rats. Human. Exp. Toxicol. 2005;24:137–147. doi: 10.1191/0960327105ht509oa. [DOI] [PubMed] [Google Scholar]
  • 23.Dhanasekaran M., Uthayathas S., Karuppagounder S.S., Parameshwaran K., Suppiramaniam V., Ebadi M., Brown-Borg H.M. Ebselen effects on MPTP-induced neurotoxicity. Brain Res. 2006;1118:251–254. doi: 10.1016/j.brainres.2006.08.020. [DOI] [PubMed] [Google Scholar]
  • 24.Dexter D.T., Carter C.J., Wells F.R., Javoy-Agid F., Agid Y., Lees A., Jenner P., Marsden C.D. Basal lipid peroxidation in substantia nigra is increased in Parkinson’s disease. J. Neurochem. 1989;52:381–389. doi: 10.1111/j.1471-4159.1989.tb09133.x. [DOI] [PubMed] [Google Scholar]
  • 25.Dexter D.T., Holley A.E., Flitter W.D., Slater T.F., Wells F.R., Daniel S.E., Lees A.J., Jenner P., Marsden C.D. Increased levels of lipid hydroperoxides in the parkinsonia substania nigra: an HPLC and ESR study. Mov. Disord. 1994;9:92–97. doi: 10.1002/mds.870090115. [DOI] [PubMed] [Google Scholar]
  • 26.Chiba K., Trevor A., Castagnoli N., Jr. Metabolism of the neurotoxic tertiary amine, MPTP, by brain monoamine oxidase. Biochem. Biophys. Res. Commun. 1984;120:574–578. doi: 10.1016/0006-291X(84)91293-2. [DOI] [PubMed] [Google Scholar]
  • 27.Zang L.Y., Misra H.P. Generation of reactive oxygen species during the monoamine oxidase catalysed oxidation of the neurotoxicant 1-methyl 4-phenyl 1,2,3,6 tetrahydropyridine. J. Biol. Chem. 1993;268:16504–16512. [PubMed] [Google Scholar]
  • 28.Rojas P., Rios C. Increased striatal lipid peroxidation after intracerebroventricular MPP+ administration to mice. Pharmacol Toxicol. 1993;72:364–368. doi: 10.1111/j.1600-0773.1993.tb01345.x. [DOI] [PubMed] [Google Scholar]
  • 29.Adams J.D., Jr., Klaidman L.K., Leung A.C. MPP+ and MPDP+ induced oxygen radical formation with mitchondrial enzymes. Free Radic. Biol. Med. 1993;15:181–186. doi: 10.1016/0891-5849(93)90057-2. [DOI] [PubMed] [Google Scholar]
  • 30.Muralikrishnan D., Mohanakumar K.P. Neuroprtotection by bromocriptine against 1-methy1 4-pheny1 1,2,3,6 tetrahydrophyridine induced neurotoxicity in mice. FASEB J. 1998;12:905–912. doi: 10.1096/fasebj.12.10.905. [DOI] [PubMed] [Google Scholar]
  • 31.Rajeswari A. Curcumin protects mouse brain from oxidative stress caused by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. Eur. Rev. Med. Pharmacol. Sci. 2006;10:157–161. [PubMed] [Google Scholar]
  • 32.Devi P.U., Sharada A.C., Solomon F.E., Kamath M.S. In vivo growth inhibitory effect of Withania somnifera on a transplantable mouse tumor, Sarcoma 180. Indian J. Exp. Biol. 1992;30:169–172. [PubMed] [Google Scholar]
  • 33.Dhuley J.N. Adaptogenic and cardioprotective action of ashwagandha in rats and frogs. J. Ethnopharmacol. 2000;70:57–63. doi: 10.1016/S0378-8741(99)00177-4. [DOI] [PubMed] [Google Scholar]
  • 34.Russo A., Izzo A.A., Cardile V., Borrelli F., Vanella A. Indian medicinal plants as antiradicals and DNA cleavage protectors. Phytomedicine. 2001;8:125–132. doi: 10.1078/0944-7113-00021. [DOI] [PubMed] [Google Scholar]
  • 35.Bhattacharya S.K., Kumar A., Ghosal S. Effects of glycowithanolides from Withania somnifera on an animal model of Alzheimer’s disease and perturbed central cholinergic markers of cognition in rats. Phytother. Res. 1995;9:110–113. doi: 10.1002/ptr.2650090206. [DOI] [Google Scholar]
  • 36.Andallu B., Radhika B. Hypoglycemic, and hypocholesterolemic effect of winter cherry (Withania somnifera, Dunal) root. Indian J. Exp. Biol. 2000;38:607–609. [PubMed] [Google Scholar]
  • 37.Dhuley J.N. Nootropic-like effect of ashwagandha (Withania somnifera L.) in mice. Phytother. Res. 2001;15:524–528. doi: 10.1002/ptr.874. [DOI] [PubMed] [Google Scholar]

Articles from Cellular & Molecular Biology Letters are provided here courtesy of BMC

RESOURCES