Abstract
This report describes an improvement made to the horizontal cell electrophoresis methodology. It involves using two liquid layers differing in density to produce an interface described as a “density cushion”. The electrophoretic system that employed an anti-convective porous matrix to separate red blood cells (RBC) and charged dyes effectively was found to be unsuitable for some other mammalian cells. The “density cushion” method was found to be more versatile and applicable to studies on the separation of a variety of cell types. The experiments described show the differences between the electrophoretic mobilities of a human eosinophilic leukaemia cell line (Eol-1) and RBC, both with and without the modification of the cell surface properties.
Keywords: Cell electrophoresis, Cell separation, Cell surface
Full Text
The Full Text of this article is available as a PDF (622.3 KB).
Abbreviations used
- Eol-1
human eosinophilic leukaemia cell line
- PU
polyurethane
- RBC
red blood cells
Footnotes
Paper authored by participants of the international conference: XXXIV Winter School of the Faculty of Biochemistry, Biophysics and Biotechnology of Jagiellonian University, Zakopane, March 7–11, 2007, “The Cell and Its Environment”. Publication cost was covered by the organisers of this meeting.
References
- 1.Abercrombie M., Ambrose E.J. The surface properties of cancer cells: A review. Cancer Res. 1962;22:245–332. [PubMed] [Google Scholar]
- 2.Fürész J., Pál K., Budavári I., Lapis K. The physico-chemical properties of tumor cells with different metastatic potential. Neoplasma. 1985;32:689–693. [PubMed] [Google Scholar]
- 3.Walter H., Widen K.E. Differential electrophoretic behavior in aqueous polymer solutions of red blood cells from Alzheimer patients and from normal individuals. Biochim. Biophys. Acta. 1995;1234:184–90. doi: 10.1016/0005-2736(94)00302-6. [DOI] [PubMed] [Google Scholar]
- 4.Rychly J., Anders O., Eggers G., Schulz M. Electrophoretic mobility distribution of cells in leukaemia. In: Schütt W., Klinkmann H., editors. Cell Electrophoresis. Berlin (NY): Walter de Gruyter; 1985. pp. 477–483. [Google Scholar]
- 5.Slivinsky G.G., Hymer W.C., Bauer J., Morrison D.R. Cellular electrophoretic mobility data: A first approach to a database. Electrophoresis. 1997;18:1109–1119. doi: 10.1002/elps.1150180715. [DOI] [PubMed] [Google Scholar]
- 6.Chaubal K.A. Cell electrophoretic mobility as an aid to study biological systems. In: Schütt W., Klinkmann H., editors. Cell Electrophoresis. Berlin (NY): Walter de Gruyter; 1985. pp. 515–526. [Google Scholar]
- 7.Mehrishi J.N. Molecular aspects of the mammalian cell surface. In: Butler J.A.V., Noble D., editors. Progress in Biophysics and Molecular Biology. Oxford: Pergamon Press; 1972. pp. 3–70. [DOI] [PubMed] [Google Scholar]
- 8.Lu W.-H., Deng W.-H., Liu S.-T., Chen T.-B., Rao P.-F. Capillary electrophoresis of erythrocytes. Anal. Biochem. 2003;314:194–198. doi: 10.1016/S0003-2697(02)00533-X. [DOI] [PubMed] [Google Scholar]
- 9.Omasu F., Nakano Y., Ichiki T. Measurement of the electrophoretic mobility of sheep erythrocytes using microcapillary chips. Electrophoresis. 2005;26:1163–1167. doi: 10.1002/elps.200410182. [DOI] [PubMed] [Google Scholar]
- 10.Eggleton P. Separation of cells using free flow electrophoresis. In: Fisher D., Francis G.E., Rickwood D., editors. Cell Separation A Practical Approach. Oxford, New York, Tokyo: Oxford University Press; 1998. pp. 213–252. [Google Scholar]
- 11.Mehrishi J.N., Bauer J. Electrophoresis of cells and the biological relevance of surface charge. Electrophoresis. 2002;23:1984–1994. doi: 10.1002/1522-2683(200207)23:13<1984::AID-ELPS1984>3.0.CO;2-U. [DOI] [PubMed] [Google Scholar]
- 12.Wilk A., Roskowicz K., Korohoda W. A new method for the preparative and analytical electrophoresis of cells. Cell. Mol. Biol. Lett. 2006;11:579–593. doi: 10.2478/s11658-006-0046-y. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 13.Dwyer D.S., Gordon K., Jones B. Ruthenium Red potently inhibits immune responses both in vitro and in vivo. Int. J. Immunopharmacol. 1995;17:931–940. doi: 10.1016/0192-0561(95)00079-8. [DOI] [PubMed] [Google Scholar]
- 14.Szydłowska H., Zaporowska E., Kuszlik-Jochym K., Korohoda W., Branny J. Membranolytic activity of detergents as studied with cell viability tests. Folia Histochem. Cytochem. 1978;16:69–78. [PubMed] [Google Scholar]
- 15.Heiger D.N. Principles of Capillary Electrophoresis. In: Heiger D.N., editor. High Performance Capillary Electrophoresis-An Introduction. France: Hewlett-Packard Company; 1992. pp. 11–39. [Google Scholar]
- 16.Nakamura F., Naka M., Tanaka T. Inhibition of actin-activated myosin Mg (2+)-ATPase in smooth muscle by ruthenium red. FEBS Lett. 1992;314:93–96. doi: 10.1016/0014-5793(92)81469-3. [DOI] [PubMed] [Google Scholar]
- 17.Pimenta P.F., De Souza W. Ultrastructure and cytochemistry of the cell surface of eosinophils. J. Submicrosc. Cytol. 1982;14:227–237. [PubMed] [Google Scholar]
- 18.Candiano G., Ghiggeri G.M., Oleggini R., Ginevri F., Altieri P., Gusmano R. Interaction between cationic dyes and erythrocyte membranes in minimal change nephropathy: an electrophoretic approach. Pediatr. Nephrol. 1991;5:173–178. doi: 10.1007/BF01095945. [DOI] [PubMed] [Google Scholar]
- 19.Korohoda, W. and Wilk, A. Cell electrophoresis-a method for cell separation and research into cell surface properties. Cell. Mol. Biol. Lett.13 (2008) in press. [DOI] [PMC free article] [PubMed]
