Skip to main content
Cellular & Molecular Biology Letters logoLink to Cellular & Molecular Biology Letters
. 2006 Nov 19;12(1):127–138. doi: 10.2478/s11658-006-0058-7

Ischemic heart failure enhances endogenous myocardial apelin and APJ receptor expression

Pavan Atluri 1, Kevin J Morine 1, George P Liao 1, Corinna M Panlilio 1, Mark F Berry 1, Vivian M Hsu 1, William Hiesinger 1, Jeffrey E Cohen 1, Y Joseph Woo 1,
PMCID: PMC6275893  PMID: 17119870

Abstract

Apelin interacts with the APJ receptor to enhance inotropy. In heart failure, apelin-APJ coupling may provide a means of enhancing myocardial function. The alterations in apelin and APJ receptor concentrations with ischemic cardiomyopathy are poorly understood. We investigated the compensatory changes in endogenous apelin and APJ levels in the setting of ischemic cardiomyopathy.

Male, Lewis rats underwent LAD ligation and progressed into heart failure over 6 weeks. Corresponding animals underwent sham thoracotomy as control. Six weeks after initial surgery, the animals underwent hemodynamic functional analysis in the presence of exogenous apelin-13 infusion and the hearts were explanted for western blot and enzyme immunoassay analysis.

Western blot analysis of myocardial APJ concentration demonstrated increased APJ receptor protein levels with heart failure (1890750±133500 vs. 901600±143120 intensity units, n=8, p=0.00001). Total apelin protein levels increased with ischemic heart failure as demonstrated by enzyme immunoassay (12.0±4.6 vs. 1.0±1.2 ng/ml, n=5, p=0.006) and western blot (1579400±477733 vs. 943000±157600 intensity units, n=10, p=0.008). Infusion of apelin-13 significantly enhanced myocardial function in sham and failing hearts. We conclude that total myocardial apelin and APJ receptor levels increase in compensation for ischemic cardiomyopathy.

Key words: Apelin, G protein coupled receptor, APJ, Inotrope

Full Text

The Full Text of this article is available as a PDF (509.9 KB).

Abbreviations used

CHO

Chinese hamster ovary

DTT

dithiothreitol

EDTA

ethylenediaminotetraacetic acid

EIA

enzyme immunoassay

LAD

left anterior descending

SDS

sodium dodecyl sulphate

References

  • 1.O’Dowd B.F., Heiber M., Chan A., Heng H.H.Q., Tsui L.C., Kennedy J.L., Shi X., Petronis A., George S.R., Nguyen T. A human gene that shows identity with the gene encoding the angiotensin receptor is located on chromosome 11. Gene. 1993;136:355–360. doi: 10.1016/0378-1119(93)90495-O. [DOI] [PubMed] [Google Scholar]
  • 2.Tatemoto K., Hosoya M., Habata Y., Fujii R., Kakegawa T., Zou M.X., Kawamata Y., Fukusumi S., Hinuma S., Kitada C., Kurokawa T., Onda H., Fujino M. Isolation and characterization of a novel endogenous peptide ligand for the human APJ receptor. Biochem. Biophys. Res. Commun. 1998;251:471–476. doi: 10.1006/bbrc.1998.9489. [DOI] [PubMed] [Google Scholar]
  • 3.Habata Y., Fujii R., Hosoya M., Fukusumi S., Kawamata Y., Hinuma S., Kitada C., Nishizawa N., Murosaki S., Kurokawa T., Onda H., Tatemoto K., Fujino M. Apelin the natural ligand of the orphan receptor APJ, is abundantly secreted in the colostrums. Biochim. Biophys. Acta. 1999;1452:25–35. doi: 10.1016/S0167-4889(99)00114-7. [DOI] [PubMed] [Google Scholar]
  • 4.Kawamata Y., Habata Y., Fukusumi S., Hosoya M., Fujii R., Hinuma S., Nishizawa N., Kitada C., Onda H., Nishimura O., Fujino M. Molecular properties of apelin: tissue distribution and receptor binding. Biochim. Biophys. Acta. 2001;1538:162–171. doi: 10.1016/S0167-4889(00)00143-9. [DOI] [PubMed] [Google Scholar]
  • 5.Medhurst A.D., Jennings C.A., Robbins M.J., Davis R.P., Ellis C., Winborn K.Y., Lawrie K.W.M., Hervieu G., Riley G., Bolaky J.E., Herrity N.C., Murdock P., Darker J.G. Pharmacological and immunohistochemical characterization of the APJ receptor and its endogenous ligand apelin. J. Neurochem. 2003;84:1162–1172. doi: 10.1046/j.1471-4159.2003.01587.x. [DOI] [PubMed] [Google Scholar]
  • 6.Lee D.K., Saldivia V.R., Nguyen T., Cheng R., George S.R., O’Dowd B.F. Modification of the terminal residue of apelin-13 antagonises its hypotensive action. Endocrinology. 2005;146:231–236. doi: 10.1210/en.2004-0359. [DOI] [PubMed] [Google Scholar]
  • 7.Lee D.K., Lanca A.J., Cheng R., Nguyen T., Ji X.D., Gobeil F., Chemtob S., George S.R., O’Dowd B.F. Agonist-independent nuclear localization of the apelin, angiotenesin AT1, and bradykinin B2 receptors. J. Biol. Chem. 2004;279:7901–7908. doi: 10.1074/jbc.M306377200. [DOI] [PubMed] [Google Scholar]
  • 8.Hosoya M., Kawamata Y., Fukusumi S., Fuji R., Habata Y., Hinuma S., Kitada C., Honda S., Kurokawa T., Onda H., Nishimura O., Fujino M. Molecular and functional characteristics of APJ — tissue distribution of mRNA and interaction with the endogenous ligand apelin. J. Biol. Chem. 2000;275:21061–21067. doi: 10.1074/jbc.M908417199. [DOI] [PubMed] [Google Scholar]
  • 9.Lee D.K., Cheng R., Nguyen T., Fan T., Kariyawasam A.P., Liu Y., Osmond D.H., George S.R., O’Dowd B.F. Characterization of apelin, the ligand for the APJ receptor. J. Neurochem. 2000;74:34–41. doi: 10.1046/j.1471-4159.2000.0740034.x. [DOI] [PubMed] [Google Scholar]
  • 10.O’Carroll A.M., Lolait S.J. Regulation of rat APJ receptor messenger ribonucleic acid expression in magnocellular neurons of the paraventricular and supraopric nuclei by osmotic stimuli. J. Neuroendocrinol. 2003;15:661–666. doi: 10.1046/j.1365-2826.2003.01044.x. [DOI] [PubMed] [Google Scholar]
  • 11.Sunter D., Hewson A.K., Dickson S.L. sIntracerebroventricular injection of apelin-13 reduces food intake in the rat. Neurosci. Lett. 2003;353:1–4. doi: 10.1016/S0304-3940(03)00351-3. [DOI] [PubMed] [Google Scholar]
  • 12.Horiuchi Y., Fujii T., Kamimura Y., Kawashima K. The endogenous, immunologically active peptide apelin inhibits lymphocytic cholinergic activity duringimmunological responses. J. Neuroimmunol. 2003;144:46–52. doi: 10.1016/j.jneuroim.2003.08.029. [DOI] [PubMed] [Google Scholar]
  • 13.Szokodi I., Tavi P., Voutilainen-Myllyla S., Ilves M., Tokola H., Pikkarainen S., Piuhola J., Rysa J., Toth M., Ruskaoho H. Apelin, the novel endogenous ligand of the orphan receptor APJ, regulates cardiac contractility. Circ. Res. 2002;91:434–440. doi: 10.1161/01.RES.0000033522.37861.69. [DOI] [PubMed] [Google Scholar]
  • 14.Ashley E.A., Powers J., Chen M., Kundu R., Finsterbach T., Caffarelli A., Deng A., Eichorn J., Mahajan R., Agrawal R., Greve J., Robbins R., Patterson A.J., Bernstein D., Quertermous T. The endogenous peptide apelin potently improves cardiac contractility and reduces cardiac loading in ivo. Cardiovasc. Res. 2004;65:73–82. doi: 10.1016/j.cardiores.2004.08.018. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 15.Berry M.F., Pirolli T.J., Jayasankar V., Burdick J., Morine K.J., Gardner T.J., Woo Y.J. Apelin has in vivo inotropic effects on normal and failing hearts. Circulation. 2004;110(Suppl.II):II187–II193. doi: 10.1161/01.CIR.0000138382.57325.5c. [DOI] [PubMed] [Google Scholar]
  • 16.Chen M.M., Ashley E.A., Deng D.X.F., Tsalenko A., Deng A., Tabibiazar R., Ben-Dor A., Fenster B., Yang E., King J.Y., Fowler M., Robbins R., Johnson F.L., Bruhn L., McDonagh T., Dargie H., Yakhini Z., Tsao P.S., Quertermous T. Novel role for the potent endogenous inotrope apelin in human cardiac dysfunction. Circulation. 2003;108:1432–1439. doi: 10.1161/01.CIR.0000091235.94914.75. [DOI] [PubMed] [Google Scholar]
  • 17.Foldes G., Horkay F., Szokodi I., Vuolteenaho O., Iilves M., Lindstedt K.A., Mayranpaa sM., Sarman B., Seres L., Skoumal R., Lako-Futo Z., deChatel R., Ruskoaho H., Toth M. Circulating and cardiac levels of apelin, the novel ligand of the orphan receptor APJ, in patients with heart failure. Biochem. Biophys. Res. Commun. 2003;308:480–485. doi: 10.1016/S0006-291X(03)01424-4. [DOI] [PubMed] [Google Scholar]
  • 18.Jayasankar V., Woo Y.J., Bish L.T., Pirolli T.J., Chatterjee S., Berry M.F., Burdick J., Gardner T.J., Sweeney H.L. Gene transfer of hepatocyte growth factor attenuates postinfarction heart failure. Circulation. 2003;108(Suppl.1):II230–6. doi: 10.1161/01.cir.0000087444.53354.66. [DOI] [PubMed] [Google Scholar]
  • 19.Woo Y.J., Grand T.J., Berry M.F., Atluri P., Moise M.A., Hsu V., Cohen J., Fisher O., Pirolli T., Burdick J., Taylor M., Zentko S., Jayasankar V., Gardner T.J., Sweeney H.L. Stromal cell-derived factor and granulocyte monocyte colony stimulating factor form a combined neovasculogenic therapy for ischemic cardiomyopathy. J. Thoracic. Cardiovasc. Surg. 2005;130:321–329. doi: 10.1016/j.jtcvs.2004.11.041. [DOI] [PubMed] [Google Scholar]
  • 20.Liu Y.H., Yang X.P., Nass O., Sabbah H.B., Peterson E., Carretero O.A. Chronic heart failure induced coronary artery ligation in Lewis inbred rats. Am. J. Physiol. 1997;272:H722–H727. doi: 10.1152/ajpheart.1997.272.2.H722. [DOI] [PubMed] [Google Scholar]
  • 21.Cingolani O.H., Yang X.P., Liu Y.H., Villanueva M., Rhaleb N.E., Carretero O.A. Reduction of cardiac fibrosis decreases systolic performance without affecting diastolic function in hypertensive rats. Hypertension. 2004;43:1067–1073. doi: 10.1161/01.HYP.0000125013.22494.c5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 22.Tatemoto K., Takayama K., Zou M., Kumaki I., Zhang W., Kumano K., Fujimiya M. The novel peptide apelin lowers blood pressure via a nitric oxide-dependent mechanism. Regul. Pept. 2001;99:87–92. doi: 10.1016/S0167-0115(01)00236-1. [DOI] [PubMed] [Google Scholar]

Articles from Cellular & Molecular Biology Letters are provided here courtesy of BMC

RESOURCES