Abstract
Microtubules are dynamic polymers that occur in eukaryotic cells and play important roles in cell division, motility, transport and signaling. They form during the process of polymerization of α- and β-tubulin dimers. Tubulin is a significant and heavily researched molecular target for anticancer drugs. Combretastatins are natural cis-stilbenes that exhibit cytotoxic properties in cultured cancer cells in vitro. Combretastatin A-4 (3′-hydroxy-3,4,4′, 5-tetramethoxy-cis-stilbene; CA-4) is a potent cytotoxic cis-stilbene that binds to β-tubulin at the colchicine-binding site and inhibits tubulin polymerization. The prodrug CA-4 phosphate is currently in clinical trials as a chemotherapeutic agent for cancer treatment. Numerous series of stilbene analogs have been studied in search of potent cytotoxic agents with the requisite tubulin-interactive properties. Microtubule-interfering agents include numerous CA-4 and transresveratrol analogs and other synthetic stilbene derivatives. Importantly, these agents are active in both tumor cells and immature endothelial cells of tumor blood vessels, where they inhibit the process of angiogenesis. Recently, computer-aided virtual screening was used to select potent tubulin-interactive compounds. This review covers the role of stilbene derivatives as a class of antitumor agents that act by targeting microtubule assembly dynamics. Additionally, we present the results of molecular modeling of their binding to specific sites on the α- and β-tubulin heterodimer. This has enabled the elucidation of the mechanism of stilbene cytotoxicity and is useful in the design of novel agents with improved anti-mitotic activity. Tubulin-interactive agents are believed to have the potential to play a significant role in the fight against cancer.
Key words: Tubulin polymerization, Tubulin-interactive agents, Stilbenes, Combretastatins
Full Text
The Full Text of this article is available as a PDF (950.5 KB).
Abbreviations used
- AIA
angiogenesis-inhibiting agents
- BAD
Bcl-2-associated death promoter
- Bcl-2
B-cell lymphoma 2
- Bcl-xl
B-cell lymphoma extra large
- CA-1
combretastatin A-1
- CA-2
combretastatin A-2
- CA-3
combretastatin A-3
- CA-4
combretastatin A-4
- CA-1P
combretastatin A-1 diphosphate, OXi4503
- CA-4P
combretastatin A-4 phosphate, Zybrestat
- CB-1
combretastatin B-1
- CB-2
combretastatin B-2
- CDC2
cell division control protein 2
- CDK1
cyclin-dependent kinase 1
- CoMFA
comparative molecular field analysis
- DAMA-colchicine
N-deacetyl-N-(2-mercaptoacetyl)-colchicine
- ERK
extracellular signal-regulated kinase
- GTP
guanosine-5′-triphosphate
- GDP
guanosine-5′-diphosphate
- HIF-1α
hypoxiainducible factor 1α
- HNSCC
head and neck squamous cell carcinoma
- HUVECs
human umbilical vein endothelial cells
- iNOS
inducible nitric oxide synthase
- JNK
c-Jun N-terminal kinase
- LY290181
2-amino-4-(3-pyridyl)-4H-naphtho(1,2-b)pyran-3-carbonitrile
- MAPs
microtubule-associated proteins
- MAPKs
mitogen-activated protein kinases
- MIA
microtubule-interfering agents
- MRP-1
multidrug resistance protein 1
- MRP-3
multidrug resistance protein 3
- SAR
structure-activity relationship
- SPA
Special Protocol Assessment
- +TIPs
plus-and-tracking proteins
- VDAs
vascular disrupting agents
- VEGF
vascular endothelial growth factor
- VEGFR2
VEGF receptor 2
- VTAs
vascular targeting agents
References
- 1.Butler MS. Natural products to drugs: natural product-derived compounds in clinical trials. Nat. Prod. Rep. 2008;25:475–516. doi: 10.1039/b514294f. [DOI] [PubMed] [Google Scholar]
- 2.Pettit GR, Cragg GM, Herald DL, Schmidt JM, Lobavanijaya P. Antineoplastic agents. Part 84. Isolation and structure of combretastatin. Can. J. Chem. 1982;60:1374–1376. doi: 10.1139/v82-202. [DOI] [Google Scholar]
- 3.Tron GC, Pirali T, Sorba G, Pagliai F, Busacca S, Genazzani A. Medicinal chemistry of combretastatin A-4: present and future directions. J. Med. Chem. 2006;49:3033–3044. doi: 10.1021/jm0512903. [DOI] [PubMed] [Google Scholar]
- 4.Siemann DW, Chaplin DJ, Walicke PA. A review and update of the current status of the vasculature-disabling agent combretastatin-A4 phosphate (CA4P) Exp. Opin. Invest. Drugs. 2009;18:189–197. doi: 10.1517/13543780802691068. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 5.Desai A, Mitchison TJ. Microtubule polymerization dynamics. Ann. Rev. Cell Dev. Biol. 1997;13:83–117. doi: 10.1146/annurev.cellbio.13.1.83. [DOI] [PubMed] [Google Scholar]
- 6.Nogales E, Wolf SG, Downing KH. Structure of the αβ-tubulin dimer by electron crystallography. Nature. 1998;391:199–203. doi: 10.1038/34465. [DOI] [PubMed] [Google Scholar]
- 7.Mitchison T, Kirscher M. Microtubule assembly nucleated by isolated centrosomes. Nature. 1984;312:232–237. doi: 10.1038/312232a0. [DOI] [PubMed] [Google Scholar]
- 8.Wang HW, Nogales E. Nucleotide-dependent bending flexibility of tubulin regulates microtubule assembly. Nature. 2005;435:911–915. doi: 10.1038/nature03606. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 9.Akhmanova A, Steinmetz MO. Tracking the ends: a dynamic protein network controls the fate of microtubule tips. Nat. Rev. Mol. Cell Biol. 2008;9:309–322. doi: 10.1038/nrm2369. [DOI] [PubMed] [Google Scholar]
- 10.Kline-Smith SL, Walczak CE. Mitotic spindle assembly and chromosome segregation: refocusing on microtubule dynamics. Mol. Cell. 2004;15:317–327. doi: 10.1016/j.molcel.2004.07.012. [DOI] [PubMed] [Google Scholar]
- 11.Kwon M, Scholey JM. Spindle mechanics and dynamics during mitosis in Drosophila. Trends Cell Biol. 2004;14:194–205. doi: 10.1016/j.tcb.2004.03.003. [DOI] [PubMed] [Google Scholar]
- 12.Rieder CL, Davison EA, Jensen LC, Cassimeris L, Salomon ED. Oscillatory movements of monooriented chromosomes and their position relative to the spindle pole result from the ejection properties of the aster and half-spindle. J. Cell Biol. 1986;103:581–591. doi: 10.1083/jcb.103.2.581. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 13.Higuchi T, Uhlmann F. Stabilization of microtubule dynamics at anaphase onset promotes chromosome segregation. Nature. 2005;433:171–176. doi: 10.1038/nature03240. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 14.Rieder CL, Schultz A, Cole R, Sluder G. Anaphase onset in vertebrate somatic cells is controlled by a checkpoint that monitors sister kinetochore attachment to the spindle. J. Cell Biol. 1994;127:1301–1310. doi: 10.1083/jcb.127.5.1301. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 15.Jordan MA, Wilson L. Microtubules as a target for anticancer drugs. Nat. Rev. Cancer. 2004;4:253–265. doi: 10.1038/nrc1317. [DOI] [PubMed] [Google Scholar]
- 16.Singh P, Rathinasamy K, Mohan R, Panda D. Microtubule assembly dynamics: an attractive target for anticancer drugs. IUBMB Life. 2008;60:368–375. doi: 10.1002/iub.42. [DOI] [PubMed] [Google Scholar]
- 17.Bhattacharyya B, Panda D, Gupta S, Banerjee M. Anti-mitotic activity of colchicine and the structural basis for its interaction with tubulin. Med. Res. Rev. 2008;28:155–183. doi: 10.1002/med.20097. [DOI] [PubMed] [Google Scholar]
- 18.Ravelli RB, Gigant B, Curmi PA, Jourdain I, Lachkar S, Sobel A, Knossow M. Insight into tubulin regulation from a complex with colchicine and a stathmin-like domain. Nature. 2004;428:198–202. doi: 10.1038/nature02393. [DOI] [PubMed] [Google Scholar]
- 19.Gigant B, Wang C, Ravelli RBG, Roussi F, Steinmetz MO, Curmi PA, Sobel A, Knossow M. Structural basis for the regulation of tubulin by vinblastine. Nature. 2005;435:519–522. doi: 10.1038/nature03566. [DOI] [PubMed] [Google Scholar]
- 20.Chakraborti S, Das L, Kapoor N, Das A, Dwivedi V, Poddar A, Chakraborti G, Janik M, Basu G, Panda D, Chakrabarti P, Surolia A, Bhattacharyya B. Curcumin recognizes a unique binding site of tubulin. J. Med. Chem. 2011;54:6183–6196. doi: 10.1021/jm2004046. [DOI] [PubMed] [Google Scholar]
- 21.Kingston DGI. Tubulin-interactive natural products as anticancer agents. J. Nat. Prod. 2009;72:507–515. doi: 10.1021/np800568j. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 22.Nogales E, Wolf SG, Khan IA, Luduena RF, Downing KH. Structure of tubulin at 6.5 Å and location of the taxol-binding site. Nature. 1995;375:424–427. doi: 10.1038/375424a0. [DOI] [PubMed] [Google Scholar]
- 23.Li H, Wu WKK, Zheng A, Che CT, Yu L, Li ZJ, Wu YC, Cheng K-W, Yu J, Cho CH, Wang M. 2,3′,4,4′,5′-Pentamethoxytrans-stilbene, a resveratrol derivative, is a potent inducer of apoptosis in colon cancer cells via targeting microtubules. Biochem. Pharmacol. 2009;78:1224–1232. doi: 10.1016/j.bcp.2009.06.109. [DOI] [PubMed] [Google Scholar]
- 24.Goncalves A, Braguer D, Carles G, Andre N, Prevot C, Briand C. Caspase-8 activation independent of CD95/CD95-L interaction during paclitaxel-induced apoptosis in human colon cancer (HT29-D4) Biochem. Pharmacol. 2000;60:1579–1584. doi: 10.1016/S0006-2952(00)00481-0. [DOI] [PubMed] [Google Scholar]
- 25.Siemann DW, Bibby MC, Dark GG, Dicker AP, Eskens FA, Horsman MR, Marmé D, LoRusso PM. Differentiation and definition of vascular-targeted therapies. Clin. Cancer Res. 2005;11:416–420. [PubMed] [Google Scholar]
- 26.Mason RP, Zhao D, Liu L, Trawick ML, Pinney KG. A perspective on vascular disrupting agents that interact with tubulin: preclinical tumor imaging and biological assessment. Integr. Biol (Camb.) 2011;3:375–387. doi: 10.1039/c0ib00135j. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 27.Siemann DW. The unique characteristics of tumor vasculature and preclinical evidence for its selective disruption by tumor-vascular disrupting agents. Cancer Treat. Rev. 2011;37:63–74. doi: 10.1016/j.ctrv.2010.05.001. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 28.Jockowich ME, Suarez F, Alegret A, Pina Y, Hayden B, Cebulla C, Feuer W, Murray TG. Mechanism of retinoblastoma tumor cell death after focal chemotherapy, radiation, and vascular targeting therapy in a mouse model. Invest. Ophthalmol. Vis. Sci. 2007;48:5371–5376. doi: 10.1167/iovs.07-0708. [DOI] [PubMed] [Google Scholar]
- 29.Nambu H, Nambu R, Melia M, Campochiaro PA. Combretastatin A-4 phosphate supresses development and induces regression of choroidal neovascularization. Invest. Ophthalmol. Vis. Sci. 2003;44:3650–3655. doi: 10.1167/iovs.02-0985. [DOI] [PubMed] [Google Scholar]
- 30.Ma L, Liu YL, Ma ZZ, Dou HL, Xu JH, Wang JC, Zhang X, Zhang Q. Targeted treatment of choroidal neovascularization using integrinmediated sterically stabilized liposomes loaded with combretastatin A4. J. Ocul. Pharmacol. Ther. 2009;25:195–200. doi: 10.1089/jop.2008.0119. [DOI] [PubMed] [Google Scholar]
- 31.Pettit GR, Singh S. Antineoplastic agents. Part 130. Isolation, structure and synthesis of combretastatins A-2, A-3, and B-2. Can. J. Chem. 1987;65:2390–2396. doi: 10.1139/v87-399. [DOI] [Google Scholar]
- 32.Pettit GR, Singh SB, Niven ML, Hamel E, Schmidt JM. Antineoplastic agents. Part 123. Isolation, structure, and synthesis of combretastatin A-1 and B-1, potent new inhibitors of microtubule assembly, derived from Combretum caffrum. J. Nat. Prod. 1987;50:119–131. doi: 10.1021/np50049a016. [DOI] [PubMed] [Google Scholar]
- 33.Pettit GR, Singh SB, Niven ML, Hamel E, Lin CM, Alberts DS, Garcia-Kendall D. Isolation and structure of the strong cell growth and tubulin inhibitor combretastatin A-4. Experientia. 1989;45:209–211. doi: 10.1007/BF01954881. [DOI] [PubMed] [Google Scholar]
- 34.Pinney KG, Pettit GR, Trawick ML, Jelinek C, Chaplin DJ. The discovery and development of the combretastatins. In: Cragg GR, Kingston DGI, Newman DJ, editors. Anticancer Agents from Natural Products. 2nd edition. Boca Raton, FL: CRC Press/Taylor & Francis; 2012. pp. 27–63. [Google Scholar]
- 35.Chaudhary A, Pandeya SN, Kumar P, Sharma P, Gupta S, Soni N, Verma KK, Bhardwaj G. Combretastatin A-4 Analogs as Anticancer Agents. Mini-Rev. Med. Chem. 2007;7:1186–1205. doi: 10.2174/138955707782795647. [DOI] [PubMed] [Google Scholar]
- 36.Tozer GM, Kanthou C, Parkins CS, Hill SA. The biology of the combretastatins as tumour vascular targeting agents. Int. J. Exp. Pathol. 2001;83:21–38. doi: 10.1046/j.1365-2613.2002.00211.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 37.Thorpe EP. Vascular targeting agents as cancer therapeutics. Clin. Cancer Res. 2004;10:415–427. doi: 10.1158/1078-0432.CCR-0642-03. [DOI] [PubMed] [Google Scholar]
- 38.Xia Y, Yang A-Y, Xia P, Bastow KF, Tachibana Y, Kuo S-C, Hamel E, Hacki T, Lee K-H J. Antitumor agents. 181. Synthesis and biological evaluation of 6,7,2′,3′,4′-substituted-1,2,3,4-tetrahydro-2-phenyl-4-quinolones as a new class of anti-mitotic antitumor agents. Med. Chem. 1998;41:1155–1162. doi: 10.1021/jm9707479. [DOI] [PubMed] [Google Scholar]
- 39.Wu M, Sun Q, Yang C, Chen D, Ding J, Chen Y, Lin L, Xie Y. Synthesis and activity of combretastatin A-4 analogues: 1,2,3-thiadiazoles as potent antitumor agents. Bioorg. Med. Chem. Lett. 2007;17:869–873. doi: 10.1016/j.bmcl.2006.11.060. [DOI] [PubMed] [Google Scholar]
- 40.Sriram M, Hall JJ, Grohmann NC, Strecker TE, Wootton T, Franken A, Trawick ML, Pinney KG. Design, synthesis and biological evaluation of dihydronaphthalene and benzosuberene analogs of the combretastatins as inhibitiors of tubulin polymerization in cancer chemotherapy. Bioorg. Med. Chem. 2008;16:8161–8171. doi: 10.1016/j.bmc.2008.07.050. [DOI] [PubMed] [Google Scholar]
- 41.Pettit GR, Toki BE, Herald DL, Boyd MR, Hamel E, Pettit RK, Chapuis J-C. J. Antineoplastic agents. 410. Asymetric hydroxylation of trans-combretastatin A-4. Med. Chem. 1999;42:1459–1465. doi: 10.1021/jm9807149. [DOI] [PubMed] [Google Scholar]
- 42.Cai SX. Small molecule vascular disrupting agents: potential new drugs for cancer treatment. Recent Pat. Anticancer Drug Discov. 2007;2:79–101. doi: 10.2174/157489207779561462. [DOI] [PubMed] [Google Scholar]
- 43.Salmon HW, Siemann DW. Effect of the second generation vascular disrupting agent OXi4503 on tumor vascularity. Clin. Cancer Res. 2006;12:4090–4094. doi: 10.1158/1078-0432.CCR-06-0163. [DOI] [PubMed] [Google Scholar]
- 44.Thomson P, Naylor MA, Everett SA, Stratford HRL, Lewis G, Hill S, Patel KB, Wardman P, Davis PD. Synthesis and biological properties of bioreductively targeted nitrothienyl prodrugs of combretastatin A-4. Mol. Cancer Ther. 2006;5:2886–2894. doi: 10.1158/1535-7163.MCT-06-0429. [DOI] [PubMed] [Google Scholar]
- 45.Calligaris D, Verdier-Pinard P, Devred F, Villard C, Braguer D, Lafitte D. Microtubule targeting agents: from biophysics to proteomics. Cell. Mol. Life Sci. 2010;67:1089–1104. doi: 10.1007/s00018-009-0245-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 46.Griggs J, Skepper JN, Smith GA, Brindle KM, Metcalfe JC, Hesketh R. Inhibition of proliferative retinopathy by the antivascular agent combretastatin A-4. Am. J. Pathol. 2002;160:1097–1103. doi: 10.1016/S0002-9440(10)64930-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 47.Delmonte A, Sessa C. AVE8062: A new combretastatin derivative vascular disrupting agent. Expert Opin. Investig. Drugs. 2009;18:1541–1548. doi: 10.1517/13543780903213697. [DOI] [PubMed] [Google Scholar]
- 48.Kim TJ, Ravoori M, Landen CN, Kamatt AA, Han LY, Lu C, Lin YG, Merritt WM, Jennings N, Spannuth WA, Langley R, Gershenson DM, Coleman RL, Kundra V, Sood AK. Antitumor and antivascular effects of AVE8062 in ovarian carcinoma. Cancer Res. 2007;67:9337–9345. doi: 10.1158/0008-5472.CAN-06-4018. [DOI] [PubMed] [Google Scholar]
- 49.Pettit GR, Rosenberg HJ, Dixon R, Knight JC, Hamel E, Chapuis JC, Pettit RK, Hogan F, Sumner B, Ain KB, Trickey-Platt B. Antineoplastic agents. 548. Synthesis of iodo- and diiodocombstatin phosphate prodrugs. J. Nat. Prod. 2012;75:385–393. doi: 10.1021/np200797x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 50.Baur JA, Sinclair DA. Therapeutic potential of resveratrol: the in vivo evidence. Nat. Rev. Drug Discov. 2006;5:493–506. doi: 10.1038/nrd2060. [DOI] [PubMed] [Google Scholar]
- 51.Szekeres T, Fritzer-Szekeres M, Saiko P, Jaeger W. Resveratrol and resveratrol analogues — structure-activity relationship. Pharm. Res. 2010;27:1042–1048. doi: 10.1007/s11095-010-0090-1. [DOI] [PubMed] [Google Scholar]
- 52.Schneider Y, Chabert P, Stutzmann J, Coelho D, Fougerousse A, Gosse F, Launay J-F, Brouillard R, Raul F. Resveratrol analog (Z)-3,5,4′-trimethoxystilbene is a potent anti-mitotic drug inhibiting tubulin polymerization. Int. J. Cancer. 2003;107:189–196. doi: 10.1002/ijc.11344. [DOI] [PubMed] [Google Scholar]
- 53.Mazué F, Colin D, Gobbo J, Wegner M, Rescifina A, Spatafora C, Fasseur D, Delmas D, Meunier P, Triangli C, Latruffe N. Structural determinants of resveratrol for cell proliferation inhibition potency. Experimental and docking studies of new analogs. Eur. J. Med. Chem. 2010;45:2972–2980. doi: 10.1016/j.ejmech.2010.03.024. [DOI] [PubMed] [Google Scholar]
- 54.Sale S, Verschoyle RD, Boockock D, Jones DJN, Wilsher N, Potter GA, Farmer PB, Steward WP, Gescher AJ. Pharmacokinetics in mice and growth-inhibitory properties of the putative cancer chemopreventive agent resveratrol and the synthetic analogue trans-3,4,5,4′-tetramethoxystilbene. Br. J. Cancer. 2004;90:736–744. doi: 10.1038/sj.bjc.6601568. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 55.Sale S, Tunstall RG, Ruparelia KC, Potter GA, Steward WP, Gescher AJ. Comparison of the effects of the chemopreventive agent resveratrol and its synthetic analog trans-3,4,5,4′-tetramethoxystilbene (DMU-212) on adenoma development in the ApcMin+ mouse and cyclooxygenase-2 in human-derived colon cancer cells. Int. J. Cancer. 2005;115:194–201. doi: 10.1002/ijc.20884. [DOI] [PubMed] [Google Scholar]
- 56.Ma Z, Molavi O, Haddadi A, Lai R, Gossage RA, Lavasanifar A. Resveratrol analog trans 3,4,5,4′-tetramethoxystilbene (DMU-212) mediates antitumor effects via mechanism different from that of resveratrol. Cancer Chemother. Pharmacol. 2008;63:27–35. doi: 10.1007/s00280-008-0704-z. [DOI] [PubMed] [Google Scholar]
- 57.Park H, Aiyar SE, Fan P, Wang J, Yue W, Okouneva T, Cox C, Jordan MA, Demers L, Cho H, Kim S, Song RX-D, Santen RJ. Effects of tetramethoxystilbene on hormone-resistant breast cancer cells: biological and biochemical mechanisms of action. Cancer Res. 2007;67:5717–5726. doi: 10.1158/0008-5472.CAN-07-0056. [DOI] [PubMed] [Google Scholar]
- 58.Li H, Wu WKK, Li ZJ, Chan KM, Wong CCM, Ye CG, Yu L, Sung JJY, Cho CH, Wang M. 2,3′,4,4′,5′-Pentamethoxy-transstilbene, a resveratrol derivative, inhibits colitis-associated colorectal carcinogenesis in mice. Br. J. Pharmacol. 2010;160:1352–1361. doi: 10.1111/j.1476-5381.2010.00785.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 59.Hsieh HP, Liou JP, Mahindroo N. Pharmaceutical design of antimitotic agents on combretastatins. Curr. Pharm. Des. 2005;11:1655–1677. doi: 10.2174/1381612053764751. [DOI] [PubMed] [Google Scholar]
- 60.Hall JJ, Sriram M, Strecker TE, Tidmore JK, Jelinek CJ, Kumar GDK, Hadimani MB, Pettit GR, Chaplin DJ, Trawick ML, Pinney KG. Design, synthesis, biochemical, and biological evaluation of nitrogencontaining trifluoro structural modifications of combretastatin A-4. Bioorg. Med. Chem. Lett. 2008;18:5146–5149. doi: 10.1016/j.bmcl.2008.07.070. [DOI] [PubMed] [Google Scholar]
- 61.Dyrager C, Wickström M, Fridén-Saxin M, Friberg A, Dahlén K, Wallén EAA, Gullbo J, Grøtli M, Luthman K. Inhibitors and promoters of tubulin polymerization: synthesis and biological evaluation of chalcones and related dienones as potential anticancer agents. Bioorg. Med. Chem. 2011;19:2659–2665. doi: 10.1016/j.bmc.2011.03.005. [DOI] [PubMed] [Google Scholar]
- 62.Cai Y-C, Zou Y, Ye Y-L, Sun H-Y, Su Q-G, Wang Z-X, Zeng Z-L, Xian L-J. Anti-tumor activity and mechanisms of a novel vascular disrupting agent, (Z)-3,4′,5-trimethoxylstilbene-3′-O-phosphate disodium (M410) Invest. New Drugs. 2011;29:300–311. doi: 10.1007/s10637-009-9366-x. [DOI] [PubMed] [Google Scholar]
- 63.Hatanaka T, Fujita K, Ohsumi K, Nakagawa R, Fukuda Y, Nihei Y, Suga Y, Akiyama Y, Tsuji T. Novel B-ring modified combretastatin analogues: syntheses and antineoplastic activity. Bioorg. Med. Chem. Lett. 1998;8:3371–3374. doi: 10.1016/S0960-894X(98)00622-2. [DOI] [PubMed] [Google Scholar]
- 64.Cushman M, Nagarathnam D, Gopal D, Chakraborti AK, Lin CM, Hamel E. Synthesis and evaluation of analogues of (Z)-l-(4-methoxyphenyl)-2-(3,4,5 trimethoxyphenyl)ethene as potential cytotoxic and anti-mitotic agents. J. Med. Chem. 1992;35:2293–2360. doi: 10.1021/jm00090a021. [DOI] [PubMed] [Google Scholar]
- 65.Pinney KG, Meija MP, Villalobos VM, Rosenquist BE, Pettit GR, Verdier-Pinard P, Hamel E. Synthesis and biological evaluation of aryl azide derivatives of combretastatin A-4 as molecular probes for tubulin. Bioorg. Med. Chem. 2000;8:2417–2425. doi: 10.1016/S0968-0896(00)00176-0. [DOI] [PubMed] [Google Scholar]
- 66.Monk KA, Siles R, Hadimani MB, Mugabe BE, Ackley JF, Studerus SW, Edvardsen K, Trawick ML, Garner CM, Rhodes MR, Pettit GR, Pinney KG. Design, synthesis, and biological evaluation of combretastatin nitrogen-containing derivatives as inhibitors of tubulin assembly and vascular disrupting agents. Bioorg. Med. Chem. 2006;14:3231–3244. doi: 10.1016/j.bmc.2005.12.033. [DOI] [PubMed] [Google Scholar]
- 67.Wang L, Woods KW, Li Q, Barr KJ, McCroskey RW, Hannick SM, Gherke L, Credo RB, Hui YH, Marsh K, Warner R, Lee JY, Zielinski-Mozng N, Frost D, Rosenberg SH, Sham HL. Potent, orally active heterocycle-based combretastatin A-4 analogues: synthesis, structure-activity relationship, pharmacokinetics, and in vivo antitumor activity evaluation. J. Med. Chem. 2002;45:1697–1711. doi: 10.1021/jm010523x. [DOI] [PubMed] [Google Scholar]
- 68.Schobert R, Biersack B, Dietrich A, Effenberger-Neidnicht K, Knauer S, Mueller T. 4-(3-Halo/amino-4,5-dimethoxyphenyl)-5-aryloxazoles and N-methylimidazoles that are cytotoxic against combretastatin A resistant tumor cells and vascular disrupting in a cisplatin resistant germ cell tumor model. J. Med. Chem. 2010;53:6595–6602. doi: 10.1021/jm100345r. [DOI] [PubMed] [Google Scholar]
- 69.Bonezzi K, Taraboletti G, Borsotti P, Bellina F, Rossi R, Giavazzi R. Vascular disrupting activity of tubulin-binding 1,5-diaryl-1H-imidazoles. J. Med. Chem. 2009;52:7906–7910. doi: 10.1021/jm900968s. [DOI] [PubMed] [Google Scholar]
- 70.Ohsumi K, Hatanaka T, Fujita K, Nakagawa R, Fukuda Y, Nihei Y, Suga Y, Morinaga Y, Akiyama Y, Tsuji T. Syntheses and antitumor activity of cis-restricted combretastatins: 5-membered heterocyclic analogues. Bioorg. Med. Chem. Lett. 1998;8:3153–3158. doi: 10.1016/S0960-894X(98)00579-4. [DOI] [PubMed] [Google Scholar]
- 71.Romagnoli R, Baraldi PG, Brancale A, Ricci A, Hamel E, Bortolozzi R, Basso G, Viola G. Convergent synthesis and biological evaluation of 2-amino-4-(3′,4′,5′-trimethoxyphenyl)-5-aryl thiazoles as microtubule targeting agents. J. Med. Chem. 2011;54:5144–5153. doi: 10.1021/jm200392p. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 72.Romagnoli R, Baraldi PG, Salvador MK, Camacho ME, Preti D, Tabrizi MA, Bassetto M, Brancale A, Hamel E, Bortolozzi R, Basso G, Viola G. Synthesis and biological evaluation of 2-substituted-4-(3′,4′,5′-trimethoxyphenyl)-5-aryl thiazoles as anticancer agents. Bioorg. Med. Chem. 2012;20:7083–7094. doi: 10.1016/j.bmc.2012.10.001. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 73.Tron GC, Pagliai F, Sel Grosso E, Genazzani AA, Sorba G. Synthesis and cytotoxic evaluation of combretafurazans. J. Med. Chem. 2005;48:3260–3258. doi: 10.1021/jm049096o. [DOI] [PubMed] [Google Scholar]
- 74.Pirali T, Busacca S, Beltrami L, Imovilli D, Pagliali F, Miglio G, Massarotti A, Verotta L, Tron GC, Sorba G, Genazzani AA. Synthesis and cytotoxic evaluation of combretafurans, potential scaffolds for dual action of antitumoral agents. J. Med. Chem. 2006;49:5372–5376. doi: 10.1021/jm060621o. [DOI] [PubMed] [Google Scholar]
- 75.Theeramunkong S, Caldarelli A, Massarotti A, Aprile S, Caprioglio S, Zaninetti R, Teruggi A, Pirali T, Grosa G, Tron GC. Regioselective Suzuki coupling of dihaloheteroaromatic compounds as a rapid strategy to synthesize potent rigid combretastatin analogues. J. Med. Chem. 2011;54:4977–4986. doi: 10.1021/jm200555r. [DOI] [PubMed] [Google Scholar]
- 76.Zhang W, Yang Q, Wu Y, Wu L, Li W, Qiao F, Bao K, Zhang L. Preparation of 2,3-diarylthiophene derivatives as antitumor agents. 2009. [Google Scholar]
- 77.Qiao F, Zuo D, Shen X, Qi H, Wang H, Zhang W, Wu Y. DAT-230, a novel microtubule inhibitor, exhibits potent anti-tumor activity by inducing G2/M phase arrest, apoptosis in vitro and perfusion decrease in vivo to HT-1080. Cancer Chemother. Pharmacol. 2012;70:259–270. doi: 10.1007/s00280-012-1907-x. [DOI] [PubMed] [Google Scholar]
- 78.Liu T, Dong X, Xue N, Wu R, He Q, Yang B, Hu Y. Synthesis and biological evaluation of 3,4-biaryl-5-aminoisoxazole derivatives. Bioorg. Med. Chem. 2009;17:6279–6285. doi: 10.1016/j.bmc.2009.07.040. [DOI] [PubMed] [Google Scholar]
- 79.Sun C-N, Lin L-G, Yu H-J, Cheng C-Y, Tsai Y-C. Synthesis and cytotoxic activities of 4,5-diarylisoxazoles. Bioorg. Med. Chem. Lett. 2007;17:1078–1081. doi: 10.1016/j.bmcl.2006.11.023. [DOI] [PubMed] [Google Scholar]
- 80.Schobert R, Effenberger-Neidnicht K, Biersack B. Stable combretastatin A-4 analogues with sub-nanomolar efficacy against chemoresistant HT-29 cells. Int. J. Clin. Pharmacol. Ther. 2011;49:71–72. [PubMed] [Google Scholar]
- 81.Biersack B, Effenberger K, Schobert R, Ocker M. Oxazole-bridged combretastatin A analogues with improved anticancer properties. ChemMedChem. 2010;3:420–427. doi: 10.1002/cmdc.200900477. [DOI] [PubMed] [Google Scholar]
- 82.Akselsen OW, Odlo K, Cheng J-J, Maccari G, Botta M, Hansen TV. Synthesis, biological evaluation and molecular modeling of 1,2,3-triazole analogs of combretastatin A-1. Bioorg. Med. Chem. 2012;20:234–242. doi: 10.1016/j.bmc.2011.11.010. [DOI] [PubMed] [Google Scholar]
- 83.Romagnoli R, Baraldi PG, Cruz-Lopez O, Lopez-Cara C, Carrion MD, Brancale A, Hamel E, Chen L, Bortolozzi R, Basso G, Viola G. Synthesis and antitumor activity of 1,5-disubstituted 1,2,4-triazoles as cisrestricted combretastatin analogs. J. Med. Chem. 2010;53:4248–4258. doi: 10.1021/jm100245q. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 84.Odlo K, Hentzen J, Fournier dit Chabert J, Ducki S, Gani OABSM, Sylte I, Skrede M, Flørenes VA, Hansen TV. 1,5-disubstituted 1,2,3-triazoles as cis-restricted analogues of combretastatin A-4: synthesis, molecular modeling and evaluation as cytotoxic agents and inhibitors of tubulin. Bioorg. Med. Chem. 2008;16:4829–4838. doi: 10.1016/j.bmc.2008.03.049. [DOI] [PubMed] [Google Scholar]
- 85.Odlo K, Fournier-Dit-Chabert J, Ducki S, Gani OABSM, Sylte I, Hansen TV. 1,2,3-Triazole analogs of combretastatin A-4 as potential microtubule-binding agents. Bioorg. Med. Chem. 2010;18:6874–6885. doi: 10.1016/j.bmc.2010.07.032. [DOI] [PubMed] [Google Scholar]
- 86.Romagnoli R, Baraldi PG, Salvador MK, Preti D, Tabrizi MD, Brancale A, Fu XH, Li J, Zhang SZ, Hamel E, Bortolozzi R, Basso G, Viola G. Synthesis and evaluation of 1,5-disubstituted tetrazoles as rigid analogues of combretastatin A-4 with potent antiproliferative and antitumor activity. J. Med. Chem. 2012;54:475–488. doi: 10.1021/jm2013979. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 87.Shirai R, Takayama H, Nishikawa A, Koiso Y, Hashimoto Y. Asymetric synthesis of anti-mitotic combretadioxolane with potent antitumor activity against multi-drug resistant cells. Bioorg. Med. Chem. Lett. 1998;8:1997–2000. doi: 10.1016/S0960-894X(98)00344-8. [DOI] [PubMed] [Google Scholar]
- 88.Pettit RK, Pettit GR, Hamel E, Hogan F, Moser BR, Wolf S, Pon S, Chapuis J-C, Schmidt JM. E-combretastatin and E-resveratrol structural modifications: Antimicrobial and cancer cell growth inhibitory β-E-nitrostyrenes. Bioorg. Med. Chem. 2009;17:6606–6612. doi: 10.1016/j.bmc.2009.07.076. [DOI] [PubMed] [Google Scholar]
- 89.Dark GG, Hill SA, Prise VE, Tozer GM, Pettit GR, Chaplin DJ. Combretastatin A-4, an agent that displays potent and selective toxicity toward tumor vasculature. Cancer Res. 1997;57:1829–1834. [PubMed] [Google Scholar]
- 90.Hori K, Saito S, Nihei Y, Suzuki M, Sato Y. Antitumor effects due to irreversible stoppage of tumor tissue blood flow: evaluation of a novel combretastatin A-4 derivative, AC7700. Jpn. J. Cancer Res. 1999;90:1026–1038. doi: 10.1111/j.1349-7006.1999.tb00851.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 91.Sheng Y, Hua J, Pinney KG, Garner CM, Kane RR, Prezioso JA, Chaplin DJ, Edvardsen K. Combretastatin family member OXI4503 induces tumor vascular collapse through the induction of endothelial apoptosis. Int. J. Cancer. 2004;111:604–610. doi: 10.1002/ijc.20297. [DOI] [PubMed] [Google Scholar]
- 92.Clémenson C, Jouannot E, Merino-Trigo A, Rubin-Carrez C, Deutsch E. The vascular disrupting agent ombrabulin (AVE8062) enhances the efficacy of standard therapies in head and neck squamous cell carcinoma xenograft models. Invest. New Drugs. 2013;31:273–284. doi: 10.1007/s10637-012-9852-4. [DOI] [PubMed] [Google Scholar]
- 93.Rajak H, Dewangan PK, Patel V, Jain DK, Singh A, Veerasamy R, Sharma PC, Dixit A. Design of combretastatin A-4 analogs as tubulin targeted vascular disrupting agent with special emphasis on their cisrestricted isomers. Curr. Pharm. Des. 2013;19:1923–1955. doi: 10.2174/1381612811319100013. [DOI] [PubMed] [Google Scholar]
- 94.Brakenhielm E, Cao R, Cao Y. Suppression of angiogenesis, tumor growth and wound healing by resveratrol, a natural compound in red wine and grapes. FASEB J. 2001;15:1798–1800. doi: 10.1096/fj.01-0028fje. [DOI] [PubMed] [Google Scholar]
- 95.Tseng SH, Lin SM, Chen JC, Su YH, Huang HY, Chen CK, Lin PY, Chen Y. Resveratrol suppresses the angiogenesis and tumor growth of gliomas in rats. Clin. Cancer Res. 2004;10:2190–2202. doi: 10.1158/1078-0432.CCR-03-0105. [DOI] [PubMed] [Google Scholar]
- 96.Kundu JK, Surh Y-J. Cancer chemopreventive and therapeutic potential of resveratrol: mechanistic perspectives. Cancer Lett. 2008;269:243–261. doi: 10.1016/j.canlet.2008.03.057. [DOI] [PubMed] [Google Scholar]
- 97.Belleri M, Ribatti D, Nicoli S, Cotelli F, Forti L, Vannini V, Stivala LA, Presta M. Antiangiogenic and vascular-targeting activity of the microtubule-destabilizing trans-resveratrol derivative 3,5,4′-trimethoxystilbene. Mol. Pharmacol. 2005;67:1451–1459. doi: 10.1124/mol.104.009043. [DOI] [PubMed] [Google Scholar]
- 98.Alex D, Leon EC, Zhang Z-J, Yan GTH, Cheng SH, Leong C-W, Li Z-H, Lam K-H, Chan S-W, Lee SM-Y. Resveratrol derivative, trans-3,5,4′-trimethoxystilbene, exerts antiangiogenic and vasculardisrupting effects in zebrafish through the downregulation of VEGFR2 and cell-cycle modulation. J. Cell. Biochem. 2010;109:339–346. doi: 10.1002/jcb.22405. [DOI] [PubMed] [Google Scholar]
- 99.Folkes LK, Christlieb M, Madej E, Stratford MRL, Wardman P. Oxidative metabolism of combretastatin A-1 produces quinone intermediates with the potential to bind to nucleophiles and to enhance oxidative stress via free radicals. Chem. Res. Toxicol. 2007;20:1885–1894. doi: 10.1021/tx7002195. [DOI] [PubMed] [Google Scholar]
- 100.Rice L, Pampo C, Lepler S, Rojiani AM, Siemann DW. Support of a free radical mechanism for enhanced antitumor efficacy of the microtubule disruptor OXi4503. Microvasc. Res. 2011;81:44–51. doi: 10.1016/j.mvr.2010.10.003. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 101.Madlambayan GJ, Meacham AM, Hosaka K, Mir S, Jorgensen M, Scott EW, Siemann DW, Cogle CR. Leukemia regression by vascular disruption and anti-angiogenic therapy. Blood. 2010;116:1539–1547. doi: 10.1182/blood-2009-06-230474. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 102.Peláez R, López JL, Medarde M. Application of chemoinformatic tools for the analysis of virtual screening studies of tubulin inhibitors. Advances in Soft Computing. 2007;44:411–441. doi: 10.1007/978-3-540-74972-1_53. [DOI] [Google Scholar]
- 103.Nguyen TL, McGrath C, Hermone AR, Burnett CJ, Zharevitz DW, Day BW, Wipf P, Hamel E, Gussio R. A common pharmacophore for a diverse set of colchicine site inhibitors using a structure-based approach. J. Med. Chem. 2005;48:6107–6116. doi: 10.1021/jm050502t. [DOI] [PubMed] [Google Scholar]
- 104.Massarotti A, Theeramunkong S, Mesenzani O, Caldarelli A, Genazzani AA, Tron GC. Identification of novel antitubulin agents by using a virtual screening approach based on 7-point pharmacophore model of the tubulin colchicine site. Chem. Biol. Drug Des. 2011;78:913–922. doi: 10.1111/j.1747-0285.2011.01245.x. [DOI] [PubMed] [Google Scholar]
- 105.Kim ND, Park E-S, Kim YH, Moon SK, Lee S S, Ahn SK, Yu D-Y, No KT, Kim K-H. Structure-based virtual screening of novel tubulin inhibitors and their characterization as anti-mitotic agents. Bioorg. Med. Chem. 2010;18:7092–7100. doi: 10.1016/j.bmc.2010.07.072. [DOI] [PubMed] [Google Scholar]
- 106.Massarotti A, Coluccia A, Silvestri R, Sorba G, Brancale A. The tubulin colchicine domain: a molecular modeling perspective. Chem. Med. Chem. 2012;7:33–42. doi: 10.1002/cmdc.201100361. [DOI] [PubMed] [Google Scholar]
- 107.Romagnoli R, Baraldi PG, Carrion MD, Cruz-Lopez O, Cara CL, Tolomeo M, Grimaudo S, Di Cristina A, Pipitone MR, Balzarini J, Kandil S, Brancale A, Srkar T, Hamel E. Synthesis and biological evaluation of 2-amino-3-(3′,4′,5′-trimethoxybenzoyl)-6-substituted-4,5,6,7-tetrahydrothieno[2,3-c]pyridine derivatives as anti-mitotic agents and inhibitors of tubulin polymerization. Bioorg. Med. Chem. Lett. 2008;18:5041–5045. doi: 10.1016/j.bmcl.2008.08.006. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 108.Ruan B-F, Lu X, Tang J-F, Wei Y, Wang X-L, Zhang Y-B, Wang L-S, Zhu H-L. Synthesis, biological evaluation, and molecular docking studies of resveratrol derivatives possessing chalcone moiety as potential antitubulin agents. Bioorg. Med. Chem. 2011;19:2688–2695. doi: 10.1016/j.bmc.2011.03.001. [DOI] [PubMed] [Google Scholar]
- 109.Kim S, Min SY, Lee SK, Cho W-J. Comparative molecular field analysis study of stilbene derivatives active against A549 lung carcinoma. Chem. Pharm. Bull. 2003;51:516–521. doi: 10.1248/cpb.51.516. [DOI] [PubMed] [Google Scholar]
- 110.Chiang YK, Kuo CC, Wu YS, Chen CT, Coumar MS, Wu JS, Hsieh HP, Chang CY, Jseng HY, Wu MH, Leou JS, Song JS, Chang JY, Lyu PC, Chao YS, Wu SY. Generation of ligandbased pharmacophore model and virtual screening for identification of tubulin inhibitors with potent anticancer activity. J. Med. Chem. 2009;52:4221–4233. doi: 10.1021/jm801649y. [DOI] [PubMed] [Google Scholar]
- 111.Tseng CY, Mane JY, Winter P, Johnson L, Huzil T, Izbicka E, Luduena RF, Tuszynski JA. Quantitative analysis of the effect of tubulin isotype expression on sensitivity of cancer cell lines to a set of novel colchicine derivatives. Mol. Cancer. 2010;30:131–150. doi: 10.1186/1476-4598-9-131. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 112.Tuszynski JA, Craddock TJ, Mane JY, Barakat K, Tseng CY, Gajewski M, Winter P, Alisaraie L, Patterson J, Carpenter E, Wang W, Deyholos MK, Li L, Sun X, Zhang Y, Wong GK. Modeling the yew tree tubulin and a comparison of its interaction with Paclitaxel to human tubulin. Pharm. Res. 2012;29:3007–3021. doi: 10.1007/s11095-012-0829-y. [DOI] [PubMed] [Google Scholar]