Skip to main content
Cellular & Molecular Biology Letters logoLink to Cellular & Molecular Biology Letters
. 2008 Apr 10;13(2):260. doi: 10.2478/s11658-007-0054-6

Increased pressure stimulates aberrant dendritic cell maturation

David H Craig 1,4, Keri L Schaubert 4, Hiroe Shiratsuchi 1, June Kan-Mitchell 4, Marc D Basson 1,2,3,4,
PMCID: PMC6275900  PMID: 18161009

Abstract

Patients with malignancy typically exhibit abnormal dendritic cell profiles. Interstitial tumor pressure is increased 20-50mmHg over that in normal tissue. We hypothesized that elevated pressure in the tumor microenvironment may influence dendritic cell (DC) phenotype and function. Monocyte-derived immature and mature DC isolated from healthy human donors were exposed to either ambient or 40 mmHg increased pressure at 37°C for 12 hours, then assessed for expression of CD80, CD86, CD83, CD40, MHC-I and MHC-II. IL-12 production and phagocytosis of CFSE-labeled tumor lysate were assessed in parallel. Elevated pressure significantly increased expression of all co-stimulatory and MHC molecules on mature DC. Immature DC significantly increased expression of CD80, CD86, CD83 and MHC-II, but not MHC-I and CD40, versus ambient pressure controls. Pressure-treated immature DC phenotypically resembled mature DC controls, but produced low IL-12. Phenotypic maturation correlated with decreased phagocytic capacity. These results suggest increased extracellular pressure may cause aberrant DC maturation and impair tumor immunosurveillance.

Key words: Pressure, Dendritic cell, Maturation, Cancer, Immunosurveillance

Full Text

The Full Text of this article is available as a PDF (432.7 KB).

Abbreviations used

DC

dendritic cell

GM-CSF

granulocyte-macrophage colonystimulating factor

IL-4

interleukin-4

IL-12

interleukin-12

LPS

lipopolysaccharide

MHC

major histocompatibility complex

References

  • 1.de Visser K.E., Eichten A., Coussens L.M. Paradoxical roles of the immune system during cancer development. Nat. Rev. Cancer. 2006;6:24–37. doi: 10.1038/nrc1782. [DOI] [PubMed] [Google Scholar]
  • 2.Gabrilovich D. Mechanisms and functional significance of tumour-induced dendritic-cell defects. Nat. Rev. Immunol. 2004;4:941–952. doi: 10.1038/nri1498. [DOI] [PubMed] [Google Scholar]
  • 3.Banchereau J., Steinman R.M. Dendritic cells and the control of immunity. Nature. 1998;392:245–252. doi: 10.1038/32588. [DOI] [PubMed] [Google Scholar]
  • 4.Satthaporn S., Robins A., Vassanasiri W., El-Sheemy M., Jibril J.A., Clark D., Valerio D., Eremin O. Dendritic cells are dysfunctional in patients with operable breast cancer. Cancer Immunol. Immunother. 2004;53:510–518. doi: 10.1007/s00262-003-0485-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 5.Garrity T., Pandit R., Wright M.A., Benefield J., Keni S., Young M.R. Increased presence of CD34+ cells in the peripheral blood of head and neck cancer patients and their differentiation into dendritic cells. Int. J. Cancer. 1997;73:663–669. doi: 10.1002/(SICI)1097-0215(19971127)73:5<663::AID-IJC9>3.0.CO;2-V. [DOI] [PubMed] [Google Scholar]
  • 6.Schwaab T., Schned A.R., Heaney J.A., Cole B.F., Atzpodien J., Wittke F., Ernstoff M.S. In vivo description of dendritic cells in human renal cell carcinoma. J. Urol. 1999;162:567–573. doi: 10.1016/S0022-5347(05)68628-4. [DOI] [PubMed] [Google Scholar]
  • 7.Avigan D. Dendritic cells: development, function and potential use for cancer immunotherapy. Blood Rev. 1999;13:51–64. doi: 10.1016/S0268-960X(99)90023-1. [DOI] [PubMed] [Google Scholar]
  • 8.Steinman R.M. The dendritic cell system and its role in immunogenicity. Annu. Rev. Immunol. 1991;9:271–296. doi: 10.1146/annurev.iy.09.040191.001415. [DOI] [PubMed] [Google Scholar]
  • 9.Schott M. Immunesurveillance by dendritic cells: potential implication for immunotherapy of endocrine cancers. Endocr. Relat. Cancer. 2006;13:779–795. doi: 10.1677/erc.1.01133. [DOI] [PubMed] [Google Scholar]
  • 10.Mihalyo M.A., Hagymasi A.T., Slaiby A.M., Nevius E.E., Adler A.J. Dendritic cells program non-immunogenic prostate-specific T cell responses beginning at early stages of prostate tumorigenesis. Prostate. 2007;67:536–546. doi: 10.1002/pros.20549. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 11.Li H.S., Verginis P., Carayanniotis G. Maturation of dendritic cells by necrotic thyrocytes facilitates induction of experimental autoimmune thyroiditis. Clin. Exp. Immunol. 2006;144:467–474. doi: 10.1111/j.1365-2249.2006.03080.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12.Rutella S., Danese S., Leone G. Tolerogenic dendritic cells: cytokine modulation comes of age. Blood. 2006;108:1435–1440. doi: 10.1182/blood-2006-03-006403. [DOI] [PubMed] [Google Scholar]
  • 13.Boucher Y., Jain R.K. Microvascular pressure is the principal driving force for interstitial hypertension in solid tumors: implications for vascular collapse. Cancer Res. 1992;52:5110–5114. [PubMed] [Google Scholar]
  • 14.Gutmann R., Leunig M., Feyh J., Goetz A.E., Messmer K., Kastenbauer E., Jain R.K. Interstitial hypertension in head and neck tumors in patients: correlation with tumor size. Cancer Res. 1992;52:1993–1995. [PubMed] [Google Scholar]
  • 15.Less J.R., Posner M.C., Boucher Y., Borochovitz D., Wolmark N., Jain R.K. Interstitial hypertension in human breast and colorectal tumors. Cancer Res. 1992;52:6371–6374. [PubMed] [Google Scholar]
  • 16.Nathan S.S., DiResta G.R., Casas-Ganem J.E., Hoang B.H., Sowers R., Yang R., Huvos A.G., Gorlick R., Healey J.H. Elevated physiologic tumor pressure promotes proliferation and chemosensitivity in human osteosarcoma. Clin. Cancer Res. 2005;11:2389–2397. doi: 10.1158/1078-0432.CCR-04-2048. [DOI] [PubMed] [Google Scholar]
  • 17.Shiratsuchi H., Basson M.D. Extracellular pressure stimulates macrophage phagocytosis by inhibiting a pathway involving FAK and ERK. Am. J. Physiol. Cell Physiol. 2004;286:C1358–1366. doi: 10.1152/ajpcell.00553.2003. [DOI] [PubMed] [Google Scholar]
  • 18.Hellman P., Eriksson H. Early activation markers of human peripheral dendritic cells. Hum. Immunol. 2007;68:324–333. doi: 10.1016/j.humimm.2007.01.018. [DOI] [PubMed] [Google Scholar]
  • 19.O’Doherty U., Peng M., Gezelter S., Swiggard W.J., Betjes M., Bhardwaj N., Steinman R.M. Human blood contains two subsets of dendritic cells, one immunologically mature and the other immature. Immunology. 1994;82:487–493. [PMC free article] [PubMed] [Google Scholar]
  • 20.Basson M.D., Yu C.F., Herden-Kirchoff O., Ellermeier M., Sanders M.A., Merrell R.C., Sumpio B.E. Effects of increased ambient pressure on colon cancer cell adhesion. J. Cell Biochem. 2000;78:47–61. doi: 10.1002/(SICI)1097-4644(20000701)78:1<47::AID-JCB5>3.0.CO;2-M. [DOI] [PubMed] [Google Scholar]
  • 21.Walsh M.F., Woo R.K., Gomez R., Basson M.D. Extracellular pressure stimulates colon cancer cell proliferation via a mechanism requiring PKC and tyrosine kinase signals. Cell Prolif. 2004;37:427–441. doi: 10.1111/j.1365-2184.2004.00324.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 22.Blander J.M. Signalling and phagocytosis in the orchestration of host defence. Cell Microbiol. 2007;9:290–299. doi: 10.1111/j.1462-5822.2006.00864.x. [DOI] [PubMed] [Google Scholar]
  • 23.Reis e Sousa C., Stahl P.D., Austyn J.M. Phagocytosis of antigens by Langerhans cells in vitro. J. Exp. Med. 1993;178:509–519. doi: 10.1084/jem.178.2.509. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 24.Tsujitani S., Kakeji Y., Watanabe A., Kohnoe S., Maehara Y., Sugimachi K. Infiltration of dendritic cells in relation to tumor invasion and lymph node metastasis in human gastric cancer. Cancer. 1990;66:2012–2016. doi: 10.1002/1097-0142(19901101)66:9<2012::AID-CNCR2820660928>3.0.CO;2-N. [DOI] [PubMed] [Google Scholar]
  • 25.Scarpino S., Stoppacciaro A., Ballerini F., Marchesi M., Prat M., Stella M.C., Sozzani S., Allavena P., Mantovani A., Ruco L.P. Papillary carcinoma of the thyroid: hepatocyte growth factor (HGF) stimulates tumor cells to release chemokines active in recruiting dendritic cells. Am. J. Pathol. 2000;156:831–837. doi: 10.1016/S0002-9440(10)64951-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 26.Lespagnard L., Gancberg D., Rouas G., Leclercq G., de Saint-Aubain Somerhausen N., Di Leo A., Piccart M., Verhest A., Larsimont D. Tumor-infiltrating dendritic cells in adenocarcinomas of the breast: a study of 143 neoplasms with a correlation to usual prognostic factors and to clinical outcome. Int. J. Cancer. 1999;84:309–314. doi: 10.1002/(SICI)1097-0215(19990621)84:3<309::AID-IJC19>3.0.CO;2-3. [DOI] [PubMed] [Google Scholar]
  • 27.Tong A.W., Stone M.J. Prospects for CD40-directed experimental therapy of human cancer. Cancer Gene Ther. 2003;10:1–13. doi: 10.1038/sj.cgt.7700527. [DOI] [PubMed] [Google Scholar]
  • 28.Pirtskhalaishvili G., Shurin G.V., Esche C., Cai Q., Salup R.R., Bykovskaia S.N., Lotze M.T., Shurin M.R. Cytokine-mediated protection of human dendritic cells from prostate cancer-induced apoptosis is regulated by the Bcl-2 family of proteins. Br. J. Cancer. 2000;83:506–513. doi: 10.1054/bjoc.2000.1289. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 29.Cella M., Scheidegger D., Palmer-Lehmann K., Lane P., Lanzavecchia A., Alber G. Ligation of CD40 on dendritic cells triggers production of high levels of interleukin-12 and enhances T cell stimulatory capacity: T-T help via APC activation. J. Exp. Med. 1996;184:747–752. doi: 10.1084/jem.184.2.747. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 30.Saito Y., Yanagawa Y., Kikuchi K., Iijima N., Iwabuchi K., Onoe K. Low-dose lipopolysaccharide modifies the production of IL-12 by dendritic cells in response to various cytokines. J. Clin. Exp. Hematop. 2006;46:31–36. doi: 10.3960/jslrt.46.31. [DOI] [PubMed] [Google Scholar]
  • 31.Karni A., Abraham M., Monsonego A., Cai G., Freeman G.J., Hafler D., Khoury S.J., Weiner H.L. Innate immunity in multiple sclerosis: myeloid dendritic cells in secondary progressive multiple sclerosis are activated and drive a proinflammatory immune response. J. Immunol. 2006;177:4196–4202. doi: 10.4049/jimmunol.177.6.4196. [DOI] [PubMed] [Google Scholar]
  • 32.Schmidt C., Giese T., Ludwig B., Mueller-Molaian I., Marth T., Zeuzem S., Meuer S.C., Stallmach A. Expression of interleukin-12-related cytokine transcripts in inflammatory bowel disease: elevated interleukin-23p19 and interleukin-27p28 in Crohn’s disease but not in ulcerative colitis. Inflamm. Bowel Dis. 2005;11:16–23. doi: 10.1097/00054725-200501000-00003. [DOI] [PubMed] [Google Scholar]
  • 33.Saito H., Tsujitani S., Ikeguchi M., Maeta M., Kaibara N. Relationship between the expression of vascular endothelial growth factor and the density of dendritic cells in gastric adenocarcinoma tissue. Br. J. Cancer. 1998;78:1573–1577. doi: 10.1038/bjc.1998.725. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 34.Della Bella S., Gennaro M., Vaccari M., Ferraris C., Nicola S., Riva A., Clerici M., Greco M., Villa M.L. Altered maturation of peripheral blood dendritic cells in patients with breast cancer. Br. J. Cancer. 2003;89:1463–1472. doi: 10.1038/sj.bjc.6601243. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 35.Menetrier-Caux C., Montmain G., Dieu M.C., Bain C., Favrot M.C., Caux C., Blay J.Y. Inhibition of the differentiation of dendritic cells from CD34(+) progenitors by tumor cells: role of interleukin-6 and macrophage colony-stimulating factor. Blood. 1998;92:4778–4791. [PubMed] [Google Scholar]
  • 36.Ratta M., Fagnoni F., Curti A., Vescovini R., Sansoni P., Oliviero B., Fogli M., Ferri E., Della Cuna G.R., Tura S., Baccarani M., Lemoli R.M. Dendritic cells are functionally defective in multiple myeloma: the role of interleukin-6. Blood. 2002;100:230–237. doi: 10.1182/blood.V100.1.230. [DOI] [PubMed] [Google Scholar]

Articles from Cellular & Molecular Biology Letters are provided here courtesy of BMC

RESOURCES