Skip to main content
Cellular & Molecular Biology Letters logoLink to Cellular & Molecular Biology Letters
. 2013 Mar 20;18(2):231–248. doi: 10.2478/s11658-013-0086-z

Development of a new wheat microarray from a durum wheat totipotent cDNA library used for a powdery mildew resistance study

Rosa Anna Cifarelli 186, Olimpia D’Onofrio 186, Rosalba Grillo 186, Teresa Mango 186, Francesco Cellini 186, Luciana Piarulli 286, Rosanna Simeone 286, Angelica Giancaspro 286, Pasqualina Colasuonno 286, Antonio Blanco 286, Agata Gadaleta 286,
PMCID: PMC6275905  PMID: 23515937

Abstract

Totipotent cDNA libraries representative of all the potentially expressed sequences in a genome would be of great benefit to gene expression studies. Here, we report on an innovative method for creating such a library for durum wheat (Triticum turgidum L. var. durum) and its application for gene discovery. The use of suitable quantities of 5-azacytidine during the germination phase induced the demethylation of total DNA, and the resulting seedlings potentially express all of the genes present in the genome. A new wheat microarray consisting of 4925 unigenes was developed from the totipotent cDNA library and used to screen for genes that may contribute to differences in the disease resistance of two near-isogenic lines, the durum wheat cultivar Latino and the line 5BIL-42, which are respectively susceptible and resistant to powdery mildew. Fluorescently labeled cDNA was prepared from the RNA of seedlings of the two near-isogenic wheat lines after infection with a single powdery mildew isolate under controlled conditions in the greenhouse. Hybridization to the microarray identified six genes that were differently expressed in the two lines. Four of the sequences could be assigned putative functions based on their similarity to known genes in public databases. Physical mapping of the six genes localized them to two regions of the genome: the centromeric region of chromosome 5B, where the Pm36 resistance gene was previously localized, and chromosome 6B.

Key words: 5-Azacytidine, DNA methylation, Powdery mildew, Microarray, Durum wheat, Near-isogenic line, Candidate gene, Quantitative real-time PCR, Physical mapping, Pm36 gene, Expressed sequence tag

Full Text

The Full Text of this article is available as a PDF (1.1 MB).

Abbreviations used

5-AzaC

5-azacytidine

BAC

bacterial artificial chromosome

EST

expressed sequence tags

GST

glutathione s-transferase

HSP90

heat shock protein

NIL

near-isogenic line

References

  • 1.Snape J, Moore G. Reflections and opportunities: gene discovery in the complex wheat genome. Dev. Plant Breed. 2007;12:677–684. [Google Scholar]
  • 2.Cifarelli R, D’Onofrio O, Lauria G, Gallitelli M, Cellini F. A collection of expressed sequence tags (ESTs) from “totipotent” cDNA of durum wheat. Minerva Biotech. 2006;18:159–164. [Google Scholar]
  • 3.Sorm F, Pískala A, Cihák A, Veselý J. 5-Azacytidine, a new, highly effective cancerostatic. Experientia. 1964;20:202–203. doi: 10.1007/BF02135399. [DOI] [PubMed] [Google Scholar]
  • 4.Halle S. 5-Azacytidine as a mutagen for arboviruses. J. Virol. 1968;2:1228–1229. doi: 10.1128/jvi.2.10.1228-1229.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 5.Karon M, Benedict WF. Chromatid breakage: differential effect of inhibitors of DNA synthesis during G2 phase. Science. 1972;178:56–62. doi: 10.1126/science.178.4056.62. [DOI] [PubMed] [Google Scholar]
  • 6.Viegas-Péquignot E, Dutrillaux B. Segmentation of human chromosomes induced by 5-ACR (5-azacytidine) Hum. Genet. 1976;34:247–254. doi: 10.1007/BF00295287. [DOI] [PubMed] [Google Scholar]
  • 7.Landolph JR, Jones PA. Mutagenicity of 5-azacytidine and related nucleosides in C3H/10T 1/2 clone 8 and V79 cells. Cancer Res. 1982;42:817–823. [PubMed] [Google Scholar]
  • 8.Paul P. Mutagenesis and transformation of C3H/10T1/2 mouse embryo fibroblasts with ultraviolet light and 5-azacytidine. Kobe J. Med. Sci. 1982;28:181–196. [PubMed] [Google Scholar]
  • 9.Vesely J, Cihak A. 5-Azacytidine: mechanism of action and biological effects in mammalian cells. Pharmacol. Ther. 1978;2:813–840. [Google Scholar]
  • 10.Lu LJ, Randerath K. Mechanism of 5-azacytidine-induced transfer RNA cytosine-5-methyltransferase deficiency. Cancer Res. 1980;40:2701–2705. [PubMed] [Google Scholar]
  • 11.Lee TT, Karon MR. Inhibition of protein synthesis in 5-azacytidinetreated HeLa cells. Biochem. Pharmacol. 1976;25:1737–1742. doi: 10.1016/0006-2952(76)90407-x. [DOI] [PubMed] [Google Scholar]
  • 12.http://v3.espacenet.com/publicationDetails/biblioCC=WO&NR=2005003344&KC=&FT=).
  • 13.Gadaleta A, Mastrangelo M, Russo MA, Giove SL, D’Onofrio O, Mango T, Cellini F, Blanco A, Cattivelli L, Cifarelli RA. Development and characterization of EST-derived SSRs from a “totipotent” cDNA library of durum wheat. Plant Breed. 2010;129:715–717. [Google Scholar]
  • 14.Blanco A, Gadaleta A, Cenci A, Carluccio AV, Abdelbacki AMM, Simeone R. Molecular mapping of the novel powdery mildew resistance gene Pm36 introgressed from Triticum turgidum var. dicoccoides in durum wheat. Theor. Appl. Genet. 2008;117:135–142. doi: 10.1007/s00122-008-0760-0. [DOI] [PubMed] [Google Scholar]
  • 15.McIntosh RA, Dubcovsky J, Rogers WJ, Morris C, Appels R, Xia XC. Proceedings of the 11th International Wheat Genetics Symposium, Brisbane Qld, Australia. 2010. Catalogue of gene symbols for wheat: 2009 supplement. [Google Scholar]
  • 16.Paolacci AR, Tanzarella OA, Porceddu E, Ciaffi M. Identification and validation of reference genes for quantitative RT-PCR normalization in wheat. BMC Mol. Biol. 2009;10:11. doi: 10.1186/1471-2199-10-11. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 17.Sears ER. The aneuploids of common wheat. Mob Hill Agricultural Exp. Stat. Res. Bulletin. 1954;572:1–58. [Google Scholar]
  • 18.Sears ER. Nullisomic-tetrasomic combinations in hexaploid wheat. In: Riley R, Lewis KR, editors. Chrom. Manip. and Plant Gen. Edinburgh: Oliver and Boyd; 1966. pp. 29–45. [Google Scholar]
  • 19.Sears ER, Sears LMS. The telocentric chromosomes of common wheat. In: Ramanujam S, editor. Proceedings of the 5th international wheat genetics symposium. Indian Society of Genetics and Plant Breeding New Delhi. 1978. pp. 389–407. [Google Scholar]
  • 20.Joppa LR, Williams ND. The Langdon durum disomic-substitutions and aneuploid analysis in tetraploid wheat. Genome. 1988;30:222–228. [Google Scholar]
  • 21.Endo TR, Gill BS. The deletion stocks of common wheat. J. Hered. 1996;87:295–307. [Google Scholar]
  • 22.Qi LL, Echalier B, Friebe B, Gill B. Molecular characterization of a set of wheat deletion stocks for use in chromosome bin mapping of ESTs. Funct. Integr. Genomics. 2003;3:39–55. doi: 10.1007/s10142-002-0063-5. [DOI] [PubMed] [Google Scholar]
  • 23.Schena M, Shalon D, Davis RW, Brown PO. Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science. 1995;270:467–470. doi: 10.1126/science.270.5235.467. [DOI] [PubMed] [Google Scholar]
  • 24.Gregersen PK, Kowalsky E, de Andrade M, Jawaheer D. Affected sib pair analysis of families with absolute pitch (AP): Exclusion of the Williams locus. Am. J. Hum. Genet. 1997;61:2337–2349. [Google Scholar]
  • 25.Ellingboe AH. Genetics and physiology of primary infection by Erysiphe graminis f.sp. hordei. Phytopathology. 1972;62:401–406. [Google Scholar]
  • 26.Kunoh H. Primary germ tubes of Erysiphe graminis conidia. In: Asada Y, Bushnell WR, Ouchi S, Vance CP, editors. Plant Infection: The Physiological and Biochemical Basis. Tokyo: Japan Scientific Society Press; 1982. pp. 45–59. [Google Scholar]
  • 27.Jorgensen JH. Genetic analysis of barley mutants with modifications of powdery mildew resistance gene Ml-a12. Genome. 1988;30:129–132. [Google Scholar]
  • 28.Clark TA, Zeyen RJ, Smith AG, Bushnell WR, Szabo LJ, Vance CP. Host response gene transcript accumulation in relation to visible cytological events during Erysiphe graminis attack in isogenic barley lines differing at the Ml-a locus. Physiol. Mol. Plant Pathol. 1993;43:283–298. [Google Scholar]
  • 29.Schenk PM, Kazan K, Wilson I, Anderson JP, Richmond T, Somerville SC, Manners JM. Coordinated plant defense responses in Arabidopsis revealed by microarray analysis. Proc. Natl. Acad. Sci. U.S.A. 2000;97:11655–11660. doi: 10.1073/pnas.97.21.11655. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 30.Mysore KS, Crasta OR, Tuori RP, Folkerts O, Swirsky PB, Martin GB. Comprehensive transcript profiling of Ptoand Prf-mediated host defence responses to infection by Pseudomonas syringae pv. tomato. Plant J. 2002;32:299–315. doi: 10.1046/j.1365-313x.2002.01424.x. [DOI] [PubMed] [Google Scholar]
  • 31.Wan J, Dunning FM, Bent AF. Probing plant-pathogen interactions and downstream defense signaling using DNA microarrays. Funct. Integr. Genomics. 2002;2:259–273. doi: 10.1007/s10142-002-0080-4. [DOI] [PubMed] [Google Scholar]
  • 32.Puthoff DP, Nettleton D, Rodermel SR, Baum TJ. Arabidopsis gene expression changes during cyst nematode parasitism revealed by statistical analyses of microarray expression profiles. Plant J. 2003;33:911–921. doi: 10.1046/j.1365-313x.2003.01677.x. [DOI] [PubMed] [Google Scholar]
  • 33.Tao Y, Xie Z, Chen W, Glazebrook J, Chang HS, Han B, Zhu T, Zou G, Katagiri F. Quantitative nature of Arabidopsis responses during compatible and incompatible interactions with the bacterial pathogen Pseudomonas syringae. Plant Cell. 2003;15:317–330. doi: 10.1105/tpc.007591. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 34.Van Wees SC, Chang HS, Zhu T, Glazebrook J. Characterization of the early response of Arabidopsis to Alternaria brassicicola infection using expression profiling. Plant Physiol. 2003;132:606–617. doi: 10.1104/pp.103.022186. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 35.Whitham SA, Quan S, Chang HS, Cooper B, Estes B, Zhu T, Wang X, Hou YM. Diverse RNA viruses elicit the expression of common sets of genes in susceptible Arabidopsis thaliana plants. Plant J. 2003;33:271–283. doi: 10.1046/j.1365-313x.2003.01625.x. [DOI] [PubMed] [Google Scholar]
  • 36.Eulgem T, Weigman VJ, Chang HS, McDowell JM, Holub EB, Glazebrook J, Zhu T, Dangl J. Gene expression signatures from three genetically separable resistance gene signaling pathways for downy mildew resistance. Plant Physiol. 2004;135:1129–1144. doi: 10.1104/pp.104.040444. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 37.Hayes JD, Pulford DJ. The glutathione S-transferase supergene family: regulation of GST and the contribution of the isoenzymes to cancer chemoprotection and drug resistance. Crit. Rev. Bioch. Mol. Biol. 1995;30:445–600. doi: 10.3109/10409239509083491. [DOI] [PubMed] [Google Scholar]
  • 38.Nebert DW, Vasiliou V. Analysis of the glutathione S-transferase (GST) gene family. Hum. Genomics. 2004;1:460–464. doi: 10.1186/1479-7364-1-6-460. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 39.van Montfort BA, Schuurman-Wolters GK, Wind J, Broos J, Robillard GT, Pollman B. Mapping of the dimer interface of the Escherichia coli mannitol permease by cysteine cross-linking. J. Biol. Chem. 2002;277:14717–14723. doi: 10.1074/jbc.M201533200. [DOI] [PubMed] [Google Scholar]
  • 40.Lu R, Malcuit I, Moffett P, Ruiz MT, Peart J, Wu AJ, Rathjen JP, Bendahmane A, Day L, Baulcombe DC. High throughput virusinduced gene silencing implicates heat shock protein 90 in plant disease resistance. EMBO J. 2003;22:5690–5699. doi: 10.1093/emboj/cdg546. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 41.Wang JR, Yan ZH, Wei YM, Zheng YL. A novel high-molecularweight glutenin subunit gene Ee1.5 from Elytrigia elongate (Host) Nevski. J. Cereal Sci. 2004;40:289–294. [Google Scholar]
  • 42.Hubert DA, Tornero P, Belkhadir Y, Krishna P, Takahashi A, Shirasu K, Dang JL. Plant biology cytosolic HSP90 associates with and modulates the Arabidopsis RPM1 disease resistance protein. EMBO J. 2003;22:5679–5689. doi: 10.1093/emboj/cdg547. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 43.Wang GF, Wei X, Fan R, Zhou H, Wang X, Yu C, Dong L, Dong Z, Wang X, Kang Z, Ling H, Shen QH, Wang D, Zhang X. Molecular analysis of common wheat genes encoding three types of cytosolic heat shock protein 90 (Hsp90): functional involvement of cytosolic Hsp90s in the control of wheat seedling growth and disease resistance. New Phytol. 2011;191:418–431. doi: 10.1111/j.1469-8137.2011.03715.x. [DOI] [PubMed] [Google Scholar]
  • 44.Golkari S, Gilbert J, Prashar S, Procunier JD. Microarray analysis of Fusarium graminearum-induced wheat genes: identification of organspecific and differentially expressed genes. Plant Biotechnol. J. 2007;5:38–49. doi: 10.1111/j.1467-7652.2006.00213.x. [DOI] [PubMed] [Google Scholar]
  • 45.Alves MS, Reis PAB, Dadalto SP, Faria JAQA, Fontes EP, Fietto LG. A novel transcription factor, ERD15 (Early Responsive to Dehydration 15), connects endoplasmic reticulum stress with an osmotic stress-induced cell death signal. J. Biol. Chem. 2011;286:20020–20030. doi: 10.1074/jbc.M111.233494. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 46.Malhotra JD, Kaufman RJ. The endoplasmic reticulum and the unfolded protein response. Semin. Cell. Dev. Biol. 2007;18:716–731. doi: 10.1016/j.semcdb.2007.09.003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 47.Urade R. The endoplasmic reticulum stress signaling pathways in plants. Biofactors. 2009;35:326–331. doi: 10.1002/biof.45. [DOI] [PubMed] [Google Scholar]
  • 48.Giorio G, Stigliani AL, D’Ambrosio C. Agronomic performance and transcriptional analysis of carotenoid biosynthesis in fruits of transgenic HighCaro and control tomato lines under field conditions. Transgenic Res. 2007;16:15–28. doi: 10.1007/s11248-006-9025-3. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Cellular & Molecular Biology Letters are provided here courtesy of BMC

RESOURCES