Skip to main content
Cellular & Molecular Biology Letters logoLink to Cellular & Molecular Biology Letters
. 2008 Oct 10;14(1):113. doi: 10.2478/s11658-008-0037-2

Doxorubicin-transferrin conjugate selectively overcomes multidrug resistance in leukaemia cells

Dorota Łubgan 1,, Zofia Jóźwiak 2, Gerhard G Grabenbauer 1, Luitpold V R Distel 1
PMCID: PMC6275917  PMID: 18850074

Abstract

Neoplastic cells frequently have an increased number of transferrin receptors. Coupling transferrin to an anti-neoplastic drug has the potential to overcome multidrug resistance (MDR). The purpose of this study was to examine the distribution and action of doxorubicin-transferrin conjugate (DOXTRF) in a leukaemia cell line (HL60), a multidrug-resistant leukaemia cell line (HL60ADR) and a normal tissue cell line (human fibroblasts). The intracellular accumulation of DOX and DOX-TRF was monitored by direct fluorescence. More DOX-TRF than free DOX was delivered to the tumour cells, and consecutively the levels of DNA double-strand breaks and apoptosis increased even in the multidrug-resistant cell line. In the normal tissue cell line, DOX-TRF did not accumulate, and therefore, the levels of DNA double-strand breaks and apoptosis did not increase. Cell viability was determined using the MTT assay. The IC50 for DOX-TRF was lower than the IC50 value for the free drug in both leukaemia cell lines. The IC50 values for the HL60 cells were 0.08 μM for DOX and 0.02 μM for DOX-TRF. The IC50 values for HL60ADR cells were 7 μM for DOX and 0.035 μM for DOX-TRF. In conclusion, DOX-TRF was able to overcome MDR in the leukaemia cell lines while having only a very limited effect on normal tissue cells.

Key words: Doxorubicin-transferrin, Promyelocytic leukaemia, Apoptosis, DNA double-strand breaks, Multidrug resistance

Full Text

The Full Text of this article is available as a PDF (961.9 KB).

Abbreviations used

DOX

doxorubicin

DOX-TRF

doxorubicin-transferrin conjugate

MDR

multidrug resistance

MTT

3-(4,5-Dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide

SD

standard deviation

SDS

sodium dodecyl sulfate

References

  • 1.Gewirtz D.A. A critical evaluation of the mechanisms of action proposed for the antitumor effects of the anthracycline antibiotics adriamycin and daunorubicin. Biochem. Pharmacol. 1999;57:727–741. doi: 10.1016/S0006-2952(98)00307-4. [DOI] [PubMed] [Google Scholar]
  • 2.Singal P.K., Iliskovic N., Li T., Kumar D. Adriamycin cardiomyopathy: pathophysiology and prevention. FASEB J. 1997;11:931–936. doi: 10.1096/fasebj.11.12.9337145. [DOI] [PubMed] [Google Scholar]
  • 3.Lage H. ABC-transporters: implications on drug resistance from microorganisms to human cancers. Int. J. Antimicrob. Agents. 2003;22:188–199. doi: 10.1016/S0924-8579(03)00203-6. [DOI] [PubMed] [Google Scholar]
  • 4.Li H., Qian Z.M. Transferrin/transferrin receptor-mediated drug delivery. Med. Res. Rev. 2002;22:225–250. doi: 10.1002/med.10008. [DOI] [PubMed] [Google Scholar]
  • 5.Hatano T., Ohkawa K., Matsuda M. Cytotoxic effect of the proteindoxorubicin conjugates on the multidrug-resistant human myelogenous leukemia cell line, K562, in vitro. Tumour Biol. 1993;14:288–294. doi: 10.1159/000217841. [DOI] [PubMed] [Google Scholar]
  • 6.Kratz F., Beyer U., Roth T., Tarasova N., Collery P., Lechenault F., Cazabat A., Schumacher P., Unger C., Falken U. Transferrin conjugates of doxorubicin: synthesis, characterization, cellular uptake, and in vitro efficacy. J. Pharm. Sci. 1998;87:338–346. doi: 10.1021/js970246a. [DOI] [PubMed] [Google Scholar]
  • 7.Daniels T.R., Delgado T., Rodriguez J.A., Helguera G., Penichet M.L. The transferrin receptor part I: Biology and targeting with cytotoxic antibodies for the treatment of cancer. Clin. Immunol. 2006;121:144–158. doi: 10.1016/j.clim.2006.06.010. [DOI] [PubMed] [Google Scholar]
  • 8.Singh M. Transferrin as a targeting ligand for liposomes and anticancer drugs. Curr. Pharm. Des. 1999;5:443–451. [PubMed] [Google Scholar]
  • 9.Wang F., Jiang X., Yang D.C., Elliott R.L., Head J.F. Doxorubicingallium-transferrin conjugate overcomes multidrug resistance: evidence for drug accumulation in the nucleus of drug resistant MCF-7/ADR cells. Anticancer Res. 2000;20:799–808. [PubMed] [Google Scholar]
  • 10.Singh M., Atwal H., Micetich R. Transferrin directed delivery of adriamycin to human cells. Anticancer Res. 1998;18:1423–1427. [PubMed] [Google Scholar]
  • 11.Berczi A., Barabas K., Sizensky J.A., Faulk W.P. Adriamycin conjugates of human transferrin bind transferrin receptors and kill K562 and HL60 cells. Arch. Biochem. Biophys. 1993;300:356–363. doi: 10.1006/abbi.1993.1048. [DOI] [PubMed] [Google Scholar]
  • 12.Sun I.L., Sun E.E., Crane F.L., Morre D.J., Faulk W.P. Inhibition of transplasma membrane electron transport by transferrin-adriamycin conjugates. Biochim. Biophys. Acta. 1992;1105:84–88. doi: 10.1016/0005-2736(92)90165-I. [DOI] [PubMed] [Google Scholar]
  • 13.Kobayashi T., Ishida T., Okada Y., Ise S., Harashima H., Kiwada H. Effect of transferrin receptor-targeted liposomal doxorubicin in P-glycoprotein-mediated drug resistant tumor cells. Int. J. Pharm. 2007;329:94–102. doi: 10.1016/j.ijpharm.2006.08.039. [DOI] [PubMed] [Google Scholar]
  • 14.Fritzer M., Szekeres T., Szuts V., Jarayam H.N., Goldenberg H. Cytotoxic effects of a doxorubicin-transferrin conjugate in multidrugresistant KB cells. Biochem. Pharmacol. 1996;51:489–493. doi: 10.1016/0006-2952(95)02225-2. [DOI] [PubMed] [Google Scholar]
  • 15.Gallagher R., Collins S., Trujillo J., McCredie K., Ahearn M., Tsai S., Metzgar R., Aulakh G., Ting R., Ruscetti F., Gallo R. Characterization of the continuous, differentiating myeloid cell line (HL-60) from a patient with acute promyelocytic leukemia. Blood. 1979;54:713–733. [PubMed] [Google Scholar]
  • 16.Krishnamachary N., Center M.S. The MRP gene associated with a non-P-glycoprotein multidrug resistance encodes a 190-kDa membrane bound glycoprotein. Cancer. Res. 1993;53:3658–3661. [PubMed] [Google Scholar]
  • 17.Laemmli U.K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970;227:680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  • 18.Wistop A., Keller U., Sprung C.N., Grabenbauer G.G., Sauer R., Distel L.V. Individual radiosensitivity does not correlate with radiationinduced apoptosis in lymphoblastoid cell lines or CD3+ lymphocytes. Strahlenther. Onkol. 2005;181:326–335. doi: 10.1007/s00066-005-1372-0. [DOI] [PubMed] [Google Scholar]
  • 19.Lubgan D., Distel L., Grabenbauer G., Jozwiak Z., Sauer R. Kopplung von Doxorubicin an Transferrin ermöglicht erhöhte Wirkspiegel in multidrug-resistenten Zellen zu erreichen. Strahlenther. Onkol. 2005;181:95. [Google Scholar]
  • 20.Lubgan D., Distel L., Grabenbauer G.G., Sauer R. Selektive Therapie von Tumorzellen durch Kopplung von Doxorubicin an Transferrin. Strahlenther. Onkol. 2004;180:7. [Google Scholar]
  • 21.Bryszewska M., Piasecka A., Zavodnik L.B., Distel L., Schussler H. Oxidative damage of Chinese hamster fibroblasts induced by t-butyl hydroperoxide and by X-rays. Biochim. Biophys. Acta. 2003;1621:285–291. doi: 10.1016/s0304-4165(03)00096-5. [DOI] [PubMed] [Google Scholar]
  • 22.Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J. Immunol. Methods. 1983;65:55–63. doi: 10.1016/0022-1759(83)90303-4. [DOI] [PubMed] [Google Scholar]
  • 23.Binaschi M., Bigioni M., Cipollone A., Rossi C., Goso C., Maggi C.A., Capranico G., Animati F. Anthracyclines: selected new developments. Curr. Med. Chem. Anti-Canc. Agents. 2001;1:113–130. doi: 10.2174/1568011013354723. [DOI] [PubMed] [Google Scholar]
  • 24.Ward J.H., Kushner J.P., Kaplan J. Transferrin receptors of human fibroblasts. Analysis of receptor properties and regulation. Biochem. J. 1982;208:19–26. doi: 10.1042/bj2080019. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 25.Gomme P.T., McCann K.B., Bertolini J. Transferrin: structure, function and potential therapeutic actions. Drug. Discov. Today. 2005;10:267–273. doi: 10.1016/S1359-6446(04)03333-1. [DOI] [PubMed] [Google Scholar]
  • 26.Berczi A., Ruthner M., Szuts V., Fritzer M., Schweinzer E., Goldenberg H. Influence of conjugation of doxorubicin to transferrin on the iron uptake by K562 cells via receptor-mediated endocytosis. Eur. J. Biochem. 1993;213:427–436. doi: 10.1111/j.1432-1033.1993.tb17778.x. [DOI] [PubMed] [Google Scholar]
  • 27.Daniels T.R., Delgado T., Helguera G., Penichet M.L. The transferrin receptor part II: targeted delivery of therapeutic agents into cancer cells. Clin. Immunol. 2006;121:159–176. doi: 10.1016/j.clim.2006.06.006. [DOI] [PubMed] [Google Scholar]
  • 28.Barabas K., Sizensky J.A., Faulk W.P. Transferrin conjugates of adriamycin are cytotoxic without intercalating nuclear DNA. J. Biol. Chem. 1992;267:9437–9442. [PubMed] [Google Scholar]
  • 29.Inoue T., Cavanaugh P.G., Steck P.A., Brunner N., Nicolson G.L. Differences in transferrin response and numbers of transferrin receptors in rat and human mammary carcinoma lines of different metastatic potentials. J. Cell. Physiol. 1993;156:212–217. doi: 10.1002/jcp.1041560128. [DOI] [PubMed] [Google Scholar]
  • 30.Buchholz T.A., Davis D.W., McConkey D.J., Symmans W.F., Valero V., Jhingran A., Tucker S.L., Pusztai L., Cristofanilli M., Esteva F.J., Hortobagyi G.N., Sahin A.A. Chemotherapy-induced apoptosis and Bcl-2 levels correlate with breast cancer response to chemotherapy. Cancer. J. 2003;9:33–41. doi: 10.1097/00130404-200301000-00007. [DOI] [PubMed] [Google Scholar]
  • 31.Sizensky J.A., Barabas K., Faulk W.P. Characterization of the anticancer activity of transferrin-adriamycin conjugates. Am. J. Reprod. Immunol. 1992;27:163–166. doi: 10.1111/j.1600-0897.1992.tb00744.x. [DOI] [PubMed] [Google Scholar]

Articles from Cellular & Molecular Biology Letters are provided here courtesy of BMC

RESOURCES