Abstract
Gangliosides are characteristically enriched in various membrane domains that can be isolated as low density membrane fraction insoluble in detergents (detergent-resistant membranes, DRMs) or obtained after homogenization and sonication in 0.5 M sodium carbonate (low-density membranes, LDMs). We assessed the effect of the ceramide structure of four [3H]-labeled GM1 ganglioside molecular species (GM1s) taken up by HL-60 cells on their occurrence in LDMs, and compared it with our previous observations for DRMs. All GM1s contained C18 sphingosine, which was acetylated in GM1(18:1/2) or acylated with C14, C18 or C18:1 fatty acids (Fas)
Keywords: Ceramide, Gangliosides, GM1, Membrane domains, Myristic acid, Sonication
Full Text
The Full Text of this article is available as a PDF (499.4 KB).
Abbreviations used
- cPMs
crude plasma membranes
- CT
cholera toxin
- DRMs
detergent-resistant membranes
- Fa
fatty acid
- GM1 ganglioside
Galβ3GalNAcβ4 (Neu5Acα3)Galβ4GlcCer (GM1s are abbreviated according to Palestini et al. [39] as follows: GM1(18:1/2), GM1 with N-acetylated C18 sphingosine; GM1(18:1/14), GM1 with myristic acid-acylated C18 sphingosine; GM1(18:1/18), GM1 with stearic acid-acylated C18 sphingosine; and GM1(18:1/18:1), GM1 with oleic acid-acylated C18 sphingosine)
- LDMs
low-density membrane fraction
- ld
liquid disordered
- lo
liquid ordered
- medium H
RPMI 1640 medium containing 10 mM Hepes buffer, pH 7.3, and 5 μg/ml insulin and transferrin
- PBS-G
PBS containing 0.1% gelatin
- sodium carbonate buffer
a solution consisting of 2.5 mM Tris, 500 mM Na2CO3, 5 mM NaCl, 2.5 mM EDTA, pH 11.0, 2 mM Pefabloc SC and chymostatin, leupeptin, antipain, and pepstatin, each at 5 μg/ml
- TX
Triton X-100
References
- 1.Hakomori S. Glycosphingolipids in cellular interaction, differentiation, and oncogenesis. Annu. Rev. Biochem. 1981;50:733–764. doi: 10.1146/annurev.bi.50.070181.003505. [DOI] [PubMed] [Google Scholar]
- 2.Wiegandt H. New Comprehensive Biochemistry. Amsterdam: Elsevier; 1985. Gangliosides; pp. 199–260. [Google Scholar]
- 3.Degroote S., Wolthoorn J., van Meer G. The cell biology of glycosphingolipids. Semin. Cell Develop. Biol. 2004;15:375–387. doi: 10.1016/j.semcdb.2004.03.007. [DOI] [PubMed] [Google Scholar]
- 4.Spiegel S., Kassis S., Wilchek M., Fishman P.H. Direct visualization of redistribution and capping of fluorescent gangliosides on lymphocytes. J. Cell Biol. 1984;99:1575–1581. doi: 10.1083/jcb.99.5.1575. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 5.Fujita A., Cheng J., Hirakawa M., Furukawa K., Kusunoki S., Fujimoto T. Gangliosides GM1 and GM3 in the living cell membrane form clusters susceptible to cholesterol depletion and chilling. Mol. Biol. Cell. 2007;18:2112–2122. doi: 10.1091/mbc.E07-01-0071. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 6.Thorne R.F., Mhaidat N.M., Ralston K.J., Burns G.F. Shed gangliosides provide detergent-independent evidence for Type-3 glycosynapse. Biochem. Biophys. Res. Commun. 2007;356:306–311. doi: 10.1016/j.bbrc.2007.02.139. [DOI] [PubMed] [Google Scholar]
- 7.Iwabuchi K., Handa K., Hakomori S. Separation of “glycosphingolipid signaling domain” from caveolin-containing membrane fraction in mouse melanoma B16 cells and its role in cell adhesion coupled with signaling. J. Biol. Chem. 1998;273:33766–33773. doi: 10.1074/jbc.273.50.33766. [DOI] [PubMed] [Google Scholar]
- 8.Hakomori S. Cell adhesion/recognition and signal transduction through glycosphingolipid microdomain. Glycoconjugate J. 2000;17:143–151. doi: 10.1023/A:1026524820177. [DOI] [PubMed] [Google Scholar]
- 9.Hakomori S. The glycosynapse. Proc. Nat. Acad. Sci. U.S.A. 2002;99:225–232. doi: 10.1073/pnas.012540899. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 10.Simons M., Friedrichson T., Schultz J.B., Pitto M., Masserini M., Kurzhalia T. Exogenous administration of gangliosides displaces GPI-anchored proteins from lipid microdomains in living cells. Mol. Cell. Biol. 1999;10:3187–3193. doi: 10.1091/mbc.10.10.3187. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 11.Kim H.Y., Park S.J., Joe E.H., Jou I. Raft-mediated Src homology 2 domain-containing protein-tyrosine phosphatase 2 (SHP-2) regulation in microglia. J. Biol. Chem. 2006;281:11872–11878. doi: 10.1074/jbc.M511706200. [DOI] [PubMed] [Google Scholar]
- 12.Kabayama K., Sato T., Saito K., Loberto N., Prinetti A., Sonnino S., Kinjo M., Igarashi Y., Inokuchi J. Dissociation of the insulin receptor and caveolin-1 complex by ganglioside GM3 in the state of insulin resistance. Proc. Nat. Acad. Sci. U.S.A. 2007;104:13678–13683. doi: 10.1073/pnas.0703650104. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 13.Odintsova E., Butters T.D., Monti E., Sprong H., Van Meer G., Berditchevski F. Gangliosides play an important role in the organization of CD82-enriched microdomains. Biochem. J. 2006;400:315–325. doi: 10.1042/BJ20060259. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 14.Mitsuda T., Furukawa K., Fukumoto S., Miyazaki H., Urano T., Furukawa K. Overexpression of ganglioside GM1 results in the dispersion of platelet-derived growth factor receptor from glycolipid-enriched microdomains and in the suppression of cell growth signals. J. Biol. Chem. 2002;277:11239–11246. doi: 10.1074/jbc.M107756200. [DOI] [PubMed] [Google Scholar]
- 15.Nishio M., Fukumoto S., Furukawa K., Ichimura A., Miyazaki H., Kusunoki S., Urano T., Furukawa K. Overexpressed GM1 suppresses nerve growth factor (NGF) signals by modulating the intracellular localization of NGF receptors and membrane fluidity in PC18 cells. J. Biol. Chem. 2004;279:33368–33378. doi: 10.1074/jbc.M403816200. [DOI] [PubMed] [Google Scholar]
- 16.Panasiewicz M., Domek H., Hoser G., Kawalec M., Pacuszka T. Structure of the ceramide moiety of GM1 ganglioside determines its occurrence in different detergent-resistant membrane domains. Biochemistry. 2003;42:6608–6619. doi: 10.1021/bi0206309. [DOI] [PubMed] [Google Scholar]
- 17.Heerklotz H. Triton promotes domain formation in lipid raft mixtures. Biophys. J. 2002;83:2693–2701. doi: 10.1016/S0006-3495(02)75278-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 18.Schuck S., Honsho M., Ekroos K., Shevchenko S., Simons K. Resistance of cell membranes to different detergents. Proc. Nat. Acad. Sci. U.S.A. 2003;100:5795–5800. doi: 10.1073/pnas.0631579100. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 19.Shogomori H., Brown D.A. Use of detergents to study membrane rafts: the good, the bad, and the ugly. Biol. Chem. 2003;384:1259–1263. doi: 10.1515/BC.2003.139. [DOI] [PubMed] [Google Scholar]
- 20.Lichtenberg D., Goñi F.M., Heerklotz H. Detergent-resistant membranes should not be identified with membrane rafts. Trends Biochem. Sci. 2005;30:430–436. doi: 10.1016/j.tibs.2005.06.004. [DOI] [PubMed] [Google Scholar]
- 21.Song K.S., Li S., Okamoto T., Quilliam L., Sargiacomo M., Lisanti M.P. Co-purification and direct interaction of ras with caveolin, an integral membrane protein of caveolae microdomains. J. Biol. Chem. 1996;271:9690–9697. doi: 10.1074/jbc.271.16.9690. [DOI] [PubMed] [Google Scholar]
- 22.Saqr H.E., Pearl D.K., Yates A.J. A review and predictive models of ganglioside uptake by biological membranes. J. Neurochem. 1993;61:395–411. doi: 10.1111/j.1471-4159.1993.tb02140.x. [DOI] [PubMed] [Google Scholar]
- 23.Schwarzmann G. Uptake and metabolism of exogenous glycosphingolipids by cultured cells. Semin. Cell Develop. Biol. 2001;12:163–171. doi: 10.1006/scdb.2000.0233. [DOI] [PubMed] [Google Scholar]
- 24.Yanagida M., Nakayama H., Yoshizaki F., Fujimura T., Takamori K., Ogawa H., Iwabuchi K. Proteomic analysis of plasma membrane lipid rafts of HL-60 cells. Proteomics. 2007;7:2398–2409. doi: 10.1002/pmic.200700056. [DOI] [PubMed] [Google Scholar]
- 25.Sonnino S., Chigorno V., Tettamanti G. Preparation of radioactive gangliosides, 3H or 14C isotopically labeled at oligosaccharide or ceramide moieties. Methods Enzymol. 2000;311:639–656. doi: 10.1016/S0076-6879(00)11109-7. [DOI] [PubMed] [Google Scholar]
- 26.Wilson B.S., Steinberg S.L., Liederman K., Pfeiffer J.R., Surviladze Z., Zhang J., Samelson E., Yang L., Kotula P.G., Oliver J.M. Markers for detergent-resistant lipid rafts occupy distinct and dynamic domains in native membranes. Mol. Biol. Cell. 2004;15:2580–2592. doi: 10.1091/mbc.E03-08-0574. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 27.Ermini L., Secciani F., La Sala G.B., Sabatini L., Fineschi D., Hale G., Rosami F. Different glycoforms of the human GPI-anchored antygen CD52 associate differently with lipid microdomains in leukocytem and sperm membranes. Biochem. Biophys. Res. Commun. 2007;338:1275–1283. doi: 10.1016/j.bbrc.2005.10.082. [DOI] [PubMed] [Google Scholar]
- 28.Foster L.J., de Hoog C.L., Mann M. Unbiased quantitative proteomics of lipid rafts reveals high specificity for signaling factors. Proc. Nat. Acad. Sci. U.S.A. 2003;100:5813–5818. doi: 10.1073/pnas.0631608100. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 29.Pike L. Rafts defined: a report on the Keystone symposium on lipid rafts and cell function. J. Lipid. Res. 2006;47:1597–1598. doi: 10.1194/jlr.E600002-JLR200. [DOI] [PubMed] [Google Scholar]
- 30.Brown D. A. Lipid rafts, detergent-resistant membranes, and raft targeting signals. Physiology. 2006;21:430–439. doi: 10.1152/physiol.00032.2006. [DOI] [PubMed] [Google Scholar]
- 31.Brügger B., Glass B., Haberkant P., Leibrecht I., Wieland F.T., Kräusslich H.G. The HIV lipidome: a raft with an unusual composition. Proc. Nat. Acad. Sci. U.S.A. 2006;103:2641–2646. doi: 10.1073/pnas.0511136103. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 32.Fridriksson E.K., Shipkova P., Sheets E.D., Holowka D., Baird B., McLafferty F.W. Quantitative analysis of phospholipids in functionally important membrane domains from RBL-2H3 mast cells using tandem high-resolution mass spectrometry. Biochemistry. 1999;38:8056–8063. doi: 10.1021/bi9828324. [DOI] [PubMed] [Google Scholar]
- 33.Pitto M., Parenti M., Guzzi F., Magni F., Palestini P., Ravasi D., Masserini M. Palmitic is the main fatty acid carried by lipids of detergentresistant membrane fractions from neural and non-neural cells. Neurochem. Res. 2002;27:729–734. doi: 10.1023/A:1020240520465. [DOI] [PubMed] [Google Scholar]
- 34.Rex M., Elliot M.H., Brush S., Anderson R.E. Detailed characterization of the lipid composition of detergent-resistant membranes from photoreceptor rod outer segment membranes. Invest. Ophtalmol. Vis. Sci. 2005;46:1147–1154. doi: 10.1167/iovs.04-1207. [DOI] [PubMed] [Google Scholar]
- 35.Brown D.A., London E. Structure and function of sphingolipid-and cholesterol-rich membrane rafts. J. Biol. Chem. 2000;275:17221–17224. doi: 10.1074/jbc.R000005200. [DOI] [PubMed] [Google Scholar]
- 36.Pike L., Han X., Chung K.N., Gross R.W. Lipid rafts are enriched in arachidonic acid and plasmenylethanolamine and their composition is independent of caveolin-1 expression: a quantitative electrospray ionization/mass spectrometric analysis. Biochemistry. 2002;41:2075–2088. doi: 10.1021/bi0156557. [DOI] [PubMed] [Google Scholar]
- 37.Kim K.B., Kim S.I., Choo H.J., Kim J.H., Ko Y.G. Two-dimensional electrophoretic analysis reveals that lipid rafts are intact at physiological temperature. Proteomics. 2004;4:3527–3535. doi: 10.1002/pmic.200401001. [DOI] [PubMed] [Google Scholar]
- 38.Babiychuk E.B., Draeger A. Biochemical characterization of detergent-resistant membranes: a systematic approach. Biochem. J. 2006;397:407–416. doi: 10.1042/BJ20060056. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 39.Palestini P., Alietta M., Sonnino S., Tettamanti G., Thompson T.E., Tillack T.W. Gel phase preference of ganglioside GM1 at low concentration in two-component, two-phase phosphatidylcholine bilayers depends upon the ceramide moiety. Biochim. Biophys. Acta. 1995;1235:221–230. doi: 10.1016/0005-2736(95)80008-4. [DOI] [PubMed] [Google Scholar]
