Abstract
This study was conducted in order to identify quantitative trait loci (QTLs) for the in vitro culture response of winter rye (Secale cereale L.) immature embryos and immature inflorescences. A genetic linkage map comprising 67 SSRs, 9 ISSRs, 13 SAMPLs, 7 RAPDs, 2 SCARs and one EST marker was created based on the analyses of 102 recombinant inbred lines from the cross between lines L318 (which has a good response in tissue cultures) and L9 (which is unable to regenerate plants from somatic tissues and anthers). The map spans 979.2 cM, and the average distance between markers is 9.9 cM. Two characteristics were evaluated: callus induction (CI) and somatic embryogenesis ability (SE). They were expressed as the percentage of immature embryos/inflorescences producing callus (designated ECI/ICI) and the percentage of explants producing somatic embryos (ESE/ISE). All the analysed traits showed continuous variation in the mapping population but a non-normal frequency distribution. We identified nine putative QTLs controlling the tissue culture response of rye, explaining up to 41.6% of the total phenotypic variation: two QTLs for ECI — eci-1, eci-2; 4 for ESE — ece-1, ese-2, ese-3, ese-4; 2 for ICI — ici-1, ici2; and 1 for ISE — ise-1. They were detected on chromosomes 1R, 4R, 5R, 6R and 7R.
Key words: Rye, Secale cereale L., Somatic embryogenesis, Tissue culture, Immature embryos, Immature inflorescences, Molecular marker, QTL, Genetic mapping
Full Text
The Full Text of this article is available as a PDF (435.2 KB).
Abbreviations used
- CI
callus induction
- ECI
percentage of immature embryos producing callus
- ESE
percentage of immature embryos producing embryogenic callus
- ICI
percentage of immature inflorescences producing callus
- ISE
percentage of immature inflorescences producing embryogenic callus
- GDDSC
genetically directed differential subtraction chain
- MAS
marker assisted selection
- QTL
quantitative trait locus
- RIL
recombinant inbred line
- SE
somatic embryogenesis ability
- TCR
tissue culture response
References
- 1.Rybczyński J.J. In vitro culture of Secale cereale L. explants — callus formation and organ differentiation. Acta Soc. Bot. Pol. 1980;49:155–166. [Google Scholar]
- 2.Rakoczy-Trojanowska M., Malepszy S. Genetic factors influencing regeneration ability in rye (Secale cereale L.). I. Immature inflorescences. Theor. Appl. Genet. 1993;86:406–410. doi: 10.1007/BF00838554. [DOI] [PubMed] [Google Scholar]
- 3.Zimny J., Lörz H. High frequency of somatic embryogenesis and plant regeneration of rye (Secale cereale L.) Plant Breed. 1989;102:89–100. doi: 10.1111/j.1439-0523.1989.tb00320.x. [DOI] [Google Scholar]
- 4.Linacero R., Vazquez A.M. Somatic embryogenesis from immature inflorescences of rye. Plant Science. 1990;72:253–258. doi: 10.1016/0168-9452(90)90089-7. [DOI] [Google Scholar]
- 5.Rakoczy-Trojanowska M., Malepszy S. Genetic factors influencing the regeneration ability of rye (Secale cereale L.). II. Immature embryos. Euphytica. 1995;83:233–239. doi: 10.1007/BF01678135. [DOI] [PubMed] [Google Scholar]
- 6.Popelka J.C., Altpeter F. Interactions between genotypes and culture media components for improved in vitro response of rye (Secale cereale L.) inbred lines. Plant Cell Rep. 2001;20:575–582. doi: 10.1007/s002990100369. [DOI] [Google Scholar]
- 7.Krumbiegel-Schroeren G., Schroeren V., Binding H. Embroid formation and plant regeneration from callus of Secale cereale. Z. Pflanzenzüchtg. 1984;92:89–94. [Google Scholar]
- 8.Flehinghaus-Roux T., Deimling S., Geiger H.H. Anther culture ability in Secale cereale L. Plant Breed. 1995;114:259–261. doi: 10.1111/j.1439-0523.1995.tb00807.x. [DOI] [Google Scholar]
- 9.Bolibok H., Rakoczy-Trojanowska M. Genetic mapping of QTLs for tissue-culture response in plants. Euphytica. 2006;149:73–83. doi: 10.1007/s10681-005-9055-6. [DOI] [Google Scholar]
- 10.Taguchi-Shiobara F., Lin S.Y., Tanno K., Komatsuda T., Yano M., Sasaki T., Oka S. Mapping quantitative trait loci associated with regeneration ability of seed callus in rice, Oryza sativa L. Theor. Appl. Genet. 1997;95:828–833. doi: 10.1007/s001220050632. [DOI] [Google Scholar]
- 11.Ben Amer I.M., Korzun V., Worland A.J., Börner A. Genetic mapping of QTL controlling tissue-culture response on chromosome 2B of wheat (Triticum aestivum L.) in relation to major genes and RFLP markers. Theor. Appl. Genet. 1997;94:1047–1052. doi: 10.1007/s001220050513. [DOI] [Google Scholar]
- 12.Murigneux A., Bentollila S., Hardy T., Baud S., Guitton C., Jullien H., Ben Tahar S., Freyssinet G., Beckert M. Genotypic variation of quantitative trait loci controlling in vitro androgenesis in maize. Genome. 1994;37:970–976. doi: 10.1139/g94-137. [DOI] [PubMed] [Google Scholar]
- 13.Mano Y., Komatsuda T. Identification of QTLs controlling tissue-culture traits in barley (Hordeum vulgare L.) Theor. Appl. Genet. 2002;105:708–715. doi: 10.1007/s00122-002-0992-3. [DOI] [PubMed] [Google Scholar]
- 14.Murashige F., Skoog F. A revised medium for rapid growth and bioassays with tobacco tissue culture. Physiol. Plant. 1962;15:473–497. doi: 10.1111/j.1399-3054.1962.tb08052.x. [DOI] [Google Scholar]
- 15.Bliss C.I. The Transformation of Percentages for Use in the Analysis of Variance. Ohio J. Sci. 1938;38:9–12. [Google Scholar]
- 16.Murray M.G., Thompson W.F. Rapid isolation of high molecular weight plant DNA. Nucleic Acid Res. 1980;8:4321–4325. doi: 10.1093/nar/8.19.4321. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 17.Bolibok H., Rakoczy-Trojanowska M., Wyrzykowska M., Radecka M., Orczyk W. Identification of microsatellite markers in the rye genome. Cell. Mol. Biol. Lett. 2006;11:291–298. doi: 10.2478/s11658-006-0023-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 18.Saal B., Wricke G. Development of simple sequence repeat markers in rye (Secale cereale L.) Genome. 1999;42:964–972. doi: 10.1139/gen-42-5-964. [DOI] [PubMed] [Google Scholar]
- 19.Hackauf B., Wehling P. Identification of microsatellite polymorphisms in expressed portion of the rye genome. Plant Breed. 2002;121:17–25. doi: 10.1046/j.1439-0523.2002.00649.x. [DOI] [Google Scholar]
- 20.Khlestkina E.K., Than M.H.M., Pestsova E.G., Röder M.S., Malyshev S.V., Korzun V., Börner A. Mapping of 99 new microsatellite-derived loci in rye (Secale cereale L.) including 39 expressed sequence tags. Theor. Appl. Genet. 2004;19:725–732. doi: 10.1007/s00122-004-1659-z. [DOI] [PubMed] [Google Scholar]
- 21.Röder M.S., Korzun V., Wendehake K., Plaschke J., Tixier M.H., Leroy P., Ganal M.W. A microsatellite map of wheat. Mol. Gen. Genet. 1998;246:327–333. doi: 10.1007/BF00288605. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 22.Bolibok H., Rakoczy-Trojanowska M., Hromada A., Pietrzykowski R. The efficiency of different PCR-based marker system in assessing genetic diversity among winter rye (Secale cereale L.) inbred lines. Euphytica. 2005;146:109–115. doi: 10.1007/s10681-005-0548-0. [DOI] [Google Scholar]
- 23.Lander E.S., Green P., Abrahamson J., Barlow A., Daly M.J., Lincoln S.E., Newberg L. MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics. 1987;1:174–181. doi: 10.1016/0888-7543(87)90010-3. [DOI] [PubMed] [Google Scholar]
- 24.Kosambi D.D. The estimation of map distances from recombination values. Ann. Eugen. 1944;12:172–175. [Google Scholar]
- 25.Lincoln, S., Daly, M. and Lander, E. Mapping genes controlling quantitative traits with MAPMAKER/QTL 1.1. Whitehead Institute Technical Report 2nd edn. (1992).
- 26.Grosse B.A., Deimling S., Geiger H.H. Mapping of genes for anther culture ability in rye by molecular markers. Vortr. Pflanzenzuechtg. 1996;35:282–283. [Google Scholar]
- 27.Flores Berrios E., Sarrafi A., Fabre F., Alibert G., Gentzbittel L. Genotypic variation and chromosomal location of QTLs for somatic embryogenesis revealed by epidermal layers culture of recombinant inbred lines in the sunflower (Helianthus annuus L.) Theor. Appl. Genet. 2000;101:1307–1312. doi: 10.1007/s001220051611. [DOI] [Google Scholar]
- 28.Hackauf B., Wehling P. Development of microsatellite markers in rye: map construction. Plant Breed Seed Sci. 2003;48:143–151. [Google Scholar]
- 29.Philipp U., Wehling P., Wricke G. A linkage map of rye. Theor. Appl. Genet. 1994;88:243–248. doi: 10.1007/BF00225904. [DOI] [PubMed] [Google Scholar]
- 30.Senft P., Wricke G. An extended genetic map of rye (Secale cereale L.) Plant Breed. 1996;115:508–510. doi: 10.1111/j.1439-0523.1996.tb00966.x. [DOI] [Google Scholar]
- 31.Korzun V., Malyshev S., Voylokov A.V., Börner A. A genetic map of rye (Secale cereale L.) combining RFLP, isozyme, protein, microsatellite and gene loci. Theor. Appl. Genet. 2001;102:709–717. doi: 10.1007/s001220051701. [DOI] [Google Scholar]
- 32.Ma X.F., Wanous M.K., Houchins K., Rodriguez Milla M.A., Goicoechea P.G., Wang Z., Xie M., Gustafson J.P. Molecular linkage mapping in rye (Secale cereale L) Theor. Appl. Genet. 2001;102:517–523. doi: 10.1007/s001220051676. [DOI] [Google Scholar]
- 33.He P., Sheng L., Lu C., Chen Y., Zhu L. Analysis of quantitative trait loci which contribute to anther culturability in rice (Oryza sativa L.) Mol. Breed. 1998;4:165–172. doi: 10.1023/A:1009692221152. [DOI] [Google Scholar]
- 34.Manninen O.M. Associations between anther-culture response and molecular markers on chromosomes 2H, 3H and 4H of barley (Hordeum vulgare L.) Theor. Appl. Genet. 2000;100:57–62. doi: 10.1007/s001220050008. [DOI] [Google Scholar]
- 35.Torp A.M., Hansen A.L., Andersen S.B. Chromosomal regions associated with green plant regeneration in wheat (Triticum aestivum L.) anther culture. Euphytica. 2001;119:377–387. doi: 10.1023/A:1017554129904. [DOI] [Google Scholar]
- 36.Kwon Y.S., Kim K.M., Eun M.Y., Sohn J.K. QTL mapping and associated marker selection for the efficacy of green plant regeneration in anther culture of rice. Plant Breed. 2002;12:10–16. doi: 10.1046/j.1439-0523.2002.00664.x. [DOI] [Google Scholar]
- 37.Lazar M.D., Chen T.H.H., Scoles G.J., Kartha K.K. Immature embryo and anther culture of chromosome addition lines of rye in Chinese Spring wheat. Plant Sci. 1987;51:77–81. doi: 10.1016/0168-9452(87)90222-6. [DOI] [Google Scholar]
- 38.Nishimura A., Ashikari M., Lin S., Takashi T., Angeles E.R., Yamamoto T., Matsuoka M. Isolation of a rice regeneration quantitative trait loci gene and its application to transformation systems. Proc. Natl. Acad. Sci. USA. 2005;102:11940–11944. doi: 10.1073/pnas.0504220102. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 39.Hromada, A., Bolibok, H. and Rakoczy-Trojanowska, M. Application of the GDDSC for the isolation of winter rye (Secale cereale L.) genome regions connected with in vitro reaction of immature embryos. Vortr. Pflanzenzuechtg, in press.