Abstract
We developed a new targeted cationic nanoparticulate system composed of poly(D,L-lactic-co-glycolic acid) (PLGA), 1,2-dioleoyl-3-(trimethylammonium) propane (DOTAP) and asialofetuin (AF), and found it to be a highly effective formulation for gene delivery to liver tumor cells. The nanoparticles (NP) were prepared by a modified solvent evaporation process that used two protocols in order to encapsulate (NP1 particles) or adsorb (NP2 particles) plasmid DNA. The final particles are in the nanoscale range. pDNA loaded in PLGA/DOTAP/AF particles with high loading efficiency showed a positive surface charge. Targeted asialofetuin-nanoparticles (AF-NP) carrying genes encoding for luciferase and interleukin-12 (IL-12) resulted in increased transfection efficiencies compared to free DNA and to plain (non-targeted) systems, even in the presence of 60% fetal bovine serum (FBS). The results of transfections performed on HeLa cells, defective in asialoglycoprotein receptors (ASGPr-), confirmed the receptor-mediated endocytosis mechanism. In summary, this is the first time that asialoglycoprotein receptor targeting by PLGA/DOTAP/DNA nanoparticles carrying the therapeutic gene IL-12 has been shown to be efficient in gene delivery to liver cancer cells in the presence of a very high concentration of serum, and this could be a potential system for in vivo application.
Key words: Poly(D,L-lactic-co-glycolic acid) (PLGA); 1,2-dioleoyl-3-(trimethylammonium) propane (DOTAP); Asialofetuin; Targeted gene delivery; Pharmaceutical nanotechnology
Full Text
The Full Text of this article is available as a PDF (1.3 MB).
Abbreviation
- AF
asialofetuin
- ASGPr
asialoglycoprotein receptor
- DMEM-HG
Dulbecco’s modified Eagle’s medium-high glucose
- DOTAP
1,2-dioleoyl-3-(trimethylammonium propane)
- FBS
fetal bovine serum
- IL-12
interleukin-12
- NP
nanoparticle
- PLGA
poly(D,L-lactic-co-glycolic acid
- SEM
scanning electron microscopy
References
- 1.Pouton C.W., Seymour L.W. Key issues in non-viral gene delivery. Adv. Drug Deliv. Rev. 2001;46:187–203. doi: 10.1016/S0169-409X(00)00133-2. [DOI] [PubMed] [Google Scholar]
- 2.De Smedt S.C., Demeester J., Hennink W.E. Cationic polymer based gene delivery systems. Pharm. Res. 2000;17:113–126. doi: 10.1023/A:1007548826495. [DOI] [PubMed] [Google Scholar]
- 3.Singh M., Briones M., Ott G., O’Hagan D. Cationic microparticles: A potent delivery system for DNA vaccines. Proc. Natl. Acad. Sci. USA. 2000;97:811–816. doi: 10.1073/pnas.97.2.811. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 4.Kim I.S., Lee S.K., Park Y.M., Lee Y.B., Shin S.C., Lee K.C., Oh I.J. Physicochemical characterization of poly(L-lactic acid) and poly(D,L-lactide-co-glycolide) nanoparticles with polyethylenimine as gene delivery carrier. Int. J. Pharm. 2005;298:255–262. doi: 10.1016/j.ijpharm.2005.04.017. [DOI] [PubMed] [Google Scholar]
- 5.Oster C.G., Kim N., Grode L., Barbu-Tudoran L., Schaper A.K., Kaufmann S.H., Kissel T. Cationic microparticles consisting of poly(lactide-co-glycolide) and polyethylenimine as carriers systems for parental DNA vaccination. J. Control. Release. 2005;104:359–377. doi: 10.1016/j.jconrel.2005.02.004. [DOI] [PubMed] [Google Scholar]
- 6.Moghimi S.M., Hunter A.C., Murray J.C. Long-circulating and target-specific nanoparticles: theory to practice. Pharmacol. Rev. 2001;53:283–318. [PubMed] [Google Scholar]
- 7.Vinogradov S.V., Bronich T.K., Kabanov A.V. Nanosized cationic hydrogels for drug delivery: preparation, properties and interactions with cells. Adv. Drug Deliv. Rev. 2002;54:135–147. doi: 10.1016/S0169-409X(01)00245-9. [DOI] [PubMed] [Google Scholar]
- 8.Leong K.W., Mao H.Q., Truong-Le V.L., Roy K., Walsh S.M., August J.T. DNA-polycation nanospheres as non-viral gene delivery vehicles. J. Control. Release. 1998;53:183–193. doi: 10.1016/S0168-3659(97)00252-6. [DOI] [PubMed] [Google Scholar]
- 9.Hirosue S., Muller B.G., Mulligan R.C., Langer R. Plasmid DNA encapsulation and release from solvent diffusion nanospheres. J. Control. Release. 2001;70:231–242. doi: 10.1016/S0168-3659(00)00353-9. [DOI] [PubMed] [Google Scholar]
- 10.Ravi Kumar M. N., Bakowsky U., Lehr C.M. Preparation and characterization of cationic PLGA nanospheres as DNA carriers. Biomaterials. 2004;25:1771–1777. doi: 10.1016/j.biomaterials.2003.08.069. [DOI] [PubMed] [Google Scholar]
- 11.Rhaese S., von Briesen H., Rubsamen-Waigmann H., Kreuter J., Langer K. Human serum albumin-polyethylenimine nanoparticles for gene delivery. J. Control. Release. 2003;92:199–208. doi: 10.1016/S0168-3659(03)00302-X. [DOI] [PubMed] [Google Scholar]
- 12.Wang D., Robinson D.R., Kwon G.S., Samuel J. Encapsulation of plasmid DNA in biodegradable poly(D, L-lactic-co-glycolic acid) microspheres as a novel approach for immunogene delivery. J. Control. Release. 1999;57:9–18. doi: 10.1016/S0168-3659(98)00099-6. [DOI] [PubMed] [Google Scholar]
- 13.Hedley M.L., Curley J., Urban R. Microspheres containing plasmid-encoded antigens elicit cytotoxic T-cell responses. Nat. Med. 1998;4:365–368. doi: 10.1038/nm0398-365. [DOI] [PubMed] [Google Scholar]
- 14.Diez S., Tros de Ilarduya C. Versatility of biodegradable poly (D,L-lactic-co-glycolic acid) microspheres for plasmid DNA delivery. Eur. J. Pharm. Biopharm. 2006;63:188–197. doi: 10.1016/j.ejpb.2006.03.007. [DOI] [PubMed] [Google Scholar]
- 15.Arangoa M.A., Düzgüneş N., Tros de ILarduya C. Increased receptor-mediated gene delivery to the liver by protamine-enhanced-asialofetuin-lipoplexes. Gene Ther. 2003;10:5–14. doi: 10.1038/sj.gt.3301840. [DOI] [PubMed] [Google Scholar]
- 16.Wilson J.M., Grossman M., Cabrera J.A., Wu C.H., Wu G.Y. A novel mechanism for achieving transgene persistence in vivo after somatic gene transfer into hepatocytes. J. Biol. Chem. 1992;267:11483–11489. [PubMed] [Google Scholar]
- 17.Wu G.Y., Wu C.H. Evidence for targeted gene delivery to HepG2 hepatoma cells in vitro. Biochemistry. 1988;27:887–892. doi: 10.1021/bi00403a008. [DOI] [PubMed] [Google Scholar]
- 18.Martinez-Fong D., Mullersman J.E., Purchio A.F., Armendáriz-Borunda J., Martínez-Hernández A. Nonenzymatic glycosylation of poly-L-lysine: a new tool for targeted gene delivery. Hepatology. 1994;20:1602–1608. doi: 10.1002/hep.1840200633. [DOI] [PubMed] [Google Scholar]
- 19.Zanta M.A., Boussif O., Adib A., Behr J.P. In vitro gene delivery to hepatocytes with galactosylated polyethylenimine. Bioconjug. Chem. 1997;8:839–844. doi: 10.1021/bc970098f. [DOI] [PubMed] [Google Scholar]
- 20.Ashwell G., Morell A.G. The role of surface carbohydrates in the hepatic recognition and transport of circulating glycoproteins. Adv. Enzymol. Relat. Areas Mol. Biol. 1974;41:99–128. doi: 10.1002/9780470122860.ch3. [DOI] [PubMed] [Google Scholar]
- 21.Wu J., Liu P., Zhu J.L., Maddukuri S., Zern M.A. Increased liver uptake of liposomes and improved targeting efficacy by labeling with asialofetuin in rodents. Hepatology. 1998;27:772–778. doi: 10.1002/hep.510270319. [DOI] [PubMed] [Google Scholar]
- 22.Shive M.S., Anderson J.M. Biodegradation and biocompatibility of PLA and PLGA microspheres. Adv. Drug Deliv. Rev. 1997;28:5–24. doi: 10.1016/S0169-409X(97)00048-3. [DOI] [PubMed] [Google Scholar]
- 23.Labhasetwar V., Bonadio J., Goldstein S., Chen W., Levy R.J. A DNA controlled-release coating for gene transfer: transfection in skeletal and cardiac muscle. J. Pharm. Sci. 1998;87:1347–1350. doi: 10.1021/js980077+. [DOI] [PubMed] [Google Scholar]
- 24.Luo D., Woodrow-Mumford K., Belcheva N., Saltzman W.M. Controlled DNA delivery systems. Pharm. Res. 1999;16:1300–1308. doi: 10.1023/A:1014870102295. [DOI] [PubMed] [Google Scholar]
- 25.Ando S., Putnam D., Pack D.W., Langer R. PLGA microspheres containing plasmid DNA: preservation of supercoiled DNA via cryopreparation and carbohydrate stabilization. J. Pharm. Sci. 1999;88:126–130. doi: 10.1021/js9801687. [DOI] [PubMed] [Google Scholar]
- 26.Hsu Y.Y., Hao T., Hedley M.L. Comparison of process parameters for microencapsulation of plasmid DNA in poly(D,L-lactic-co-glycolic) acid microspheres. J. Drug Target. 1999;7:313–323. doi: 10.3109/10611869909085514. [DOI] [PubMed] [Google Scholar]
- 27.Panyam J., Labhasetwar V. Biodegradable nanoparticles for drug and gene delivery to cells and tissue. Adv. Drug Deliv. Rev. 2003;55:329–347. doi: 10.1016/S0169-409X(02)00228-4. [DOI] [PubMed] [Google Scholar]
- 28.Prabha S., Labhasetwar V. Critical determinants in PLGA/PLA nanoparticle-mediated gene expression. Pharm. Res. 2004;21:354–364. doi: 10.1023/B:PHAM.0000016250.56402.99. [DOI] [PubMed] [Google Scholar]
- 29.Cohen H., Levy R.J., Gao J., Fishbein I., Kousaev V., Sosnowski S., Slomkowski S., Golomb G. Sustained delivery and expression of DNA encapsulated in polymeric nanoparticles. Gene Ther. 2000;7:1896–1905. doi: 10.1038/sj.gt.3301318. [DOI] [PubMed] [Google Scholar]
- 30.Jeong J.H., Park T.G. Poly(L-lysine)-g-poly(D,L-lactic-co-glycolic acid) micelles for low cytotoxic biodegradable gene delivery carriers. J. Control. Release. 2002;82:159–166. doi: 10.1016/S0168-3659(02)00131-1. [DOI] [PubMed] [Google Scholar]
- 31.Walter E., Merkle H.P. Microparticle-mediated transfection of nonphagocytic cells in vitro. J. Drug Target. 2002;10:11–21. doi: 10.1080/10611860290007478. [DOI] [PubMed] [Google Scholar]
- 32.Chiou H.C., Tangco M.V., Levine S.M., Robertson D., Kormis K., Wu C.H., Wu G.Y. Enhanced resistance to nuclease degradation of nucleic acids complexed to asialoglycoprotein-polylysine carriers. Nucleic Acids Res. 1994;22:5439–5446. doi: 10.1093/nar/22.24.5439. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 33.Katayose S., Kataoka K. Remarkable increase in nuclease resistance of plasmid DNA through supramolecular assembly with poly(ethylene glycol)-poly(L-lysine) block copolymer. J. Pharm. Sci. 1998;87:160–163. doi: 10.1021/js970304s. [DOI] [PubMed] [Google Scholar]
- 34.Zhang Y., Anchordoquy T.J. The role of lipid charge density in the serum stability of cationic lipid/DNA complexes. Biochim. Biophys. Acta. 2004;1663:143–157. doi: 10.1016/j.bbamem.2004.03.004. [DOI] [PubMed] [Google Scholar]
- 35.Simberg D., Weisman S., Talmon Y., Faerman A., Shoshani T., Barenholz Y. The role of organ vascularization and lipoplex-serum initial contact in intravenous murine lipofection. J. Biol. Chem. 2003;27:39858–39865. doi: 10.1074/jbc.M302232200. [DOI] [PubMed] [Google Scholar]
- 36.Eliyahu H., Servel N., Domb A.J., Barenholz Y. Lipoplex-induced hemagglutination: potential involvement in intravenous gene delivery. Gene Ther. 2002;9:850–858. doi: 10.1038/sj.gt.3301705. [DOI] [PubMed] [Google Scholar]
- 37.Karmali P.P., Majeti B.K., Sreedhar B., Chaudhuri A. In vitro gene transfer efficacies and serum compatibility profiles of novel mono-, di-, and tri-histidinylated cationic transfection lipids: a structure-activity investigation. Bioconjug. Chem. 2006;17:159–171. doi: 10.1021/bc050194d. [DOI] [PubMed] [Google Scholar]
- 38.Tros de Ilarduya C., Düzgüneş N. Efficient gene transfer by transferrin lipoplexes in the presence of serum. Biochim. Biophys. Acta. 2000;1463:333–342. doi: 10.1016/S0005-2736(99)00225-4. [DOI] [PubMed] [Google Scholar]
- 39.Fischer D., Bieber T., Li Y., Elsasser H.P., Kissel T. A novel nonviral vector for DNA delivery based on low molecular weight, branched polyethylenimine: effect of molecular weight on transfection efficiency and cytotoxicity. Pharm. Res. 1999;16:1273–1279. doi: 10.1023/A:1014861900478. [DOI] [PubMed] [Google Scholar]
- 40.Fischer D., Li Y., Ahlemeyer B., Krieglstein J., Kissel T. In vitro cytotoxicity testing of polycations: influence of polymer structure on cell viability and hemolysis. Biomaterials. 2003;24:1121–1131. doi: 10.1016/S0142-9612(02)00445-3. [DOI] [PubMed] [Google Scholar]
- 41.Simoes S., Slepushkin V., Pires P., Gaspar R., de Lima M.P., Düzgüneş N. Mechanisms of gene transfer mediated by lipoplexes associated with targeting ligands or pH-sensitive peptides. Gene Ther. 1999;6:1798–1807. doi: 10.1038/sj.gt.3301015. [DOI] [PubMed] [Google Scholar]