Abstract
PUMA (p53 upregulated modulator of apoptosis) is a pro-apoptotic member of the BH3-only subgroup of the Bcl-2 family. It is a key mediator of p53-dependent and p53-independent apoptosis and was identified 10 years ago. The PUMA gene is mapped to the long arm of chromosome 19, a region that is frequently deleted in a large number of human cancers. PUMA mediates apoptosis thanks to its ability to directly bind known anti-apoptotic members of the Bcl-2 family. It mainly localizes to the mitochondria. The binding of PUMA to the inhibitory members of the Bcl-2 family (Bcl-2-like proteins) via its BH3 domain seems to be a critical regulatory step in the induction of apoptosis. It results in the displacement of the proteins Bax and/or Bak. This is followed by their activation and the formation of pore-like structures on the mitochondrial membrane, which permeabilizes the outer mitochondrial membrane, leading to mitochondrial dysfunction and caspase activation. PUMA is involved in a large number of physiological and pathological processes, including the immune response, cancer, neurodegenerative diseases and bacterial and viral infections.
Key words: Apoptosis, BH3-only proteins, Carcinogenesis, Inhibitory members of the Bcl-2 family, Intrinsic apoptosis pathway, p53, Pro-apoptotic members of Bcl-2 family, PUMA, Post-translational regulation, Transcription factors
Full Text
The Full Text of this article is available as a PDF (601.0 KB).
Abbreviations used
- ADI/II
activation domain I/II
- Apaf-1
apoptosis protease activating factor-1
- Bad
Bcl-2 associated death promoter
- Bak
Bcl-2 antagonist killer
- Bax
Bcl-2 associated protein x
- Bcl-2
B-cell leukemia/lymphoma-2
- BH1-4
Bcl-2 homology domains 1-4
- Bid
BH3 interacting domain death agonist
- Bik
Bcl-2 interacting killer
- Bim
Bcl-2 interacting mediator of cell death
- Bmf
Bcl-2 modifying factor
- Bod
Bcl-2-related ovarian death gene
- Bok
Bcl-2 ovarian killer
- BS1/2
p53 binding site 1/2
- CHOP
C/EBP homologous protein
- DEN
diethylnitrosamine
- GSK-3
glycogen synthase kinase-3
- HRK
harakiri, activator of apoptosis
- HSPCs
hematopoietic stem/progenitor cells
- HSV-1
human herpes virus
- IKK
IκB kinase
- IL-3
interleukin 3
- Lys
lysine
- Mcl-1
myeloid cell leukemia-1
- MEFs
mouse embryo fibroblasts
- miRNA/miR
microRNA
- MLS
mitochondrial localization signal
- MOMP
mitochondrial outer membrane permeabilization
- NOXA (PMAP1)
phorbol-12-myristate-13-acetate-induced protein 1
- OMM
outer mitochondrial membrane
- PCD
programmed cell death
- PI3K
phosphoinositide 3-kinase
- PUMA
p53 upregulated modulator of apoptosis
- ROS
reactive oxygen species
- Ser
serine
- Smac/DIABLO
second mitochondria-derived activator or caspases/direct IAP binding protein with low pI
- TRB3
tribbles 3 homolog
- UV-γIR
ultraviolet-gamma irradiation
Footnotes
The authors made an equal contribution to this paper
References
- 1.Green D.R., Reed J.C. Mitochondria and apoptosis. Science. 1998;281:1309–1312. doi: 10.1126/science.281.5381.1309. [DOI] [PubMed] [Google Scholar]
- 2.Zhivotovsky B., Orrenius S. Cell cycle and cell death in disease: past, present and future. J. Intern. Med. 2010;268:395–409. doi: 10.1111/j.1365-2796.2010.02282.x. [DOI] [PubMed] [Google Scholar]
- 3.Caroppi P., Sinibaldi F., Fiorucci L., Santucci R. Apoptosis and human diseases: mitochondrion damage and lethal role of released cytochrome c as proapoptotic protein. Curr. Med. Chem. 2009;16:4058–4065. doi: 10.2174/092986709789378206. [DOI] [PubMed] [Google Scholar]
- 4.Plati J., Khosravi-Far R. Apoptotic cell signaling in cancer progression and therapy. Integr. Biol. 2011;3:279–296. doi: 10.1039/c0ib00144a. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 5.Evan G., Vousden K.M. Proliferation, cell cycle and apoptosis in cancer. Nature. 2001;111:342–348. doi: 10.1038/35077213. [DOI] [PubMed] [Google Scholar]
- 6.Green D.R. Apoptotic pathway: paper wraps stone blunts scissors. Cell. 2000;102:1–4. doi: 10.1016/S0092-8674(00)00003-9. [DOI] [PubMed] [Google Scholar]
- 7.Hengartner M.O. The biochemistry of apoptosis. Nature. 2000;407:770–776. doi: 10.1038/35037710. [DOI] [PubMed] [Google Scholar]
- 8.Green D.R., Evan G.J. A matter of life and death. Cancer Cell. 2002;1:19–30. doi: 10.1016/S1535-6108(02)00024-7. [DOI] [PubMed] [Google Scholar]
- 9.Mohamed N., Gutierrez A., Nunez M., Cocca C., Marit G., Cricco G., Medina V., Rivera E., Bergoc R. Mitochondrial apoptotic pathways. Biocell. 2005;29:149–161. [PubMed] [Google Scholar]
- 10.van Gurp M., Festjens N., van Loo G., Saelens X., Vandenabeele P. Mitochondrial intermembrane proteins in cell death. Biochem. Biophys. Res. Commun. 2003;304:487–497. doi: 10.1016/S0006-291X(03)00621-1. [DOI] [PubMed] [Google Scholar]
- 11.Cain K., Bratton S.B., Langlais C., Walker G., Brown D.G., Sun X.M., Cohen G.M. Apaf-1 oligomerizes into biologically active approximately 700-kDa and inactive approximately 1.4 MDa apoptosome complex. J. Biol. Chem. 2000;275:6067–6070. doi: 10.1074/jbc.275.9.6067. [DOI] [PubMed] [Google Scholar]
- 12.Hill M.M., Adrian C., Martin S.J. Portrait of a killer: the mitochondrial apoptosome emerges from the shadows. Mol. Interv. 2003;3:19–26. doi: 10.1124/mi.3.1.19. [DOI] [PubMed] [Google Scholar]
- 13.Riedl S.J., Salvesen G.S. The apoptosome: signaling platform of cell death. Nat. Rev. Mol. Cell. Biol. 2007;8:405–413. doi: 10.1038/nrm2153. [DOI] [PubMed] [Google Scholar]
- 14.Borner C. The Bcl-2 protein family: sensors and checkpoints for life-ordeath decisions. Mol. Immunol. 2003;39:615–647. doi: 10.1016/S0161-5890(02)00252-3. [DOI] [PubMed] [Google Scholar]
- 15.Adams J.M., Cory S. The Bcl-2 apoptotic switch in cancer development and therapy. Oncogene. 2007;26:1324–1337. doi: 10.1038/sj.onc.1210220. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 16.Lanave C., Santamaria M., Saccone C. Comparative genomics: the evolutionary history of the Bcl-2 family. Gene. 2004;333:71–79. doi: 10.1016/j.gene.2004.02.017. [DOI] [PubMed] [Google Scholar]
- 17.Willis S.N., Adams J.M. Life in the balance: how BH3-only proteins induce apoptosis. Curr. Opin. Cell Biol. 2005;17:617–625. doi: 10.1016/j.ceb.2005.10.001. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 18.Lomonosova E., Chinnadurai G. BH3-only proteins in apoptosis and beyond: an overview. Oncogene. 2008;27:2–19. doi: 10.1038/onc.2009.39. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 19.Letai A., Bassik M.C., Walensky L.D., Sorcinelli M.D., Weiler S., Korsmeyer S.J. Distinct BH3 domains either sensitize or acrivate mitochondrial apoptosis, serving as prototype cancer therapeutics. Cancer Cell. 2002;2:183–192. doi: 10.1016/S1535-6108(02)00127-7. [DOI] [PubMed] [Google Scholar]
- 20.Chipuk J.E., Moldoveanu T., Llambi F., Parsons M.J., Green D.R. The BCL-2 family reunion. Mol. Cell. 2010;37:299–310. doi: 10.1016/j.molcel.2010.01.025. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 21.Elkholi R., Floros K.V., Chipuk J.E. The role of BH3-only proteins in tumor cell development, signaling and treatment. Genes Cancer. 2011;2:523–537. doi: 10.1177/1947601911417177. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 22.Fricker, M., O’Prey, J., Tolkovsy, A.M and Ryan, K.M. Phosphorylation of Puma modulates its apoptotic function by regulating protein stability. Cell Death Dis.1 (2010) DOI: e59; doc: 10.1038/cddis.2010.38. [DOI] [PMC free article] [PubMed]
- 23.Jeffers J.R., Parganas E., Lee Y., Yang C., Wang J., Brennan J., MacLean K.H., Han J., Chittenden T., Ihle J.N., McKinnon P.J., Cleveland J.L., Zambetti G.P. Puma is an essential mediator of p53-dependent and -independent apoptotic pathways. Cancer Cell. 2003;4:321–328. doi: 10.1016/S1535-6108(03)00244-7. [DOI] [PubMed] [Google Scholar]
- 24.Yu J., Zhang L. PUMA, a potent killer with or without p53. Oncogene. 2008;27:S71–S83. doi: 10.1038/onc.2009.45. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 25.Yu J., Zhang L., Hwang P.M., Kinzler K.W., Vogelstein B. PUMA induces the rapid apoptosis of colorectal cancer cells. Mol. Cell. 2001;7:673–682. doi: 10.1016/S1097-2765(01)00213-1. [DOI] [PubMed] [Google Scholar]
- 26.Nakano K., Vousden K.H. PUMA, a novel proapoptotic gene, is induced by p53. Mol. Cell. 2001;7:683–694. doi: 10.1016/S1097-2765(01)00214-3. [DOI] [PubMed] [Google Scholar]
- 27.Han J., Flemington C., Houghton A.B., Gu Z., Zambetti G.P., Lutz R.J., Zhu L., Chittenden T. Expression of bbc3, a pro-apoptotic BH3-only gene, is regulated by diverse cell death and survival signals. Proc. Natl. Acad. Sci. USA. 2001;98:11318–11323. doi: 10.1073/pnas.201208798. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 28.Yu J., Wang Z., Kinzler K.W., Vogelstein B., Zhang L. PUMA mediates the apoptotic response to p53 in colorectal cancer cells. Proc. Natl. Acad. Sci. USA. 2003;100:1931–1936. doi: 10.1073/pnas.2627984100. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 29.Yee K.S., Vousden K.H. Contribution of membrane localization to the apoptotic activity of PUMA. Apoptosis. 2008;13:87–95. doi: 10.1007/s10495-007-0140-2. [DOI] [PubMed] [Google Scholar]
- 30.Day C.L., Smits C., Fan C.F., Lee E.F., Fairlie W.D., Hinds M.G. Structure of the BH3 domains from the p53-inducible BH3-only proteins Noxa and Puma in complex with Mcl-1. J. Mol. Biol. 2008;380:958–971. doi: 10.1016/j.jmb.2008.05.071. [DOI] [PubMed] [Google Scholar]
- 31.Cregan S.P., Arbour N.A., Maclaurin J.G., Callaghan S.M., Fortin A., Cheung E.C., Guberman D.S., Park D.S., Slack R.S. p53 activation domain 1 is essential for PUMA upregulation and p53-mediated neuronal cell death. J. Neurosci. 2004;24:10003–10012. doi: 10.1523/JNEUROSCI.2114-04.2004. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 32.Wang X., Wang J., Lin S., Geng J., Wang J., Jiang B. Sp1 is involved in H2O2-induced PUMA gene expression and apoptosis in colorectal cancer cells. J. Exp. Clin. Cancer Res. 2008;24:27–44. doi: 10.1186/1756-9966-27-44. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 33.Ming L., Wang P., Bank A., Yu J., Zhang L. PUMA dissociated Bax and Bcl-XL to induce apoptosis in colon cancer cells. J. Bioch. Chem. 2006;28:16034–16042. doi: 10.1074/jbc.M513587200. [DOI] [PubMed] [Google Scholar]
- 34.Chipuk J.E., Bouchier-Hayes L., Kuwana T., Newmayer D.D., Green D.R. PUMA couples the nucler and cytoplasmic proapoptotic function of p53. Science. 2005;309:1732–1735. doi: 10.1126/science.1114297. [DOI] [PubMed] [Google Scholar]
- 35.Zhang C., Junxia Z., Zhang A., Wang Y., Han L., You Y., Pu P., Kang C. PUMA is a novel target of miR-221/222 in human epithelial cancers. Int. J. Oncol. 2010;37:1621–1626. doi: 10.3892/ijo_00000662. [DOI] [PubMed] [Google Scholar]
- 36.Zhang C., Zhang J., Zhang A., Shi Z., Han L., Jia Z., Yang W., Wang G., Jiang T., You Y., Pu P., Cheng J., Kang C. MiR-221 and miR-222 target PUMA to induce cell survival in glioblastoma. Mol. Cancer. 2010;9:1–9. doi: 10.1186/1476-4598-9-229. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 37.Jabbour A.M., Daunt C.P., Green B.D., Vogel S., Gordon L., Lee R.S., Silke N., Pearson R.B., Vandenberg C.J., Kelly P.N., Nutt S.L., Strasser A., Borner C., Ekert P.G. Myeloid progenitor cells lacking p53 exhibit delayed up-regulation of Puma and prolonged survival after cytokine deprivation. Blood. 2010;115:344–352. doi: 10.1182/blood-2009-07-230730. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 38.Ming L., Sakaida T., Yue W., Jha A., Zhang L., Yu J. Sp1 and p73 activate PUMA following serum starvation. Carcinogenesis. 2008;29:1878–1884. doi: 10.1093/carcin/bgn150. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 39.Ray R.M., Bhattacharya S., Johnson L.R. Mdm2 inhibition induces apoptosis in p53 deficient human colon cancer cells by activating p73- and E2F1-mediated expression of PUMA and Siva-1. Apoptosis. 2011;16:35–44. doi: 10.1007/s10495-010-0538-0. [DOI] [PubMed] [Google Scholar]
- 40.You H., Pellegrini M., Tsuchihara K., Yamamoto K., Häcker G., Erlacher M., Villunger A., Mak T.W. FOXO3a-dependent regulation of Puma in response to cytokine/growth factor withdrawal. J. Exp. Med. 2006;203:1657–1663. doi: 10.1084/jem.20060353. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 41.Dudgeon C., Wang P., Sun X., Peng R., Sun Q., Yu J., Zhang L. PUMA induction by FoxO3a mediates the anticancer activities of the broadrange kinase inhibitor UCN-01. Mol. Cancer Ther. 2010;9:2893–2902. doi: 10.1158/1535-7163.MCT-10-0635. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 42.Hershko T., Ginsberg D. Up-regulation of Bcl-2 homology 3 (BH3)-only proteins by E2F1 mediates apoptosis. J. Biol. Chem. 2004;279:8627–8634. doi: 10.1074/jbc.M312866200. [DOI] [PubMed] [Google Scholar]
- 43.Wu B., Qiu W., Wang P., Yu H., Cheng T., Zambetti G.P., Zhang L., Yu J. p53 independent induction of PUMA mediates intestinal apoptosis in response to ischaemia-reperfusion. Gut. 2007;56:645–654. doi: 10.1136/gut.2006.101683. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 44.Li J., Lee B., Lee A.S. Endoplasmic reticulum stress-induced apoptosis: multiple pathways and activation of p53-up-regulated modulator of apoptosis (PUMA) and NOXA by p53. J. Biol. Chem. 2006;281:7260–7270. doi: 10.1074/jbc.M509868200. [DOI] [PubMed] [Google Scholar]
- 45.Nickson P., Toth A., Erhardt P. PUMA is critical for neonatal cardiomyocyte apoptosis induced by endoplasmic reticulum stress. Cardiovasc. Res. 2007;73:48–56. doi: 10.1016/j.cardiores.2006.10.001. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 46.Webster K.A. Puma joins the battery of BH3-only proteins that promote death and infarction during myocardial ischemia. Am. J. of Physiol. Heart Circ. Physiol. 2006;291:20–22. doi: 10.1152/ajpheart.00111.2006. [DOI] [PubMed] [Google Scholar]
- 47.Toth A., Jeffers J.R., Nickson P., Min J.-Y., Morgan J.P., Zambetti G.P., Erhardt P. Targeted deletion of Puma attenuates cardiomyocyte death and improves cardiac function during ischemia-reperfusion. Am. J. Physiol. Heart Circ. Physiol. 2006;291:52–60. doi: 10.1152/ajpheart.01046.2005. [DOI] [PubMed] [Google Scholar]
- 48.Cazanave S.C., Elmi N.A., Akazawa Y., Bronk S.F., Mott J.L., Gores G.J. CHOP and AP-1 cooperatively mediate PUMA expression during lipoapoptosis. Am. J. Physiol. Gastrointest. Liver Physiol. 2010;299:236–243. doi: 10.1152/ajpgi.00091.2010. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 49.Fernandez P.C., Frank S.R., Wang L., Schroeder M., Liu S., Greene J., Cocito A., Amati B. Genomic targets of the human c-Myc protein. Genes Dev. 2003;17:1115–1129. doi: 10.1101/gad.1067003. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 50.Garrison S.P., Jeffers J.R., Yang C., Nilsson J.A., Hall M.A., Rehg J.E., Yue W., Yu J., Zhang L., Onciu M., Sample J.T., Cleveland J.L., Zambetti G.P. Selection against PUMA gene expression in Myc-driven Bcell lymphomagenesis. Mol. Cell. Biol. 2008;28:5391–5402. doi: 10.1128/MCB.00907-07. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 51.Happo, L., Strasser, A. and Scott, C.L. BH3-only Proteins. in: Cell Death (Melino, G. and Vaux, D., Ed.), 1th edition, John Wiley&Sons — Ltd, 2010, 75–90.
- 52.Erlacher M., Michalak E.M., Strasser A., Villunger A. The BH3-only proteins Puma and Noxa: Two Brothers in Arms. In: Debatin K.M., Fulda S., editors. Apoptosis and Cancer Therapy: From Cutting-edge Science to Novel Therapeutic Concepts. Weinheim, Germany: Wiley-VCH Verlag GmbH; 2008. pp. 379–402. [Google Scholar]
- 53.Lozano G., Zambetti G.P. What have animals models taught us about the p53 pathway? J. Pathol. 2005;205:206–220. doi: 10.1002/path.1704. [DOI] [PubMed] [Google Scholar]
- 54.Zapaśnik M., Cymerys J.M. p53 protein — guardian of the genome in the viral infection. Post. Biol. Kom. 2009;36:565–582. [Google Scholar]
- 55.Michalak E.M., Villunger A., Adams J.M., Strasser A. In several cell types tumour suppressor p53 induces apoptosis largely via Puma but Noxa can contribute. Cell Death Differ. 2008;15:1019–1029. doi: 10.1038/cdd.2008.16. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 56.Qiu W., Carson-Walter E.B., Liu H., Epperly M., Greenberger J.S., Zambetti G.P., Zhang L., Yu J. PUMA regulates intestinal progenitor cell radiosensitivity and gastrointestinal syndrome. Cell Stem Cell. 2008;2:576–583. doi: 10.1016/j.stem.2008.03.009. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 57.Wang P., Yu J., Zhang L. The nuclear function of p53 is required for PUMA-mediated apoptosis induced by DNA damage. Proc. Natl. Acad. Sci. USA. 2007;104:4054–4059. doi: 10.1073/pnas.0700020104. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 58.Charvet C., Wissler M., Brauns-Schubert P., Wang S.-J., Tang Y., Sigloch F.C., Mellert H., Brandenburg M., Lindner S.E., Breit B., Green D.R., McMahon S.B., Borner C., Gu W., Maurer U. Phosphporylation of Tip60 by GSK-3 determines the induction of PUMA and apoptosis by p53. Mol. Cell. 2011;42:584–596. doi: 10.1016/j.molcel.2011.03.033. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 59.Tang Y., Luo J., Zhang W., Gu W. Tip60-dependent acetylation of p53modulates the decision between cell-cycle arrest and apoptosis. Mol. Cell. 2006;24:827–839. doi: 10.1016/j.molcel.2006.11.021. [DOI] [PubMed] [Google Scholar]
- 60.Sykes S.M., Mellert H.S., Holbert M.A., Li K., Marmorstein R., Lane W.S., McMahon S.B. Acetylation of the p53 DNA binding domain regulates apoptosis induction. Mol. Cell. 2006;24:841–851. doi: 10.1016/j.molcel.2006.11.026. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 61.Ibrahim S.H., Akazawa Y., Cazanave S.C., Bronk S.F., Elmi N.A., Werneburg N.W., Billadeau D.D., Gores G.J. Glycogen synthase kinase-3 (GSK-3) inhibition attenuates hepatocyte lipoapoptosis. J. Hepatol. 2011;54:765–772. doi: 10.1016/j.jhep.2010.09.039. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 62.Hetz C., Glimcher L. The daily job of night killers: alternative roles of the BCL-2 family in organelle physiology. Trends Cell Biol. 2007;18:38–44. doi: 10.1016/j.tcb.2007.10.003. [DOI] [PubMed] [Google Scholar]
- 63.Luo X., He Q., Huang Y., Sheikh M.S. Transcriptional upregulation of PUMA modulates endoplasmic reticulum calcium pool depletioninduced apoptosis via Bax activation. Cell Death Differ. 2005;12:1310–1318. doi: 10.1038/sj.cdd.4401659. [DOI] [PubMed] [Google Scholar]
- 64.Jiang C.C., Lucas K., Avery-Kiejda K.A., Wade M., deBock C.E., Thorne R.F., Allen J., Hersey P., Zhang X.D. Up-regulation of Mcl-1 is critical for survival of human melanoma cells upon endoplasmic reticulum stress. Cancer Res. 2008;68:6708–6717. doi: 10.1158/0008-5472.CAN-08-0349. [DOI] [PubMed] [Google Scholar]
- 65.Wei J., O’Brien D., Vilgelm A., Piazuelo M.B., Correa P., Washinghton M.K., El-Rifai W., Peek R.M., Zaika A. Interaction of Helicobacter pylori with gastric epithelial cells is mediated by the p53 protein family. Gastroenterology. 2008;134:1412–1423. doi: 10.1053/j.gastro.2008.01.072. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 66.Perfettini J.-L., Roumier T., Casted M., Larochette N., Boya P., Raynal B., Lazar V., Ciccosanti F., Nardacci R., Penninger J., Piacentini M., Kroemer G. NF-κB and p53 qre the dominant apoptosis-inducing transcription factors elicited by the HIV-1 envelope. J. Exp. Med. 2004;199:629–640. doi: 10.1084/jem.20031216. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 67.Rodrigues R., Paranhos-Baccala G., Vernet G., Peyrefitte C.N. Crimean-congo hemorrhagic fever virus-infected hepatocytes induced ERstress and apoptosis crosstalk. PLoS. 2012;7:1–11. doi: 10.1371/journal.pone.0029712. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 68.Bauer A., Villunger A., Labi V., Fischer S.F., Strasser A., Wagner H., Schmid R.M., Häcker G. The NF-κB regulator Bcl-3 and the BH3-only proteins Bim and Puma control the death of activated T cells. Proc. Natl. Acad. Sci. USA. 2006;103:10979–10984. doi: 10.1073/pnas.0603625103. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 69.Fisher S.F., Belz G.T., Strasser A. BH3-only protein Puma contributes to death of antigen-specific T cells during shutdown of an immune response to acute viral infection. Proc. Natl. Acad. Sci. USA. 2008;105:3035–3040. doi: 10.1073/pnas.0706913105. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 70.Häcker G., Bauer A., Villunger A. Apoptosis in activated T cells: what are the triggers, and what the signal transducers? Cell Cycle. 2006;5:2421–2424. doi: 10.4161/cc.5.21.3397. [DOI] [PubMed] [Google Scholar]
- 71.Hildeman D., Jorgensen T., Kappler J., Marrack P. Apoptosis and the homeostatic control of immune responses. Curr. Opin. Immunol. 2007;19:516–521. doi: 10.1016/j.coi.2007.05.005. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 72.Steckley D., Karajgikar M., Dale L.B., Fuerth B., Swan P., Drummond-Main C., Poulter M.O., Ferguson S.S., Strasser A., Cregan S.P. Puma is a dominant regulator of oxidative stress induced Bax activation and neuronal apoptosis. J. Neurosci. 2007;27:12989–12999. doi: 10.1523/JNEUROSCI.3400-07.2007. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 73.Sandow, J.J. Regulation of the BH3-only protein PUMA by growth factor signalling. Ph.D. Thesis of the University of Adelaide, School of Medicine, 2011, 1–144.
- 74.Dewson G., Kluck R.M. Mechanisms by which Bak and Bax permeabilise mitochondria during apoptosis. J. Cell Sci. 2009;122:2801–2808. doi: 10.1242/jcs.038166. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 75.Häcker G., Weber A. BH3-only proteins trigger cytochrome c release, but how? Arch. Biochem. Biophys. 2007;462:150–155. doi: 10.1016/j.abb.2006.12.022. [DOI] [PubMed] [Google Scholar]
- 76.Kim H., Tu H.C., Ren D., Takeuchi O., Jeffers J.R., Zambetti G.P., Hsieh J.J., Cheng E.H. Stepwise activation of BAX and BAK by tBID, BIM, and PUMA initiates mitochondrial apoptosis. Mol. Cell. 2009;36:487–499. doi: 10.1016/j.molcel.2009.09.030. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 77.Gallenne T., Gautier F., Oliver L., Hervouet E., Noël B., Hickman J.A., Geneste O., Cartron P.F., Vallette F.M., Manon S., Juin P. Bax activation by the BH3-only protein Puma promotes cell dependence on antiapoptotic Bcl-2 family members. J. Cell Biol. 2009;185:279–290. doi: 10.1083/jcb.200809153. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 78.Kuwana T., Bouchier-Hayes L., Chipuk J.E., Bonzon C., Sullivan B.A., Green D.R., Newmeyer D.D. BH3 domains of BH3-only proteins differentially regulate Bax-mediated mitochondrial membrane permeabilization both directly and indirectly. Mol. Cell. 2005;17:525–535. doi: 10.1016/j.molcel.2005.02.003. [DOI] [PubMed] [Google Scholar]
- 79.Westphalm D., Dewson G., Czabotar P.E., Kluck R.M. Molecular biology of Bax and Bak activation and action. Biochim. Biophys. Acta. 2011;1813:521–531. doi: 10.1016/j.bbamcr.2010.12.019. [DOI] [PubMed] [Google Scholar]
- 80.Lindsay J., Esposti M.D., Gilmore A.P. Bcl-2 proteins and mitochondria-specificity in membrane targeting for death. Biochim. Biophys. Acta. 2011;1813:532–539. doi: 10.1016/j.bbamcr.2010.10.017. [DOI] [PubMed] [Google Scholar]
- 81.Ghiotto F., Fais F., Bruno S. BH3-Only Proteins: The death puppeteer’s wires. Cytometry A. 2010;77:11–21. doi: 10.1002/cyto.a.20819. [DOI] [PubMed] [Google Scholar]
- 82.Giam M., Huang D.S.C., Bouillet P. BH3-only proteins and their roles in programmed cell death. Oncogene. 2009;27:128–136. doi: 10.1038/onc.2009.50. [DOI] [PubMed] [Google Scholar]
- 83.Shamas-Din A., Brahmbhatt H., Leber B., Andrews D.W. BH3-only proteins: orchestrators of apoptosis. Biochim. Biophys. Acta. 2010;1813:508–520. doi: 10.1016/j.bbamcr.2010.11.024. [DOI] [PubMed] [Google Scholar]
- 84.Leber B., Lin J., Andrews D. W. Embedded Together: the life and death consequences of interaction of the Bcl-2 family with membranes. Apoptosis. 2007;12:897–911. doi: 10.1007/s10495-007-0746-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 85.Chipuk J.E., Green D.R. How do BCL-2 proteins induce mitochondria outer membrane permeabilization? Trends Cell Biol. 2008;18:157–164. doi: 10.1016/j.tcb.2008.01.007. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 86.Shore G.C. Apoptosis: it’s BAK to VDAC. EMBO Rep. 2009;10:1311–1313. doi: 10.1038/embor.2009.249. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 87.Gavathiotis E., Suzuki M., Davis M.L., Pitter K., Bird G.H., Katz S.G., Tu H.C., Kim H., Cheng E.H., Tjandra N., Walensky L.D. BAX activation is initiated at a novel interaction site. Nature. 2008;455:1076–81. doi: 10.1038/nature07396. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 88.Willis S.N., Fletcher J.I., Kaumann T., van Delft M.F., Chen L., Czabotar P.E., Lerino H., Lee E.F., Fairlie W.D., Bouillet P., Strasser A., Kluck R.M., Adams J.M., Huang D.C.S. Apoptosis initiated when BH3 ligands engage multiple Bcl-2 homologs, not Bax or Bak. Science. 2007;315:856–859. doi: 10.1126/science.1133289. [DOI] [PubMed] [Google Scholar]
- 89.Jabbour A.M., Heraud J.E., Daunt C.P., Kaufmann T., Sandow J., O’Reilly L.A., Callus B.A., Lopez A., Strasser A., Vaux D.L., Ekert P.G. Puma indirectly activates Bax to cause apoptosis in the absence of Bid or Bim. Cell Death Differ. 2009;16:555–563. doi: 10.1038/cdd.2008.179. [DOI] [PubMed] [Google Scholar]
- 90.Chipuk J.E., Fisher J.C., Dillon C.P., Kriwacki R.W., Kuwana T., Green D.R. Mechanism of apoptosis induction by inhibition of the antiapoptotic BCL-2 proteins. Proc. Natl. Acad. Sci. USA. 2008;105:20327–20332. doi: 10.1073/pnas.0808036105. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 91.Chen L., Willis S.N., Wei A., Smith B.J., Fletcher J.I., Hinds M.G., Colman P.M., Day C.L., Adams J.M., Huang D.C. Differential targeting of prosurvival Bcl-2 proteins by their BH3-only ligands allows complementary apoptotic function. Mol. Cell. 2005;17:393–403. doi: 10.1016/j.molcel.2004.12.030. [DOI] [PubMed] [Google Scholar]
- 92.Vaseva A.V., Moll U.M. The mitochondrial p53 pathway. Biochim. Biophys. Acta. 2009;1787:414–420. doi: 10.1016/j.bbabio.2008.10.005. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 93.Vousden K.H. Apoptosis - p53 and PUMA: a deadly duo. Science. 2005;309:1685–1686. doi: 10.1126/science.1118232. [DOI] [PubMed] [Google Scholar]
- 94.Chipuk J.E., Bouchier-Haues L., Kuwana T., Newmeyer D.D., Green D.R. PUMA couples the nuclear and cytoplasmic proapoptotic function of p53. Science. 2005;309:1732–1735. doi: 10.1126/science.1114297. [DOI] [PubMed] [Google Scholar]
- 95.Wolff S., Erster S., Palacios G., Moll U.M. p53’s mitochondrial translocation and MOMP action is independent of Puma and Bax and severaly disrupts mitochondrial membrane integrity. Cell Res. 2008;18:733–744. doi: 10.1038/cr.2008.62. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 96.Yoo N.J., Lee J.W., Jeong E.G., Lee S.H. Immunohistochemical analysis of pro-apoptotic PUMA protein and mutational analysis of PUMA gene in gastric carcinomas. Dig. Liver Dis. 2007;39:222–227. doi: 10.1016/j.dld.2006.11.006. [DOI] [PubMed] [Google Scholar]
- 97.Kuroda J., Taniwaki M. Involvement of BH3-only proteins in hematologic malignancies. Crit. Rev. Oncol. Hematol. 2009;71:89–101. doi: 10.1016/j.critrevonc.2008.10.004. [DOI] [PubMed] [Google Scholar]
- 98.Pietsch E.C., Sykes S.M., McMahon S.B., Murphy M.E. The p53 family and programmed cell death. Oncogene. 2008;27:6507–6521. doi: 10.1038/onc.2008.315. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 99.Hoque M.O., Begum S., Sommer M., Lee T., Trink B., Ratovitski E., Sidransky D. PUMA in head and neck cancer. Cancer Lett. 2003;199:75–81. doi: 10.1016/S0304-3835(03)00344-6. [DOI] [PubMed] [Google Scholar]
- 100.Ahn C.H., Jeong E.G., Kim S.S., Lee J.W., Lee S.H., Kim S.H., Kim M.S., Yoo N.J., Lee S.H. Expressional and mutational analysis of proapoptotic Bcl-2 member PUMA in hepatocellular carcinomas. Dig. Dis. Sci. 2008;53:1395–1399. doi: 10.1007/s10620-007-9987-x. [DOI] [PubMed] [Google Scholar]
- 101.Kim M.R., Jeong E.G., Chae B., Lee J.W., Soung Y.H., Nam S.W., Lee J.Y., Yoo N.J., Sug H. Lee. Pro-apoptotic PUMA and antiapoptotic phospho-BAD are highly expressed in colorectal carcinomas. Dig. Dis. Sci. 2007;52:2751–2756. doi: 10.1007/s10620-007-9799-z. [DOI] [PubMed] [Google Scholar]
- 102.Michalak, E.M., Jansen, E.S., Happo, L., Cragg, M.S., Tai, L., Smyth, G.K., Strasser, A., Adams, J.M. and Scott, C.L. Puma and to a lesser extent Noxa are suppressors of Myc-induced lymphomagenesis. Cell Death Differ.16 (2009). [DOI] [PMC free article] [PubMed]
- 103.Sharma A.D., Narain N., Händel E.-M., Iken M., Singhal N., Cathomen T., Manns M.P., Schöler H.R., Ott M., Cantz T. MicroRNA-221 regulates FAS-induced fulminant liver failure. Hepatology. 2011;53:1651–1661. doi: 10.1002/hep.24243. [DOI] [PubMed] [Google Scholar]
- 104.Shao L., Sun Y., Zhang Z., Feng W., Gao Y., Cai Z., Wang Z.Z., Look A.T., Wu W.S. Deletion of proapototic Puma selectively protects hematopoietic stem and progenitor cells against high dose radiation. Blood. 2010;115:4707–4714. doi: 10.1182/blood-2009-10-248872. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 105.Yu H., Shen H., Yuan Y., Xu-Feng R., Hu X., Garrison S.P., Zhang L., Yu J., Zambetti G.P., Cheng T. Deletion of Puma protects hematopoietic stem cells and confers long term survival in response to high-dose radiation. Blood. 2010;115:3472–3480. doi: 10.1182/blood-2009-10-248278. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 106.Labi V., Erlacher M., Krumschnabel G., Manzl C., Tzankov A., Pinon J., Egle A., Villunger A. Apoptosis of leukocytes triggered by acute DNA damage promotes lymphoma formation. Genes Dev. 2010;25:1602–1607. doi: 10.1101/gad.1940210. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 107.Michalak E.M., Vandenberg C.J., Delbridge A.R.D., Wu L., Scott C.L., Adams J.M., Strasser A. Apoptosis-promoted tumorgenesis: γ-irradiation-induced thymic lymphpomagenesis requires Puma-driven leukocyte death. Genes Dev. 2010;24:1608–1613. doi: 10.1101/gad.1940110. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 108.Qiu W., Wang X., Leibowitz B., Yang W., Zhang L., Yu J. PUMAmediated apoptosis drives chemical hepatocarcinogenesis in mice. Hepatology. 2011;54:1249–1258. doi: 10.1002/hep.24516. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 109.Llambi F., Green D.R. Apoptosis and oncogenesis: give and take in the BLC-2 family. Curr. Opin. Genet. Dev. 2011;21:12–20. doi: 10.1016/j.gde.2010.12.001. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 110.Li, F., Huang, Q., Chen, J., Peng, Y., Roop, D., Bedford, J.S. and Li, C-Y. Apoptotic cells activate the “phoenix rising” pathway to promote wound healing and tissue regeneration. Sci. Signal.3 (2010) 10.1126/scisignal.2000634. [DOI] [PMC free article] [PubMed]
- 111.Baumgartner F., Villunger A. Apoptosis: a barrier against cancer no more? Hepatology. 2011;54:1121–1124. doi: 10.1002/hep.24637. [DOI] [PubMed] [Google Scholar]
- 112.Labi V., Villunger A. PUMA-mediated tumor suppression. Cell cycle. 2010;9:4269–4275. doi: 10.4161/cc.9.21.13666. [DOI] [PubMed] [Google Scholar]