Skip to main content
Cellular & Molecular Biology Letters logoLink to Cellular & Molecular Biology Letters
. 2007 Mar 15;12(3):448–456. doi: 10.2478/s11658-007-0017-y

The effect of growth medium on the antioxidant defense of Saccharomyces cerevisiae

Ewa Macierzyńska 1,, Agnieszka Grzelak 1, Grzegorz Bartosz 1,2
PMCID: PMC6275951  PMID: 17361365

Abstract

We compared the oxidation of dihydrorhodamine 123, glutathione contents and activities of superoxide dismutase (SOD) and catalase for three wild-type strains of Saccharomyces cerevisiae grown on media with different carbon sources. The rate of oxidation of dihydrorhodamine 123 was much higher in respiring cells grown on ethanol or glycerol media than in fermenting cells grown on glucose medium. The total SOD activity was highest on glycerol medium and lowest on ethanol medium, while the catalase activity was highest on glycerol medium. The sequence of glutathione content values was: glucose > ethanol > glycerol.

Key words: Yeast, Saccharomyces cerevisiae, Reactive oxygen species, Superoxide dismutase, Catalase, Glutathione

Full Text

The Full Text of this article is available as a PDF (414.0 KB).

Abbreviations used

DTNB

5,5′-dithiobis-(2-nitrobenzoic acid)

H2R 123

dihydrorhodamine 123

MES

2-morpholinoethanesulfonic acid

ROS

reactive oxygen species

SOD

superoxide dismutase

YPD medium

1% yeast extract, 1% Bacto-peptone, 2% glucose, YPG medium, 1% yeast extract, 1% Bacto-peptone,2% glycerol

YPE medium

1% yeast extract, 1% Bacto-peptone, 3% ethanol

References

  • 1.Hortner H., Ammerer G., Hartter E., Hamilton B., Rytka J., Bilinski T., Ruis H. Regulation of synthesis of catalases and iso-1-cytochrome c in Saccharomyces cerevisiae by glucose, oxygen and heme. Eur. J. Biochem. 1982;128:179–184. doi: 10.1111/j.1432-1033.1982.tb06949.x. [DOI] [PubMed] [Google Scholar]
  • 2.Sigler K., Chaloupka J., Brozmanova J., Stadler N., Hofer M. Oxidative stress in microorganisms—I. Microbial vs. higher cells—damage and defenses in relation to cell aging and death. Folia Microbiol. (Praha) 1999;44:587–624. doi: 10.1007/BF02825650. [DOI] [PubMed] [Google Scholar]
  • 3.Balaban R.S., Nemoto S., Finkel T. Mitochondria, oxidants, and aging. Cell. 2005;120:483–495. doi: 10.1016/j.cell.2005.02.001. [DOI] [PubMed] [Google Scholar]
  • 4.Fiechter A., Gmunder F.K. Metabolic control of glucose degradation in yeast and tumor cells. Adv. Biochem. Eng. Biotechnol. 1989;39:1–28. doi: 10.1007/BFb0051950. [DOI] [PubMed] [Google Scholar]
  • 5.Shuster J.R. Regulated transcriptional systems for the production of proteins in yeast: regulation by carbon source. Biotechnology. 1989;13:83–108. [PubMed] [Google Scholar]
  • 6.Costa V., Amorim M.A., Reis E., Quintanilha A., Moradas-Ferreira P. Mitochondrial superoxide dismutase is essential for ethanol tolerance of Saccharomyces cerevisiae in the post-diauxic phase. Microbiology. 1997;143:1649–1656. doi: 10.1099/00221287-143-5-1649. [DOI] [PubMed] [Google Scholar]
  • 7.Schuller H.J. Transcriptional control of nonfermentative metabolism in the yeast Saccharomyces cerevisiae. Curr. Genet. 2003;43:139–160. doi: 10.1007/s00294-003-0381-8. [DOI] [PubMed] [Google Scholar]
  • 8.Barnett J.A., Entian K.D. A history of research on yeasts 9: regulation of sugar metabolism. Yeast. 2005;22:835–894. doi: 10.1002/yea.1249. [DOI] [PubMed] [Google Scholar]
  • 9.Penninckx M.J. An overview on glutathione in Saccharomyces versus nonconventional yeasts. FEMS Yeast Res. 2002;2:295–305. doi: 10.1016/S1567-1356(02)00081-8. [DOI] [PubMed] [Google Scholar]
  • 10.Pocsi I., Prade R.A., Penninckx M.J. Glutathione, altruistic metabolite in fungi. Adv. Microb. Physiol. 2004;49:1–76. doi: 10.1016/S0065-2911(04)49001-8. [DOI] [PubMed] [Google Scholar]
  • 11.Lee J.C., Straffon M.J., Jang T.Y., Higgins V.J., Grant C.M., Dawes I.W. The essential and ancillary role of glutathione in Saccharomyces cerevisiae analysed using a grande gsh1 disruptant strain. FEMS Yeast Res. 2001;1:57–65. doi: 10.1111/j.1567-1364.2001.tb00013.x. [DOI] [PubMed] [Google Scholar]
  • 12.Avery A.M., Avery S.V. Saccharomyces cerevisiae expresses three phospholipid hydroperoxide glutathione peroxidases. J. Biol. Chem. 2001;276:33730–33735. doi: 10.1074/jbc.M105672200. [DOI] [PubMed] [Google Scholar]
  • 13.Maris A.F., Assumpcao A.L., Bonatto D., Brendel M., Henriques J.A. Diauxic shift-induced stress resistance against hydroperoxides in Saccharomyces cerevisiae is not an adaptive stress response and does not depend on functional mitochondria. Curr. Genet. 2001;39:137–149. doi: 10.1007/s002940100194. [DOI] [PubMed] [Google Scholar]
  • 14.Lushchak V., Semchyshyn H., Mandryk S., Lushchak O. Possible role of superoxide dismutases in the yeast Saccharomyces cerevisiae under respiratory conditions. Arch. Biochem. Biophys. 2005;441:35–40. doi: 10.1016/j.abb.2005.06.010. [DOI] [PubMed] [Google Scholar]
  • 15.Grzelak A., Soszynski M., Bartosz G. Inactivation of antioxidant enzymes by peroxynitrite. Scand. J. Clin. Lab. Invest. 2000;60:253–258. doi: 10.1080/003655100750046413. [DOI] [PubMed] [Google Scholar]
  • 16.Misra H.P., Fridovich I. The role of superoxide anion in the autoxidation of epinephrine and a simple assay for superoxide dismutase. J. Biol. Chem. 1972;247:3170–3175. [PubMed] [Google Scholar]
  • 17.Akerboom T.P., Sies H. Assay of glutathione, glutathione disulfide, and glutathione mixed disulfides in biological samples. Methods Enzymol. 1981;77:373–382. doi: 10.1016/S0076-6879(81)77050-2. [DOI] [PubMed] [Google Scholar]
  • 18.Lowry O.H., Rosebrough N.J., Farr A.L., Randall R.J. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 1951;193:265–275. [PubMed] [Google Scholar]
  • 19.Ronne H. Glucose repression in fungi. Trends Genet. 1995;11:12–17. doi: 10.1016/S0168-9525(00)88980-5. [DOI] [PubMed] [Google Scholar]
  • 20.Bartosz G. Limitations and pitfalls of the use of spectroscopic probes for the detection of reactive oxygen species. Clin. Chim. Acta. 2006;368:53–76. doi: 10.1016/j.cca.2005.12.039. [DOI] [PubMed] [Google Scholar]
  • 21.Wrona M., Patel K., Wardman P. Reactivity of 2′,7′-dichlorodihydrofluorescein and dihydrorhodamine 123 and their oxidized forms toward carbonate, nitrogen dioxide, and hydroxyl radicals. Free Radic. Biol. Med. 2005;38:262–270. doi: 10.1016/j.freeradbiomed.2004.10.022. [DOI] [PubMed] [Google Scholar]
  • 22.Jakubowski W., Bartosz G. 2,7-dichlorofluorescin oxidation and reactive oxygen species: what does it measure? Cell Biol. Int. 2000;24:757–760. doi: 10.1006/cbir.2000.0556. [DOI] [PubMed] [Google Scholar]
  • 23.Bartosz G. Use of spectroscopic probes for detection of reactive oxygen species. Clin. Chim. Acta. 2006;368:53–76. doi: 10.1016/j.cca.2005.12.039. [DOI] [PubMed] [Google Scholar]
  • 24.Bito A., Haider M., Hadler I., Breitenbach M. Identification and phenotypic analysis of two glyoxalase II encoding genes from Saccharomyces cerevisiae, GLO2 and GLO4, and intracellular localization of the corresponding proteins. J. Biol. Chem. 1997;272:21509–21519. doi: 10.1074/jbc.272.34.21509. [DOI] [PubMed] [Google Scholar]
  • 25.Schafer F.Q., Buettner G.R. Redox environment of the cell as viewed through the redox state of the glutathione disulfide/glutathione couple. Free Radic. Biol. Med. 2001;30:1191–1212. doi: 10.1016/S0891-5849(01)00480-4. [DOI] [PubMed] [Google Scholar]
  • 26.Drakulic T., Temple M.D., Guido R., Jarolim S., Breitenbach M., Attfield P.V., Dawes I.W. nvolvement of oxidative stress response genes in redox homeostasis, the level of reactive oxygen species, and ageing in Saccharomyces cerevisiae. FEMS Yeast Res. 2005;5:1215–1228. doi: 10.1016/j.femsyr.2005.06.001. [DOI] [PubMed] [Google Scholar]
  • 27.Grant C.M., Perrone G., Dawes I.W. Glutathione and catalase provide overlapping defenses for protection against hydrogen peroxide in the yeast Saccharomyces cerevisiae. Biochem. Biophys. Res. Commun. 1998;253:893–898. doi: 10.1006/bbrc.1998.9864. [DOI] [PubMed] [Google Scholar]
  • 28.Xu B.E., Skowronek K.R., Kurjan J. The N terminus of Saccharomyces cerevisiae Sst2p plays an RGS-domain-independent, Mpt5p-dependent role in recovery from pheromone arrest. Genetics. 2001;159:1559–1571. doi: 10.1093/genetics/159.4.1559. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Cellular & Molecular Biology Letters are provided here courtesy of BMC

RESOURCES