Skip to main content
Cellular & Molecular Biology Letters logoLink to Cellular & Molecular Biology Letters
. 2006 Jun 1;11(2):279–290. doi: 10.2478/s11658-006-0024-4

The DefH9-iaaM-containing construct efficiently induces parthenocarpy in cucumber

Zhimin Yin 1, Robert Malinowski 2, Agnieszka Ziółkowska 2, Hans Sommer 3, Wojciech Plcader 2, Stefan Malepszy 2,
PMCID: PMC6275954  PMID: 16847572

Abstract

Parthenocarpy (seedless fruits) is a desirable trait that has been achieved in many plant cultivars. We generated parthenocarpic cucumber fruits by introducing the chimeric DefH9-iaaM construct into the cucumber genome using an Agrobacterium tumefaciens-mediated protocol. The construct consists of the DefH9 promoter from Antirrhinum majus and the iaaM coding sequence from Pseudomonas syringae. Transgenic plants were obtained from nine independent transformation events: half of these were tetraploid and did not produce seeds following self-pollination, while the remaining half were capable of displaying parthenocarpy in the subsequent reproductive generation. Of the fruits produced by the transgenic lines, 70–90% were parthenocarpic. The segregation of the marker gene in the transgenic T1 progeny indicated single gene inheritance. The seed set in the transgenic lines and their F1 hybrids was lower than in the non-transgenic control plants. Some of the methodological details and the practical significance of the results are discussed.

Key words: Fruit set, Cucumber, Ovary-specific promoter, Transgenic parthenocarpy

Full Text

The Full Text of this article is available as a PDF (748.2 KB).

References

  • 1.Denna D.W. Effects of genetic parthenocarpy and gynoecious flowering habit on fruit production and growth of cucumber Cucumis sativus L. J. Amer. Soc. Hortic. Sci. 1973;98:602–604. [Google Scholar]
  • 2.Ponti O.M.B., Garretsen F. Inheritance of parthenocarpy in pickling cucumbers (Cucumis sativus L.) and linkage with other characters. Euphytica. 1976;25:633–642. doi: 10.1007/BF00041600. [DOI] [Google Scholar]
  • 3.Sun, Z., Lower, L.M. and Staub, J.E. Generation means analysis of parthenocarpic characters in a processing cucumber (Cucumis sativus) population, In: Proceedings ofCucurbitaceae2004, the 8th Eucarpia Meetings on Cucurbit Genetics and Breeding, Olomouc, Czech Republic, A. Lebeda and H.S. Paris (eds); (2004) 365–371.
  • 4.Rotino G.L., Perri E., Zottini M., Sommer H., Spena A. Genetic engineering of parthenocarpic plants. Nat. Biotechnol. 1997;15:1398–1401. doi: 10.1038/nbt1297-1398. [DOI] [PubMed] [Google Scholar]
  • 5.Varoquaux F., Branvillain R., Delseny M., Gallois P. Less is better: new approaches for seedless fruit production. TIBTECH. 2000;18:233–239. doi: 10.1016/s0167-7799(00)01448-7. [DOI] [PubMed] [Google Scholar]
  • 6.Ficcadenti N., Sestili S., Pandolfini T., Cirillo C.H., Rotino G.L., Spena A. Genetic engineering of parthenocarpic fruit development in tomato. Mol. Breed. 1999;5:463–470. doi: 10.1023/A:1009665409959. [DOI] [Google Scholar]
  • 7.Pandolfini T., Rotino G.L., Camerini S., Defez R., Spena A. Optimisation of transgene action at the post-transcriptional level: high quality parthenocarpic fruits in industrial tomatoes. BMC Biotechnol. 2002;2:1. doi: 10.1186/1472-6750-2-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 8.Carmi N., Salts Y., Shabati S., Pilowsky M., Barg R., Dedicova B. Transgenic parthenocarpy due to specific over-sensitization of the ovary to auxin. Acta Hortic. 1997;447:597–601. [Google Scholar]
  • 9.Sarmento G.G., Alpert K.B., Punja Z.K., Tang F.A. Transformation of pickling cucumber (Cucumis sativus L.) by Agrobacterium tumefaciens and expression of kanamycin resistance in regenerated transgenic plants. J. Cell. Bioch. Supplement. 1989;13D:268. [Google Scholar]
  • 10.Trulson A.J., Simpson R.B., Shahin E.A. Transformation of cucumber (Cucumis sativus L.) with Agrobacterium rhizogenes. Theor. Appl. Genet. 1986;73:11–15. doi: 10.1007/BF00273711. [DOI] [PubMed] [Google Scholar]
  • 11.Chee P.P., Slightom J.L. Transformation of cucumber tissues by microprojectile bombardment: identification of plants containing functional and non-functional transferred genes. Gene. 1992;118:255–260. doi: 10.1016/0378-1119(92)90196-V. [DOI] [PubMed] [Google Scholar]
  • 12.Yin Z., Pląder W., Wiśniewska A., Szwacka M., Malepszy S. Transgenic cucumber — a current state. Folia Hortic. 2005;17:73–90. [Google Scholar]
  • 13.Chee P.P., Slightom J.L. Transfer and expression of Cucumber Mosaic Virus coat protein gene in the genome of Cucumis sativus. J. Amer. Soc. Hortic. Sci. 1991;116:1098–1102. [Google Scholar]
  • 14.Nishibayashi S., Hayakawa T., Nakajima T., Suzuki M., Kaneko H. CMV protection in transgenic cucumber plants with an introduced CMV-O cp gene. Theor. Appl. Genet. 1996;93:672–678. doi: 10.1007/BF00224061. [DOI] [PubMed] [Google Scholar]
  • 15.Lee, G.P., Kim, C.S., Ryu, K.H. and Rark, K.W. Agrobacterium-mediated transformation of Cucumis sativus expressing the coat protein gene of zucchini green mottle mosaic virus (ZGMMV). Proceedings of XXVIthInternational Horticultural Congress, Metro Toronto Convention Centre, August 12, 2002. Symposium 11, Asian plants with unique horticulture potential, genetic resources, cultural practices and utilization, S11-P11 (2002) 300.
  • 16.Raharijo S.H.T., Hernadez M.O., Zhang Y.Y., Punja Z.K. Transformation of picking cucumber with chitinase-encoding genes using Agrobacterium tumefaciens. Plant Cell Rep. 1996;15:591–596. doi: 10.1007/s002990050080. [DOI] [PubMed] [Google Scholar]
  • 17.Tabei Y., Kitade S., Nishizawa Y., Kikuchi N., Kayano T., Hibi T., Akutsu K. Transgenic cucumber plants harboring a rice chitinase gene exhibit enhanced resistance to gray mold (Botrytis cinerea) Plant Cell Rep. 1998;17:159–164. doi: 10.1007/s002990050371. [DOI] [PubMed] [Google Scholar]
  • 18.Yin Z., Pawłowicz I., Malepszy S., Rorat T. Transcriptional expression of a Solanum sogarandinum GT-Dhn10 gene fusion in cucumber and its correlation with chilling tolerance in transgenic seedlings. Cell Mol. Biol. Lett. 2004;9:891–902. [PubMed] [Google Scholar]
  • 19.Yin, Z., Rorat, T., Szabala, B.M., Ziółkowska, A. and Malepszy, S. Expression of a Solanum sogarandium SK3 type dehydrin enhances cold tolerance in transgenic cucumber seedlings, Plant Sci. (2006) 1164–1172.
  • 20.Szwacka M., Krzymowska M., Osuch A., Kowalczyk M.E., Malepszy S. Variable properties of transgenic cucumber plants containing the thaumatin II gene from Thaumatococcus danielli. Acta Physiol. Plant. 2002;24:173–185. [Google Scholar]
  • 21.Lee H.S., Kwon E.J., Kwon S.Y., Jeong Y.J., Lee E.M., Jo M.H., Kim H.S., Woo I.S., Atsuhiko S., Kazuya Y., Kwak S.S. Transgenic cucumber fruits that produced elevated level of an anti-aging superoxide dismutase. Mol. Breed. 2003;11:213–220. doi: 10.1023/A:1022894303834. [DOI] [Google Scholar]
  • 22.Gal-On A., Wolf D., Antignus Y., Patlis L., Ryu Hyun K., Eun Min B., Pearlsman M., Lachman O., Gaba W., Wang Y., Moshe Shiboleth Y., Yang J., Zelcer A. Transgenic cucumbers harboring the 54-kDa putative gene of Cucumber fruit mottle mosaic tobamovirus are highly resistant to viral infection and protect non-transgenic scions from soil infection. Transgenic Res. 2005;14:81–93. doi: 10.1007/s11248-004-3802-7. [DOI] [PubMed] [Google Scholar]
  • 23.An G. Development of plant promoter expression vectors and their use for analysis of differential activity of nopaline synthase promoter in transformed tobacco cells. Plant Physiol. 1986;81:86–91. doi: 10.1104/pp.81.1.86. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 24.ładyżyński M., Burza W., Malepszy S. Relationship between somaclonal variation and type of culture in cucumber. Euphytica. 2002;125:349–356. doi: 10.1023/A:1016017825907. [DOI] [Google Scholar]
  • 25.Scott D.M., Manorama C.J., Richard M.A. Removal of polysaccharides from plant DNA by ethanol precipitation. Biotechniques. 1994;17:274–276. [PubMed] [Google Scholar]
  • 26.Biriukova, N. and Maslovskaya, E. The influence of cultivation conditions on parthenocarpy of cucumber, In: Proceedings of Cucurbitaceae2004, the 8th EUCARPIA Meeting on Cucurbit Genetics and Breeding (Lebeda A. and Paris H.S. Eds.), Palacky University Olomouc, (2004) 51–56.
  • 27.Mackiewicz H., Malepszy S. Obtaining and characterization of tetraploid forms in cucumber — Cucumis sativus L. var. sativus and hardwickii Alef. Folia Hortic. 1996;8:3–10. [Google Scholar]

Articles from Cellular & Molecular Biology Letters are provided here courtesy of BMC

RESOURCES