Skip to main content
Cellular & Molecular Biology Letters logoLink to Cellular & Molecular Biology Letters
. 2007 Apr 6;12(3):407–421. doi: 10.2478/s11658-007-0012-3

The construction of the eukaryotic expression plasmid pcDNA3.1/azurin and the increased apoptosis of U2OS cells transfected with it

Zhaoming Ye 1, Huiqin Peng 2, Yongming Fang 3, Jie Feng 1, Di-Sheng Yang 1,
PMCID: PMC6275960  PMID: 17415534

Abstract

In our previous study, we demonstrated that azurin could selectively trigger apoptosis in human osteosarcoma cell line U2OS cells. However, the rate of apoptosis (35.8 ± 3.2%) is not very high, and azurin is too expensive to obtain readily. To solve these problems, we constructed a eukaryotic expression plasmid containing the azurin gene with an influenza virus haemagglutinin 9 peptide HA epitope tag, and transfected the recombinant plasmid pcDNA3.1(+)/azurin into U2OS cells. RT-PCR and Western blot analysis validated the successful transfection and the expression of the azurin-HA protein. Conspicuous apoptosis of the transfected cells was detected by flow cytometry (FCM) and the DNA ladder test. The apoptosis rate reached 64.3 ± 13.1%. The transcriptional levels of the Bax and p53 genes increased significantly in U2OS cells transfected with pcDNA3.1(+)/azurin, but the Bcl-2 mRNA level decreased. There was no difference in the levels of Bcl-xl mRNA and Survivin mRNA. We propose that the transfection of the recombinant plasmid pcDNA3.1(+)/azurin can significantly induce apoptosis in U2OS cells. This is closely associated with the up-regulation of the transcriptional level of the Bax and p53 genes, and the down-regulation of that of the Bcl-2 gene.

Keywords: Azurin, Transfection, Osteosarcoma, Apoptosis

Full Text

The Full Text of this article is available as a PDF (569.9 KB).

Abbreviations used

FCM

flow cytometry

GFP

green fluorescent protein

HA

haemagglutinin 9 peptide HA epitope

hCMV

human cytomegalovirus

IAP

inhibitor apoptosis protein

PCR

polymerase chain reaction

RT

reverse transcription

UV

ultraviolet

References

  • 1.Sinha G. Bacterial battalions join war against cancer. Nat. Med. 2003;9:1229. doi: 10.1038/nm1003-1229a. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 2.Chakrabarty A.M. Microorganisms and cancer: quest for a therapy. J. Bacteriol. 2003;185:2683–2686. doi: 10.1128/JB.185.9.2683-2686.2003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 3.Kukimoto M., Nishiyama M., Tanokura M., Murphy M.E., Adman E.T., Horinouchi S. Site-directed mutagenesis of azurin from Pseudomonas aeruginosa enhances the formation of an electron-transfer complex with a copper-containing nitrite reductase from Alcaligenes faecalis S-6. FEBS Lett. 1996;394:87–90. doi: 10.1016/0014-5793(96)00934-9. [DOI] [PubMed] [Google Scholar]
  • 4.Yamada T., Fialho A.M., Punj V., Bratescu L., Gupta T.K., Chakrabarty A.M. Internalization of bacterial redox protein azurin in mammalian cells: entry domain and specificity. Cell. Microbiol. 2005;7:1418–1431. doi: 10.1111/j.1462-5822.2005.00567.x. [DOI] [PubMed] [Google Scholar]
  • 5.Yamada T., Hiraoka Y., Ikehata M., Kimbara K., Avner B.S., Das Gupta T.K., Chakrabarty A.M. Apoptosis or growth arrest: Modulation of tumor suppressor p53’s specificity by bacterial redox protein azurin. Proc. Natl. Acad. Sci. 2004;101:4770–4775. doi: 10.1073/pnas.0400899101. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6.Yang D.S., Miao X.D., Ye Z.M., Feng J., Xu R.Z., Huang X., Ge F.F. Bacterial redox protein azurin induce apoptosis in human osteosarcoma U2OS cells. Pharmacol. Res. 2005;52:413–421. doi: 10.1016/j.phrs.2005.06.002. [DOI] [PubMed] [Google Scholar]
  • 7.Miao X.D., Ye Z.M., Yang D.S., Xu R.Z., Li W.X., Tao H.M. Cytotoxicity and apoptosis of human osteosarcoma U2OS cells induced by recombinant soluble AZURIN. Zhejiang Da Xue Xue Bao Yi Xue Ban. 2005;34:384–389. doi: 10.3785/j.issn.1008-9292.2005.05.002. [DOI] [PubMed] [Google Scholar]
  • 8.Wilson I.A., Niman H.L., Houghten R.A., Cherenson A.R., Connolly M.L., Lerner R.A. The structure of an antigenic determinant in a protein. Cell. 1984;37:767–778. doi: 10.1016/0092-8674(84)90412-4. [DOI] [PubMed] [Google Scholar]
  • 9.Feng J., Zhao L., Yu Q. Receptor-mediated stimulatory effect of oligochitosan in macrophages. Biochem. Biophys. Res. Commun. 2004;317:414–420. doi: 10.1016/j.bbrc.2004.03.048. [DOI] [PubMed] [Google Scholar]
  • 10.Reed J.C. Apoptosis-regulating proteins as targets for drug discovery. Trends. Mol. Med. 2001;7:314–319. doi: 10.1016/S1471-4914(01)02026-3. [DOI] [PubMed] [Google Scholar]
  • 11.Wyllie A.H. Apoptosis (the 1992 Frank Rose Memorial Lecture) Br. J. Cancer. 1993;67:205–208. doi: 10.1038/bjc.1993.40. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12.Zhou M., Gu L., Yeager A.M., Findley H.W. Sensitivity to Fas-mediated apoptosis in pediatric acute lymphoblastic leukemia is associated with a mutant p53 phenotype and absence of Bcl-2 expression. Leukemia. 1998;12:1756–1763. doi: 10.1038/sj.leu.2401198. [DOI] [PubMed] [Google Scholar]
  • 13.Zhang H., Heim J., Meyhack B. Novel BNIP1 variants and their interaction with BCL2 family members. FEBS Lett. 1999;448:23–27. doi: 10.1016/S0014-5793(99)00335-X. [DOI] [PubMed] [Google Scholar]
  • 14.Schlesinger P.H., Gross A., Yin X.M., Yamamoto K., Saito M., Waksman G., Korsmeyer S.J. Comparison of the ion channel characteristics of proapoptotic BAX and antiapoptotic BCL-2. Proc. Natl. Acad. Sci. 1997;94:11357–11362. doi: 10.1073/pnas.94.21.11357. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 15.Tu Y., Xu F.H., Liu J., Vescio R., Berenson J., Fady C., Lichtenstein A. Upregulated expression of BCL-2 in multiple myeloma cells induced by exposure to doxorubicin, etoposide, and hydrogen peroxide. Blood. 1996;88:1805–1812. [PubMed] [Google Scholar]
  • 16.Salomons G.S., Brady H.J., Verwijs-Janssen M., Van Den Berg J.D., Hart A.A., Van Den Berg H., Behrendt H., Hahlen K., Sme L.A. The Bax alpha:Bcl-2 ratio modulates the response to dexamethasone in leukaemic cells and is highly variable in childhood acute leukaemia. Int. J. Cancer. 1997;71:959–965. doi: 10.1002/(SICI)1097-0215(19970611)71:6<959::AID-IJC9>3.0.CO;2-X. [DOI] [PubMed] [Google Scholar]
  • 17.Li F., Ambrosini G., Chu E.Y., Plescia J., Tognin S., Marchisio P.C., Altieri D.C. Control of apoptosis and mitotic spindle checkpoint by Survivin. Nature. 1998;396:580–584. doi: 10.1038/25141. [DOI] [PubMed] [Google Scholar]
  • 18.Yamada T., Goto M., Punj V., Zaborina O., Chen M.L., Kimbara K., Majumdar D., Cunningham E., Das Gupta T.K., Chakrabarty A.M. Bacterial redox protein azurin, tumor suppressor protein p53, and regression of cancer. Proc. Natl. Acad. Sci. 2002;99:14098–14103. doi: 10.1073/pnas.222539699. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 19.Punj V., Bhattacharyya S., Saint-Dic D., Vasu C., Cunningham E.A., Graves J., Yamada T., Constantinou A.I., Christov K., White B., Li G., Majumdar D., Chakrabarty A.M., Das Gupta T.K. Bacterial cupredoxin azurin as an inducer of apoptosis and regression in human breast cancer. Oncogene. 2004;23:2367–2378. doi: 10.1038/sj.onc.1207376. [DOI] [PubMed] [Google Scholar]
  • 20.Yamada T., Goto M., Punj V., Zaborina O., Kimbara K., Das Gupta T.K., Chakrabarty A.M. The bacterial redox protein azurin induces apoptosis in J774 macrophages through complex formation and stabilization of the tumor suppressor protein p53. Infect. Immun. 2002;70:7054–7062. doi: 10.1128/IAI.70.12.7054-7062.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 21.Punj V., Das Gupta T.K., Chakrabarty A.M. Bacterial cupredoxin azurin and its interactions with the tumor suppressor protein p53. Biochem. Biophys. Res. Commun. 2003;312:109–114. doi: 10.1016/j.bbrc.2003.09.217. [DOI] [PubMed] [Google Scholar]
  • 22.Vogelstein B., Lane D., Levine A.J. Surfing the p53 network. Nature. 2000;408:307–310. doi: 10.1038/35042675. [DOI] [PubMed] [Google Scholar]
  • 23.Haupt Y., Maya R., Kazaz A., Oren M. Mdm2 promotes the rapid degradation of p53. Nature. 1997;387:296–299. doi: 10.1038/387296a0. [DOI] [PubMed] [Google Scholar]
  • 24.Gross A., Jockel J., Wei M.C., Korsmeyer S.J. Enforced dimerization of BAX results in its translocation, mitochondrial dysfunction and apoptosis. EMBO J. 1998;17:3878–3885. doi: 10.1093/emboj/17.14.3878. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 25.Budhram-Mahadeo V., Morris P.J., Smith M.D., Midgley C.A., Boxer L.M., Latchman D.S. p53 suppresses the activation of the Bcl-2 promoter by the Brn-3a POU family transcription factor. J. Biol. Chem. 1999;274:15237–15244. doi: 10.1074/jbc.274.21.15237. [DOI] [PubMed] [Google Scholar]

Articles from Cellular & Molecular Biology Letters are provided here courtesy of BMC

RESOURCES