Skip to main content
Cellular & Molecular Biology Letters logoLink to Cellular & Molecular Biology Letters
. 2006 Nov 13;12(1):111–119. doi: 10.2478/s11658-006-0055-x

How influenza’s neuraminidase promotes virulence and creates localized lung mucosa immunodeficiency

Ajay Bhatia 1, Richard E Kast 2,
PMCID: PMC6275963  PMID: 17103087

Abstract

Neuraminidase (NA) is an enzyme coded for by the genome of influenza critical for its pathogenicity and survival. Three currently accepted roles for this NA in promoting influenza virulence are: 1. NA cleaves newly formed virus particles from the host cell membrane. Without NA, newly formed virus would remain attached to the cell within which it was produced. 2. NA prevents newly released virus particles from aggregating to each other, preventing clumping that would reduce dissemination. 3. NA promotes viral penetration of sialic acid-rich mucin that bathes and protects respiratory epithelium through which the virus must spread and replicate. We outline here previous research evidence of two further, albeit hypothetical, functions of NA that together could cause disruption the mucosa-IgA axis, creating localized partial immunosuppressed state, enhancing both influenza infection itself and secondary bacterial pneumonia: 4. IgA provides primary immunoglobulin defense of mucosal surfaces. The hinge region of IgA is normally sialylated. IgA denuded of sialic acid is recognized, bound, and cleared by hepatic asialoglycoprotein receptor (ASGPR). Thus, IgA exposed to free NA would be so denuded and have increased hepatic clearance. 5. NA removes sialic acid moieties from mucosa-residing gamma/delta T cells or IgA producing B cells. Previous work indicates desialylation of these lymphocytes' outer cell membrane results in altered homing, to bone marrow, away from mucosa. Currently marketed NA inhibitors oseltamivir (Tamiflu) and zanamivir (Relenza) are FDA approved in USA for influenza prophylaxis and treatment. These NA inhibitors lower incidence of secondary bacterial infection in cases where an influenza infection occurs despite their use. Moreover, they are ameliorative in patients with secondary bacterial infections treated with antibiotics, a benefit that surpasses the treatment of antibiotics alone. We interpret these last two points as indicating our ascription of localized immunosuppression to influenza's NA could be correct and lead to new treatments of infections generally.

Key words: Asialoglycoprotein receptor, IgA, Immunodeficiency, Influenza, Lymphocyte homing, Neuraminidase, Oseltamivir, Sialic acid, Zanamivir

Full Text

The Full Text of this article is available as a PDF (299.4 KB).

Abbreviations used

ASGPR

asialoglycoprotein receptor

HA

haemagglutin

IgAN

IgA nephropathy

NA

neuraminidase

NANA

N-acetyl-neuraminic acid

References

  • 1.Moscona A. Neuraminidase inhibitors for influenza. N. Engl. J. Med. 2005;353:1363–1367. doi: 10.1056/NEJMra050740. [DOI] [PubMed] [Google Scholar]
  • 2.Matrosovich M.N., Matrosovitch T.Y., Gray T., Roberts N.A., Klenk H.D. Neuraminidase is important for the initiation of influenza virus infection in human airway epithelium. J. Virol. 2004;78:12665–12667. doi: 10.1128/JVI.78.22.12665-12667.2004. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 3.Gubareva L.V., Kaiser L., Hayden F.G. Influenza virus neuraminidase inhibitors. Lancet. 2000;355:827–835. doi: 10.1016/S0140-6736(99)11433-8. [DOI] [PubMed] [Google Scholar]
  • 4.Englund J.A. Antiviral therapy of influenza. Sem. in Ped. Infect. Dis. 2002;13:120–128. doi: 10.1053/spid.2002.122999. [DOI] [PubMed] [Google Scholar]
  • 5.Stiver G. The treatment of influenza with antiviral drugs. CMAJ. 2003;168:49–57. [PMC free article] [PubMed] [Google Scholar]
  • 6.Colman P.M. A novel approach to antiviral therapy for influenza. J. Antimicrob. Chemother. 1999;44:17–22. doi: 10.1093/jac/44.suppl_2.17. [DOI] [PubMed] [Google Scholar]
  • 7.Brandtzaeg P., Farstad I.N., Johansen F.E., Morton H.C., Norderhaug I.N., Yamanaka T. The B-cell system of human mucosae and exocrine glands. Immunol. Rev. 1999;171:45–87. doi: 10.1111/j.1600-065X.1999.tb01342.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 8.Tomana M., Kulhavy R., Mestecky J. Receptor-mediated binding and uptake of IgA by human liver. Gastroenterology. 1988;94:762–770. doi: 10.1016/0016-5085(88)90252-1. [DOI] [PubMed] [Google Scholar]
  • 9.Groh V., Porcelli S., Fabbi M., Lanier L.L., Picker L.J., Anderson T., Warnke R.A., Bhan A.K., Strominger J.L., Brenner M.B. Human lymphocyes bearing T cell receptor gamma/delta are phenotypically diverse and evenly distributed throughout the lymphoid system. J. Exp. Med. 1989;169:1277–1294. doi: 10.1084/jem.169.4.1277. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 10.Spencer J., Isaacson P.G., Diss T.C., MacDonald T.T. Expression of disulfide-linked and non-disulfide-linked forms of the T cell receptor gamma/delta heterodimer in human intestinal intraepithelial lymphocytes. Eur. J. Immunol. 1989;19:1335–1338. doi: 10.1002/eji.1830190728. [DOI] [PubMed] [Google Scholar]
  • 11.Deusch K., Luling F., Reich K., Classen M., Wagner H., Pfeffer K. A major fraction of human intraepithelial lymphocytes simultaneously expresses the gamma/delta T cell receptor, the CD8 accessory molecule and preferentially uses the V delta1 gene segment. Eur. J. Immunol. 1991;21:1053–1059. doi: 10.1002/eji.1830210429. [DOI] [PubMed] [Google Scholar]
  • 12.Jones W.M., Walcheck B., Jutila M.A. Generation of a new gamma/delta T cell-specific monoclonal antibody (GD3.5) J. Immunol. 1996;156:3772–3779. [PubMed] [Google Scholar]
  • 13.Floyd H., Nitschke L., Crocker P.R. A novel subset of murine B cells that expresses unmasked forms of CD22 is enriched in the bone marrow: Implications for B-cell homing to the bone marrow. Immunology. 2000;101:342–347. doi: 10.1046/j.1365-2567.2000.00103.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 14.Nitschke L., Floyd H., Ferguson D.J. Identification of CD22 ligands on CD22 bone marrow sinusoidal endothelium implicated in CD22-dependent homing of recirculating B-cells. J. Exp. Med. 1999;189:1513–1518. doi: 10.1084/jem.189.9.1513. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 15.Reinholdt J., Tomana M., Mortensen S.B. Molecular aspects of IgA degredation by oral streptococci. Infect. Immunol. 1990;58:1186–1194. doi: 10.1128/iai.58.5.1186-1194.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16.Kast R.E. A theory of lymphocyte blast transformation and malignant change based on proteolytic cleavage of the trigger peptide: The detendomer. Oncology. 1974;29:249–264. doi: 10.1159/000224907. [DOI] [PubMed] [Google Scholar]
  • 17.Kast R.E. Lymphocytes and cells in malignant transformation. Oncology. 1975;32:175–189. doi: 10.1159/000225064. [DOI] [PubMed] [Google Scholar]
  • 18.Gronbaek Frandsen E.V. Bacterial degradation of IgA1 in relation to periodontal disease. APMIS. 1999;87:1–54. [PubMed] [Google Scholar]
  • 19.King S.J., Hippe K.R., Gould J.M., Bae D., Peterson S., Cline R.T., Fasching C., Janoff E.N., Weiser J.N. Phase variable desialylation of host proteins that bind to Streptococcus pneumoniae in vivo and protect the airway. Mol. Microbiol. 2004;54:159–171. doi: 10.1111/j.1365-2958.2004.04252.x. [DOI] [PubMed] [Google Scholar]
  • 20.Kannagi R. Regulatory roles of carbohydrate ligands for selectins in the homing of lymphocytes. Curr. Opin. Struct. Biol. 2002;12:599–608. doi: 10.1016/S0959-440X(02)00365-2. [DOI] [PubMed] [Google Scholar]
  • 21.Glezen W.P., Payne A.A., Snyder D.N. Mortality and influenza. J. Infect. Dis. 1982;146:313–321. doi: 10.1093/infdis/146.3.313. [DOI] [PubMed] [Google Scholar]
  • 22.Simonsen L., Fukada K., Schonberger L.B. The impact of influenza epidemics on hospitalizations. J. Infect. Dis. 2000;181:831–837. doi: 10.1086/315320. [DOI] [PubMed] [Google Scholar]
  • 23.Simonsen L. The global impact of influenza on morbidity and mortality. Vaccine. 1999;17(1):S3–10. doi: 10.1016/S0264-410X(99)00099-7. [DOI] [PubMed] [Google Scholar]
  • 24.McCullers J.A., Bartmess K.C. Role of neauraminidase in lethal synergism between influenza virus and streptococcus pneumoniae. J. Infect. Dis. 2003;187:1000–1009. doi: 10.1086/368163. [DOI] [PubMed] [Google Scholar]
  • 25.McCullers J.A. Effect of antiviral treatment on the outcome of secondary bacterial pneumonia after influenza. J. Infect. Dis. 2004;190:519–526. doi: 10.1086/421525. [DOI] [PubMed] [Google Scholar]
  • 26.Kaiser L., Wat C., Mills T., Mahoney P., Ward P., Hayden F. Impact of oseltamivir treatment on influenza-related lower respiratory tract complications and hospitalizations. Arch. Intern. Med. 2003;163:1667–1672. doi: 10.1001/archinte.163.14.1667. [DOI] [PubMed] [Google Scholar]
  • 27.Kaiser L., Keene O.N., Hammond J.M. Impact of zanamivir on antibiotic use for respiratory events following acute influenza in adolescents and adults. Arch Intern Med. 2000;160:3234–3240. doi: 10.1001/archinte.160.21.3234. [DOI] [PubMed] [Google Scholar]
  • 28.Treanor J.J., Hayden F.G., Vrooman P.S., Barbarash R., Bettis R., Riff D., Singh S., Kinnersley N., Ward P., Mills R.G. Efficacy and safety of oral neuraminidase Inhibitor oseltamivir in treating acute influenza: A randomized controlled trial. JAMA. 2000;283:1016–1024. doi: 10.1001/jama.283.8.1016. [DOI] [PubMed] [Google Scholar]
  • 29.Monto A.S., Webster A., Keene O. Randomized, placebo-controlled studies of inhaled zanamivir in the treatment of influenza A and B: Pooled efficacy analysis. J. Antimicrob. Chemother. 1999;44:23–29. doi: 10.1093/jac/44.suppl_2.23. [DOI] [PubMed] [Google Scholar]
  • 30.Peltola V.T., Murti K.G., McCullers J.A. Influenza virus neuraminidase contributes to secondary bacterial pneumonia. J Infect Dis. 2005;192:249–257. doi: 10.1086/430954. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 31.Peltola V.T., McCullers J.A. Respiratory viruses predisposing to bacterial infections: role of neuraminidase. Pediatr. Infect. Dis. J. 2004;23(1):S87–97. doi: 10.1097/01.inf.0000107021.66218.ec. [DOI] [PubMed] [Google Scholar]
  • 32.Yen H.L., Herlocher L.M., Hoffmann E., Matrosovich M.N., Monto A.S., Webster R.G., Govorkova E.A. Neuraminidase inhibitor-resistant influenza viruses may differ substantially in fitness and transmissibility. Antimicrob. Agents Chemother. 2005;49:4075–4084. doi: 10.1128/AAC.49.10.4075-4084.2005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 33.Roberts N. Treatment of influenza with neuraminidase inhibitors: Virological implications. Phil. Trans. R. Soc. Lond. 2001;356:1895–1897. doi: 10.1098/rstb.2001.1002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 34.Wakai K., Nakai S., Matsuo S., Kawamura T., Hotta N., Maeda K., Ohno Y. Risk factors for IgA nephropathy: A case-control study with incident cases in Japan. Nephron. 2002;90:16–23. doi: 10.1159/000046309. [DOI] [PubMed] [Google Scholar]
  • 35.Xu L.X., Zhao M.H. Aberrantly glycosylated serum IgA1 are closely associated with pathologic phenotypes of IgA nephropathy. Kidney Int. 2005;68:167–172. doi: 10.1111/j.1523-1755.2005.00390.x. [DOI] [PubMed] [Google Scholar]
  • 36.Altschuler E.L., Bhatia A., Kast R.E. Consideration of use of neuraminidase inhibitors such as oseltamivir and zanamivir in IgA nephropathy. Kidney Int. 2005;68:2910–2911. doi: 10.1111/j.1523-1755.2005.00583_7.x. [DOI] [PubMed] [Google Scholar]

Articles from Cellular & Molecular Biology Letters are provided here courtesy of BMC

RESOURCES