Abstract
Resveratrol (RES), a component of red wine, possesses anti-inflammatory properties. The studies described in the present work were aimed at evaluating the potential for RES and related stilbene analogs (piceatannol, PIC; pterostilbene, TPS; trans-stilbene, TS; and trans-stilbene oxide, TSO) to exhibit toxicity towards RAW 264.7 mouse macrophages. The effect of TS, TSO, RES and TPS on RAW 264.7 macrophage viability was determined by two standard methods: (a) the MTT assay and (b) the trypan blue dye exclusion test. Whereas macrophages were more sensitive to PIC (LC50 trypan ∼ 1.3 μM) and to TPS (LC50 trypan ∼ 4.0 μM and LC50 MTT ∼ 8.3 μM) than to RES (LC50 trypan ∼ 8.9 μM and LC50 MTT ∼ 29.0 μM), they were relatively resistant to TSO (LC50 trypan ∼ 61.0 μM and LC50 MTT > 100 μM) and to TS (LC50 trypan ≥ 5.0 μM and LC50 MTT ≥ 5.0 μM). The ability of selected stilbenes (RES, TPS and PIC) to exhibit growth inhibitory effects was also examined. Although RES and TPS were observed to inhibit cell proliferation in macrophages (IC50 ≤ 25 μM), these cells were resistant to growth inhibition by PIC (IC50 ≥ 50 μM). The data obtained in the present analysis demonstrate that substituted stilbene compounds such as RES have the capacity to exhibit cytotoxic and anti-proliferative activities in macrophages.
Key words: Resveratrol, Piceatannol, Pterostilbene, Stilbenes, Cell viability, Cell proliferation, Macrophages, TLR4 (−/−), Antioxidants
Full Text
The Full Text of this article is available as a PDF (469.4 KB).
Abbreviations used
- MTT
3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide
- PIC
trans-piceatannol
- RES
trans-resveratrol
- TPS
trans-pterostilbene
- TS
trans-stilbene
- TSO
trans-stilbene oxide
References
- 1.Howard A., Chopra M., Thurnham D., Strain J., Fuhrman B., Aviram M. Red wine consumption and inhibition of LDL oxidation: What are the important components? Med. Hypotheses. 2002;59:101–104. doi: 10.1016/S0306-9877(02)00144-5. [DOI] [PubMed] [Google Scholar]
- 2.Ray P.S., Maulik G., Cordis G.A., Bertelli A.A., Bertelli A., Das D.K. The red wine antioxidant resveratrol protects isolated rat hearts from ischemia reperfusion injury. Free. Radic. Biol. Med. 1999;27:160–169. doi: 10.1016/S0891-5849(99)00063-5. [DOI] [PubMed] [Google Scholar]
- 3.Hung L.M., Chen J.K., Huang S.S., Lee R.S., Su M.J. Cardioprotective effect of resveratrol, a natural antioxidant derived from grapes. Cardiovasc. Res. 2000;47:549–555. doi: 10.1016/S0008-6363(00)00102-4. [DOI] [PubMed] [Google Scholar]
- 4.Mokni M., Limam F., Elkahoui S., Amri M., Aouani E. Strong cardioprotective effect of resveratrol, a red wine polyphenol, on isolated rat hearts after ischemia/reperfusion injury. Arch. Biochem. Biophys. 2007;457:1–6. doi: 10.1016/j.abb.2006.10.015. [DOI] [PubMed] [Google Scholar]
- 5.Constant J. Alcohol, ischemic heart disease, and the French paradox. Coron. Artery Dis. 1997;8:645–649. doi: 10.1097/00019501-199710000-00007. [DOI] [PubMed] [Google Scholar]
- 6.Jang D.S., Kang B.S., Ryu S.Y., Chang I.M., Min K.R., Kim Y. Inhibitory effects of resveratrol analogs on unopsonized zymosan-induced oxygen radical production. Biochem. Pharmacol. 1999;57:705–712. doi: 10.1016/S0006-2952(98)00350-5. [DOI] [PubMed] [Google Scholar]
- 7.Cao Z., Li Y. Potent induction of cellular antioxidants and phase 2 enzymes by resveratrol in cardiomyocytes: protection against oxidative and electrophilic injury. Eur. J. Pharmacol. 2004;489:39–48. doi: 10.1016/j.ejphar.2004.02.031. [DOI] [PubMed] [Google Scholar]
- 8.Murias M., Handler N., Erker T., Pleban K., Ecker G., Saiko P., Szekeres T., Jager W. Resveratrol analogues as selective cyclooxygenase-2 inhibitors: synthesis and structure-activity relationship. Bioorg. Med. Chem. 2004;12:5571–5578. doi: 10.1016/j.bmc.2004.08.008. [DOI] [PubMed] [Google Scholar]
- 9.Pervaiz S. Resveratrol: from grapevines to mammalian biology. FASEB J. 2003;17:1975–1985. doi: 10.1096/fj.03-0168rev. [DOI] [PubMed] [Google Scholar]
- 10.Jeandet P., Douillet-Breuil A.C., Bessis R., Debord S., Sbaghi M., Adrian M. Phytoalexins from the vitaceae: biosynthesis, phytoalexin gene expression in transgenic plants, antifungal activity, and metabolism. J. Agric. Food Chem. 2002;50:2731–2741. doi: 10.1021/jf011429s. [DOI] [PubMed] [Google Scholar]
- 11.Murias M., Jager W., Handler N., Erker T., Horvath Z., Szekeres T., Nohl H., Gille L. Antioxidant, prooxidant and cytotoxic activity of hydroxylated resveratrol analogues: structure-activity relationship. Biochem. Pharmacol. 2005;69:903–912. doi: 10.1016/j.bcp.2004.12.001. [DOI] [PubMed] [Google Scholar]
- 12.Kageura T., Matsuda H., Morikawa T., Toguchida I., Harima S., Oda M., Yoshikawa M. Inhibitors from rhubarb on lipopolysaccharide-induced nitric oxide production in macrophages: structural requirements of stilbenes for the activity. Bioorg. Med. Chem. 2001;9:1887–1893. doi: 10.1016/S0968-0896(01)00093-1. [DOI] [PubMed] [Google Scholar]
- 13.Rimando A.M., Cuendet M., Desmarchelier C., Mehta R.G., Pezzuto J.M., Duke S.O. Cancer chemopreventive and antioxidant activities of pterostilbene, a naturally occurring analogue of resveratrol. J. Agric. Food Chem. 2002;50:3453–3457. doi: 10.1021/jf0116855. [DOI] [PubMed] [Google Scholar]
- 14.Tolomeo M., Grimaudo S., Di Cristina A., Roberti M., Pizzirani D., Meli M., Dusonchet L., Gebbia N., Abbadessa V., Crosta L., Barucchello R., Grisolia G., Invidiata F., Simoni D. Pterostilbene and 3′-hydroxypterostilbene are effective apoptosis-inducing agents in MDR and BCR-ABL-expressing leukemia cells. Int. J. Biochem. Cell Biol. 2005;37:1709–1726. doi: 10.1016/j.biocel.2005.03.004. [DOI] [PubMed] [Google Scholar]
- 15.Wolter F., Clausnitzer A., Akoglu B., Stein J. Piceatannol, a natural analog of resveratrol, inhibits progression through the S phase of the cell cycle in colorectal cancer cell lines. J. Nutr. 2002;132:298–302. doi: 10.1093/jn/132.2.298. [DOI] [PubMed] [Google Scholar]
- 16.Larrosa M., Tomas-Barberan F.A., Espin J.C. Grape polyphenol resveratrol and the related molecule 4-hydroxystilbene induce growth inhibition, apoptosis, S-phase arrest, and upregulation of cyclins A, E, and B1 in human SK-Mel-28 melanoma cells. J. Agric. Food Chem. 2003;51:4576–4584. doi: 10.1021/jf030073c. [DOI] [PubMed] [Google Scholar]
- 17.Wieder T., Prokop A., Bagci B., Essmann F., Bernicke D., Schulze-Osthoff K., Dorken B., Schmalz H. G., Daniel P. T., Henze G. Piceatannol, a hydroxylated analog of the chemopreventive agent resveratrol, is a potent inducer of apoptosis in the lymphoma cell line BJAB and in primary, leukemic lymphoblasts. Leukemia. 2001;15:1735–1742. doi: 10.1038/sj.leu.2402284. [DOI] [PubMed] [Google Scholar]
- 18.Radkar V., Hardej D., Lau-Cam C., Billack B. Evaluation of resveratrol and piceatannol cytotoxicity in macrophages, T cells, and skin cells. Arh. Hig. Rada. Toksikol. 2007;58:293–304. doi: 10.2478/v10004-007-0020-8. [DOI] [PubMed] [Google Scholar]
- 19.Crowell J.A., Korytko P.J., Morrissey R.L., Booth T.D., Levine B.S. Resveratrol-associated renal toxicity. Toxicol. Sci. 2004;82:614–619. doi: 10.1093/toxsci/kfh263. [DOI] [PubMed] [Google Scholar]
- 20.Ferry-Dumazet H., Garnier O., Mamani-Matsuda M., Vercauteren J., Belloc F., Billiard C., Dupouy M., Thiolat D., Kolb J. P., Marit G., Reiffers J., Mossalayi M. D. Resveratrol inhibits the growth and induces the apoptosis of both normal and leukemic hematopoietic cells. Carcinogenesis. 2002;23:1327–1333. doi: 10.1093/carcin/23.8.1327. [DOI] [PubMed] [Google Scholar]
- 21.Azmi A.S., Bhat S.H., Hanif S., Hadi S.M. Plant polyphenols mobilize endogenous copper in human peripheral lymphocytes leading to oxidative DNA breakage: a putative mechanism for anticancer properties. FEBS Lett. 2006;580:533–538. doi: 10.1016/j.febslet.2005.12.059. [DOI] [PubMed] [Google Scholar]
- 22.Hebbar V., Shen G., Hu R., Kim B.R., Chen C., Korytko P.J., Crowell J.A., Levine B.S., Kong A.N. Toxicogenomics of resveratrol in rat liver. Life Sci. 2005;76:2299–2314. doi: 10.1016/j.lfs.2004.10.039. [DOI] [PubMed] [Google Scholar]
- 23.Schmitt E., Lehmann L., Metzler M., Stopper H. Hormonal and genotoxic activity of resveratrol. Toxicol. Lett. 2002;136:133–142. doi: 10.1016/S0378-4274(02)00290-4. [DOI] [PubMed] [Google Scholar]
- 24.Djoko B., Chiou R.Y., Shee J.J., Liu Y.W. Characterization of immunological activities of peanut stilbenoids, arachidin-1, piceatannol, and resveratrol on lipopolysaccharide-induced inflammation of RAW 264.7 macrophages. J. Agric. Food Chem. 2007;55:2376–2383. doi: 10.1021/jf062741a. [DOI] [PubMed] [Google Scholar]
- 25.Sanoh S., Kitamura S., Sugihara K., Ohta S. Cytochrome P450 1A1/2 mediated metabolism of trans-stilbene in rats and humans. Biol. Pharm. Bull. 2002;25:397–400. doi: 10.1248/bpb.25.397. [DOI] [PubMed] [Google Scholar]
- 26.Sanoh S., Kitamura S., Sugihara K., Kohta R., Ohta S., Watanabe H. Effects of stilbene and related compounds on reproductive organs in B6C3F1/Crj mouse. J. Health Sci. 2006;52:613–622. doi: 10.1248/jhs.52.613. [DOI] [Google Scholar]
- 27.Grohs B.M., Kunz B. Fungitoxicity of chemical analogs with heartwood toxins. Curr. Microbiol. 1998;37:67–69. doi: 10.1007/s002849900340. [DOI] [PubMed] [Google Scholar]
- 28.Meijer J., DePierre J.W., Wang P.P., Guengerich F.P. Purification and characterization of the major microsomal cytochrome P-450 form induced by trans-stilbene oxide in rat liver. Biochim. Biophys. Acta. 1984;789:1–9. doi: 10.1016/0167-4838(84)90053-0. [DOI] [PubMed] [Google Scholar]
- 29.Bucker M., Golan M., Schmassmann H.U., Glatt H.R., Stasiecki P., Oesch F. The epoxide hydratase inducer trans-stilbene oxide shifts the metabolic epoxidation of benzo(a)pyrene from the bay-to the K-region and reduces its mutagenicity. Mol. Pharmacol. 1979;16:656–666. [PubMed] [Google Scholar]
- 30.Williams J.B., Wang R., Lu A.Y., Pickett C.B. Rat liver DT-diaphorase: Regulation of functional mRNA levels by 3-methylcholanthrene, trans-stilbene oxide, and phenobarbital. Arch. Biochem. Biophys. 1984;232:408–413. doi: 10.1016/0003-9861(84)90556-3. [DOI] [PubMed] [Google Scholar]
- 31.Raschke W.C., Baird S., Ralph P., Nakoinz I. Functional macrophage cell lines transformed by abelson leukemia virus. Cell. 1978;15:261–267. doi: 10.1016/0092-8674(78)90101-0. [DOI] [PubMed] [Google Scholar]
- 32.Giard D.J., Aaronson S.A., Todaro G.J., Arnstein P., Kersey J.H., Dosik H., Parks W.P. In vitro cultivation of human tumors: Establishment of cell lines derived from a series of solid tumors. J. Natl. Cancer Inst. 1973;51:1417–1423. doi: 10.1093/jnci/51.5.1417. [DOI] [PubMed] [Google Scholar]
- 33.Lorenz E., Patel D.D., Hartung T., Schwartz D.A. Toll-like receptor 4 (TLR4)-deficient murine macrophage cell line as an in vitro assay system to show TLR4-independent signaling of bacteroides fragilis lipopolysaccharide. Infect. Immun. 2002;70:4892–4896. doi: 10.1128/IAI.70.9.4892-4896.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 34.Foley G.E., Lazarus H., Farber S., Uzman B.G., Boone B.A., McCarthy R.E. Continuous culture of human lymphoblasts from peripheral blood of a child with acute leukemia. Cancer. 1965;18:522–529. doi: 10.1002/1097-0142(196504)18:4<522::AID-CNCR2820180418>3.0.CO;2-J. [DOI] [PubMed] [Google Scholar]
- 35.Mosmann T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods. 1983;65:55–63. doi: 10.1016/0022-1759(83)90303-4. [DOI] [PubMed] [Google Scholar]
- 36.Shah Y.M., Al-Dhaheri M., Dong Y., Ip C., Jones F.E., Rowan B.G. Selenium disrupts estrogen receptor (alpha) signaling and potentiates tamoxifen antagonism in endometrial cancer cells and tamoxifen-resistant breast cancer cells. Mol. Cancer Ther. 2005;4:1239–1249. doi: 10.1158/1535-7163.MCT-05-0046. [DOI] [PubMed] [Google Scholar]
- 37.Bruggisser R., von Daeniken K., Jundt G., Schaffner W., Tullberg-Reinert H. Interference of plant extracts, phytoestrogens and antioxidants with the MTT tetrazolium assay. Planta Med. 2002;68:445–448. doi: 10.1055/s-2002-32073. [DOI] [PubMed] [Google Scholar]
- 38.Ovesna Z., Kozics K., Bader Y., Saiko P., Handler N., Erker T., Szekeres T. Antioxidant activity of resveratrol, piceatannol and 3,3′,4,4′,5,5′-hexahydroxy-trans-stilbene in three leukemia cell lines. Oncol. Rep. 2006;16:617–624. [PubMed] [Google Scholar]
- 39.Potter G.A., Patterson L.H., Wanogho E., Perry P.J., Butler P.C., Ijaz T., Ruparelia K.C., Lamb J.H., Farmer P.B., Stanley L.A., Burke M.D. The cancer preventative agent resveratrol is converted to the anticancer agent piceatannol by the cytochrome P450 enzyme CYP1B1. Br. J. Cancer. 2002;86:774–778. doi: 10.1038/sj.bjc.6600197. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 40.Piver B., Fer M., Vitrac X., Merillon J.M., Dreano Y., Berthou F., Lucas D. Involvement of cytochrome P450 1A2 in the biotransformation of trans-resveratrol in human liver microsomes. Biochem. Pharmacol. 2004;68:773–782. doi: 10.1016/j.bcp.2004.05.008. [DOI] [PubMed] [Google Scholar]
- 41.Zheng L.F., Wei Q.Y., Cai Y.J., Fang J.G., Zhou B., Yang L., Liu Z.L. DNA damage induced by resveratrol and its synthetic analogues in the presence of cu (II) ions: mechanism and structure-activity relationship. Free Radic. Biol. Med. 2006;41:1807–1816. doi: 10.1016/j.freeradbiomed.2006.09.007. [DOI] [PubMed] [Google Scholar]
- 42.Huang X.F., Ruan B.F., Wang X.T., Xu C., Ge H.M., Zhu H.L., Tan R.X. Synthesis and cytotoxic evaluation of a series of resveratrol derivatives modified in C2 position. Eur. J. Med. Chem. 2007;42:263–267. doi: 10.1016/j.ejmech.2006.08.006. [DOI] [PubMed] [Google Scholar]
- 43.Roberti M., Pizzirani D., Simoni D., Rondanin R., Baruchello R., Bonora C., Buscemi F., Grimaudo S., Tolomeo M. Synthesis and biological evaluation of resveratrol and analogues as apoptosis-inducing agents. J. Med. Chem. 2003;46:3546–3554. doi: 10.1021/jm030785u. [DOI] [PubMed] [Google Scholar]
- 44.Matsuoka A., Takeshita K., Furuta A., Ozaki M., Fukuhara K., Miyata N. The 4′-hydroxy group is responsible for the in vitro cytogenetic activity of resveratrol. Mutat. Res. 2002;521:29–35. doi: 10.1016/s1383-5718(02)00211-5. [DOI] [PubMed] [Google Scholar]
- 45.Fukuhara K., Nagakawa M., Nakanishi I., Ohkubo K., Imai K., Urano S., Fukuzumi S., Ozawa T., Ikota N., Mochizuki M., Miyata N., Okuda H. Structural basis for DNA-cleaving activity of resveratrol in the presence of cu(II) Bioorg. Med. Chem. 2006;14:1437–1443. doi: 10.1016/j.bmc.2005.09.070. [DOI] [PubMed] [Google Scholar]
- 46.Cadenas E. Antioxidant and prooxidant functions of DT-diaphorase in quinone metabolism. Biochem. Pharmacol. 1995;49:127–140. doi: 10.1016/S0006-2952(94)00333-5. [DOI] [PubMed] [Google Scholar]
- 47.Galati G., O’Brien P.J. Potential toxicity of flavonoids and other dietary phenolics: significance for their chemopreventive and anticancer properties. Free Rad. Biol. Med. 2004;37:287–303. doi: 10.1016/j.freeradbiomed.2004.04.034. [DOI] [PubMed] [Google Scholar]
- 48.Bernhard D., Tinhofer I., Tonko M., Hubl H., Ausserlechner M.J., Greil R., Kofler R., Csordas A. Resveratrol causes arrest in the S-phase prior to fas-independent apoptosis in CEM-C7H2 acute leukemia cells. Cell Death Differ. 2000;7:834–842. doi: 10.1038/sj.cdd.4400719. [DOI] [PubMed] [Google Scholar]
- 49.Tsan M.F., White J.E., Maheshwari J.G., Chikkappa G. Anti-leukemia effect of resveratrol. Leuk. Lymphoma. 2002;43:983–987. doi: 10.1080/10428190290021669. [DOI] [PubMed] [Google Scholar]
- 50.Zunino S.J., Storms D. H. Resveratrol-induced apoptosis is enhanced in acute lymphoblastic leukemia cells by modulation of the mitochondrial permeability transition pore. Cancer Lett. 2006;240:123–134. doi: 10.1016/j.canlet.2005.09.001. [DOI] [PubMed] [Google Scholar]
- 51.Wu S.L., Yu L., Pan C.E., Jiao X.Y., Lv Y., Fu J., Meng K.W. Apoptosis of lymphocytes in allograft in a rat liver transplantation model induced by resveratrol. Pharmacol. Res. 2006;54:19–23. doi: 10.1016/j.phrs.2006.01.011. [DOI] [PubMed] [Google Scholar]
- 52.Mizutani K., Ikeda K., Kawai Y., Yamori Y. Resveratrol stimulates the proliferation and differentiation of osteoblastic MC3T3-E1 cells. Biochem. Biophys. Res. Commun. 1998;253:859–863. doi: 10.1006/bbrc.1998.9870. [DOI] [PubMed] [Google Scholar]
- 53.Dai Z., Li Y., Quarles L.D., Song T., Pan W., Zhou H., Xiao Z. Resveratrol enhances proliferation and osteoblastic differentiation in human mesenchymal stem cells via ER-dependent ERK1/2 activation. Phytomed. 2007;14:806–814. doi: 10.1016/j.phymed.2007.04.003. [DOI] [PubMed] [Google Scholar]
- 54.Inoue K., Creveling C.R. Immunocytochemical localization of catechol-O-methyltransferase in the oviduct and in macrophages in corpora lutea of rat. Cell Tissue Res. 1986;245:623–628. doi: 10.1007/BF00218564. [DOI] [PubMed] [Google Scholar]