Abstract
Mung bean CYP90A2 is a putative brassinosteroid (BR) synthetic gene that shares 77% identity with the Arabidopsis CPD gene. It was strongly suppressed by chilling stress. This implies that exogenous treatment with BR could allow the plant to recover from the inhibited growth caused by chilling. In this study, we used proteomics to investigate whether the mung bean epicotyl can be regulated by brassinosteroids under conditions of chilling stress. Mung bean epicotyls whose growth was initially suppressed by chilling partly recovered their ability to elongate after treatment with 24-epibrassinolde; 17 proteins down-regulated by this chilling were re-up-regulated. These up-regulated proteins are involved in methionine assimilation, ATP synthesis, cell wall construction and the stress response. This is consistent with the re-up-regulation of methionine synthase and S-adenosyl-L-methionine synthetase, since chilling-inhibited mung bean epicotyl elongation could be partially recovered by exogenous treatment with DL-methionine. This is the first proteome established for the mung bean species. The regulatory relationship between brassinosteroids and chilling conditions was investigated, and possible mechanisms are discussed herein.
Key words: Proteomics, Chilling, Brassinosteroid, Mung bean, Epicotyl
Full Text
The Full Text of this article is available as a PDF (1.4 MB).
Abbreviations used
- BR
brassinosteroid
- CPD
constitutive photomorphogenesis and dwarfism
- EBL
24-epibrassinolide
- IEF
isoelectric focusing
Contributor Information
Hsueh-Fen Juan, FAX: +886-2-23673374, Email: yukijuan@ntu.edu.tw.
Yih-Ming Chen, FAX: +886-2-83695080, Email: yihmingc@ntu.edu.tw.
References
- 1.Graham D., Patterson B.D. Responses of plants to low, nonfreezing temperatures: proteins, metabolism, and acclimation. Annu. Rev. Plant Physiol. 1982;33:347–372. doi: 10.1146/annurev.pp.33.060182.002023. [DOI] [Google Scholar]
- 2.Kawata T., Yoshida S. Alterations in protein synthesis in vivo in chilling sensitive mung bean hypocotyls caused by chilling stress. Plant Cell Physiol. 1988;29:1423–1427. [Google Scholar]
- 3.Chang M.Y., Chen S.L., Lee C.F., Chen Y.M. Cold-acclimation and root temperature protection from chilling injury in chilling-sensitive mung bean (Vigna radiata L.) seedlings. Bot. Bull. Acad. Sin. 2001;42:53–60. [Google Scholar]
- 4.Yang M.T., Chen S.L., Lin C.Y., Chen Y.M. Chilling stress suppresses chloroplast development and nuclear gene expression in leaves of mung bean seedlings. Planta. 2005;221:374–385. doi: 10.1007/s00425-004-1451-y. [DOI] [PubMed] [Google Scholar]
- 5.Szekeres M., Nemeth K., Koncz-Kalman Z., Mathur J., Kauschmann A., Altmann T., Redei G.P., Nagy F., Schell J., Koncz C. Brassinosteroids rescue the deficiency of CYP90, a cytochrome P450, controlling cell elongation and de-etiolation in Arabidopsis. Cell. 1996;85:171–182. doi: 10.1016/S0092-8674(00)81094-6. [DOI] [PubMed] [Google Scholar]
- 6.Clouse S.D., Sasse J.M. Brassinosteroids: essential regulators of plant growth and development. Ann. Rev. Plant Physiol. Plant Mol. Biol. 1998;49:427–451. doi: 10.1146/annurev.arplant.49.1.427. [DOI] [PubMed] [Google Scholar]
- 7.Krishna P. Brassinosteroids-mediated stress responses. J. Plant Growth Regul. 2003;22:289–297. doi: 10.1007/s00344-003-0058-z. [DOI] [PubMed] [Google Scholar]
- 8.Yu J.Q., Zhou Y.H., Ye S.F., Huang L.F. 24-epibrassinolide and abscisic acid protect cucumber seedlings from chilling injury. J. Hort. Sci. Biotech. 2002;77:470–473. [Google Scholar]
- 9.Konishi H., Komatsu S. A proteomics approach to investigating promotive effects of brassinolide on lamina inclination and root growth in rice seedlings. Biol. Pharm. Bull. 2003;26:401–408. doi: 10.1248/bpb.26.401. [DOI] [PubMed] [Google Scholar]
- 10.Harlow E., Lane D. Antibodies: A laboratory manual. New York: Cold Spring Harbor Laboratory; 1988. pp. 98–164. [Google Scholar]
- 11.Sambrook J., Russell D.W. Molecular cloning: A laboratory manual. New York: Cold Spring Harbor Laboratory; 2001. [Google Scholar]
- 12.Gorg A., Obermaier C., Boguth G., Harder A., Scheibe B., Weiss W. The current state of two-dimensional electrophoresis with immobilized pH gradients. Electrophoresis. 2000;21:1037–1053. doi: 10.1002/(SICI)1522-2683(20000401)21:6<1037::AID-ELPS1037>3.0.CO;2-V. [DOI] [PubMed] [Google Scholar]
- 13.Laemmli U.K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970;227:213–216. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- 14.Juan H.F., Chang S.C., Huang H.C., Chen S.T. A new application of microwave technology to proteomics. Proteomics. 2005;5:840–842. doi: 10.1002/pmic.200401056. [DOI] [PubMed] [Google Scholar]
- 15.Onnerfjord P., Ekstrom S., Bergquist J., Nilsson J., Laurell T., Marko-Varga G. Homogeneous sample preparation for automated high throughput analysis with [MALDI] rapid commun. Mass Spectrom. 1999;13:315–322. doi: 10.1002/(SICI)1097-0231(19990315)13:5<315::AID-RCM483>3.0.CO;2-C. [DOI] [PubMed] [Google Scholar]
- 16.Carr S., Aebersold R., Baldwin M., Burlingame A., Clauser K., Nesvizhskii A. The need for guidelines in publication of peptide and protein identification data. Mol. Cell. Proteomics. 2004;3:531–533. doi: 10.1074/mcp.T400006-MCP200. [DOI] [PubMed] [Google Scholar]
- 17.Phillips A.L., Ward D.A., Uknes S., Appleford N.E.J., Lange T., Huttly A.K., Gaskin P., Graebe J.E., Hedden P. Isolation and expression of three gibberellin 20-oxidase cDNA clones from Arabidopsis. Plant Physiol. 1995;108:1049–1057. doi: 10.1104/pp.108.3.1049. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 18.Bancos S., Nomura T., Sato T., Molnar G., Bishop G.J., Koncz C., Yokota T., Nagy F., Szekeres M. Regulation of transcript level of the Arabidopsis cytochrome P450 genes involved in brassinosteroid biosynthesis. Plant Physiol. 2002;130:504–513. doi: 10.1104/pp.005439. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 19.Rao S.S.R., Vardhini B.V., Sujatha E., Anuradha S. Brassinosteroids — a new class of phytohormones. Curr. Sci. 2002;82:1239–1245. [Google Scholar]
- 20.Tenhaken R., Thulke O. Cloning of an enzyme that synthesizes a key nucleotide sugar precursor of hemicellulose biosynthesis from soybean: UDP-glucose dehydrogenase. Plant Physiol. 1996;112:1127–1134. doi: 10.1104/pp.112.3.1127. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 21.Catterou M., Dubois F., Schaller H., Aubanelle L., Vilcot B., Sangwan-Norreel B.S., Sangwan R.S. Brassinosteroids, microtubules and cell elongation in Arabidopsis thaliana. II. effects of brassinosteroids on microtubules and cell elongation in the bull mutant. Planta. 2001;212:673–683. doi: 10.1007/s004250000467. [DOI] [PubMed] [Google Scholar]
- 22.Konish H., Komatsu S. A proteomics approach to investigating promotive effects of brassinolide on lamina inclination and root growth in rice seedlings. Biol. Pharm. Bull. 2003;26:401–408. doi: 10.1248/bpb.26.401. [DOI] [PubMed] [Google Scholar]
- 23.Forsthoefel N.R., Cushman M.A.F., Cushman J.C. Posttranscriptional and posttranslational control of enolase expression in the facultative crassulacean acid metabolism plant Mesembryanthemum crystallinum L. Plant Physiol. 1995;108:1185–1195. doi: 10.1104/pp.108.3.1185. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 24.Schumacher K., Vafeados D., McCarthy M., Sze H., Wilkins T., Chory J. The Arabidopsis det3 mutant reveals a central role for the vacuolar H-ATPase in plant growth and development. Genes Dev. 1999;13:3259–3270. doi: 10.1101/gad.13.24.3259. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 25.Dietz K.J., Tavakoli N., Kluge C., Mimura T., Sharma S.S., Harris G.C., Chardonnens A.N., Golldack D. Significance of the V-type ATPase for the adaptation to stressful growth conditions and its regulation on the molecular and biochemical level. J. Exp. Bot. 2001;52:1969–1980. doi: 10.1093/jexbot/52.363.1969. [DOI] [PubMed] [Google Scholar]
- 26.Konishi H., Yamane H., Maeshima M., Komatsu S. Characterization of fructose-bisphosphate aldolase regulated by gibberellin in roots of rice seedling. Plant Mol. Biol. 2004;56:839–848. doi: 10.1007/s11103-004-5920-2. [DOI] [PubMed] [Google Scholar]
- 27.Breiteneder H., Radauer C. A classification of plant food allergens. J. Allergy Clin. Immunol. 2004;113:821–829. doi: 10.1016/j.jaci.2004.01.779. [DOI] [PubMed] [Google Scholar]
- 28.Gallardo K., Job C., Groot S.P.C., Puype M., Demol H., Vandekerckhove J., Job D. Importance of methionine biosynthesis for Arabidopsis seed germination and seedling growth. Physiol. Planta. 2002;116:238–247. doi: 10.1034/j.1399-3054.2002.1160214.x. [DOI] [PubMed] [Google Scholar]
- 29.Joaquin E., Pintor-Toro J.A., Pardo J.M. Differential accumulation of S-adenosylmethionine synthetase transcripts in response to salt stress. Plant Mol. Biol. 1994;25:217–227. doi: 10.1007/BF00023239. [DOI] [PubMed] [Google Scholar]
- 30.Hesse H., Hoefgen R. Molecular aspects of methionine biosynthesis. Trends Plant Sci. 2003;8:259–262. doi: 10.1016/S1360-1385(03)00107-9. [DOI] [PubMed] [Google Scholar]
- 31.Cellarier E., Durando X., Vasson M. P., Farges M.C., Demiden A., Maurizis J.C., Madelmont J.C., Chollet P. Methionine dependency and cancer treatment. Cancer Treat Rev. 2003;29:489–499. doi: 10.1016/S0305-7372(03)00118-X. [DOI] [PubMed] [Google Scholar]