Abstract
Heterogeneous human amniotic fluid contains various cell types. Herein, we report on the possibility of simultaneously isolating three subtypes of cells from one primary culture. Using a stainless steel instrument named a colony poculum, two of the three cell subtypes could be efficiently cultured, and these were further characterized. The results indicated that these two cell subtypes had different morphologies and were characterized by different cell marker expression profiles, including the differential expression of CD105, CD117 and EBAF. Furthermore, their gene expression array data revealed their different gene expression profiles. Although both cell types expressed several embryonic stem cell-specific markers, they were non-tumorigenic in vivo. This paper not only provides new insight into the heterogeneity of human amniotic fluid, it also presents a simple yet efficient cell isolation method. These results will contribute to the thorough investigation of the properties and potential future applications of human amniotic fluid-derived cells.
Electronic Supplementary Material
Supplementary material is available for this article at 10.2478/s11658-010-0017-1 and is accessible for authorized users.
Electronic Supplementary Material
Supplementary material is available for this article at 10.2478/s11658-010-0017-1 and is accessible for authorized users.
Key words: Human amniotic fluid, Cell subtypes, Isolation, Colony poculum
Full Text
The Full Text of this article is available as a PDF (10.0 MB).
Abbreviations used
- AF-type
amniotic fluid-specific
- DAPI
dipeptidyl aminopeptidase
- EC cells
embryonal carcinoma cells
- EG cells
embryonic germ cells
- ES cells
embryonic stem cells
- E-type
epitheloid type
- FITC
fluorescein isothiocyanate
- F-type
fibroblastic type
- GO
gene ontology
- hAFC
human amniotic fluid-derived cells
- PBS
phosphate-buffered saline
- PE
phycoerythrin
- RT
room temperature
- RT-PCR
reverse transcriptase polymerase chain reaction
Contributor Information
Junmei Zhou, Phone: 86-21-62470059, FAX: 86-21-62790494, Email: jemyzh@vip.sina.com.
Fang Chen, Email: cdbxh@yahoo.cn.
References
- 1.Huisjes H.J. Origin of the cells in the liquor amnii. Am. J. Obstet. Gynecol. 1970;106:1222–1228. doi: 10.1016/0002-9378(70)90522-3. [DOI] [PubMed] [Google Scholar]
- 2.Prusa A.R., Marton E., Rosner M., Bernaschek G., Hengstschläger M. Oct-4 expressing cells in human amniotic fluid: a new source for stem cell research. Hum. Reprod. 2003;18:1489–1493. doi: 10.1093/humrep/deg279. [DOI] [PubMed] [Google Scholar]
- 3.In’ t Anker P.S., Scherjon S.A., Kleijburg-van der Keur C., Noort W.A., Claas F.H., Willemze R., Fibbe W.E., Kanhai H.H. Amniotic fluid as a novel source of mesenchymal stem cells for therapeutic transplantation. Blood. 2003;102:1548–1549. doi: 10.1182/blood-2003-04-1291. [DOI] [PubMed] [Google Scholar]
- 4.Tsai M.S., Lee J.L., Chang Y.J., Hwang S.M. Isolation of human multipotent mesenchymal stem cells from second trimester amniotic fluid using a novel two-stage culture protocol. Hum. Reprod. 2004;19:1450–1456. doi: 10.1093/humrep/deh279. [DOI] [PubMed] [Google Scholar]
- 5.Tsai M.S., Hwang S.M., Tsai Y.L., Cheng F.C., Lee J.L., Chang Y.J. Clonal amniotic fluid-derived stem cells express characteristics of both mesenchymal and neural stem cells. Biol. Reprod. 2006;74:545–551. doi: 10.1095/biolreprod.105.046029. [DOI] [PubMed] [Google Scholar]
- 6.DeCoppi P., Bartsch G., Jr., Siddiqui M.M., Xu T., Santos C.C., Perin L., Mostoslavsky G., Serre A.C., Snyder E.Y., Yoo J.J., Furth M.E., Soker S., Atala A. Isolation of amniotic stem cell lines with potential for therapy. Nat. Biotechnol. 2007;25:100–106. doi: 10.1038/nbt1274. [DOI] [PubMed] [Google Scholar]
- 7.Kim J., Lee Y., Kim H., Hwang K.J., Kwon H.C., Kim S.K., Cho D.J., Kang S.G., You J. Human amniotic fluid-derived stem cells have characteristics of multipotent stem cells. Cell Prolif. 2007;40:75–90. doi: 10.1111/j.1365-2184.2007.00414.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 8.Pesce M., Anastassiadis K., Scholer H.R. Oct-4: lessons of totipotency from embryonic stem cells. Cells Tissues Organs. 1999;165:144–152. doi: 10.1159/000016694. [DOI] [PubMed] [Google Scholar]
- 9.Holden C. Versatile stem cells without the ethical baggage. Science. 2007;315:170. doi: 10.1126/science.315.5809.170. [DOI] [PubMed] [Google Scholar]
- 10.Prusa A.R., Hengstschläger M. Amniotic fluid cells and human stem cell research: a new connection. Med. Sci. Monit. 2002;8:253–257. [PubMed] [Google Scholar]
- 11.Siegel N., Rosner M., Hanneder M., Freilinger A., Hengstschläger M. Human amniotic fluid stem cells: a new perspective. Amino Acids. 2008;35:291–293. doi: 10.1007/s00726-007-0593-1. [DOI] [PubMed] [Google Scholar]
- 12.Chiavegato A., Bollini S., Pozzobon M., Callegari A., Gasparotto L., Taiani J., Piccoli M., Lenzini E., Gerosa G., Vendramin I., Cozzi E., Angelini A., Iop L., Zanon G.F., Atala A., DeCoppi P., Sartore S. Human amniotic fluid-derived stem cells are rejected after transplantation in the myocardium of normal, ischemic, immuno-suppressed or immunodeficient rat. J. Mol. Cell. Cardiol. 2007;42:746–759. doi: 10.1016/j.yjmcc.2006.12.008. [DOI] [PubMed] [Google Scholar]
- 13.Bossolasco P., Montemurro T., Cova L., Zangrossi S., Calzarossa C., Buiatiotis S., Soligo D., Bosari S., Silani V., Deliliers G.L., Rebulla P., Lazzari L. Molecular and phenotypic characterization of human amniotic fluid cells and their differentiation potential. Cell. Res. 2006;16:329–336. doi: 10.1038/sj.cr.7310043. [DOI] [PubMed] [Google Scholar]
- 14.Kosaki K., Bassi M.T., Kosaki R., Lewin M., Belmont J., Schauer G., Casey B. Characterization and mutation analysis of human LEFTY A and LEFTY B: Homologues of murine genes implicated in left-right axis development. Am. J. Hum. Genet. 1999;64:712–721. doi: 10.1086/302289. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 15.Besser D. Expression of nodal, lefty-a, and lefty-B in undifferentiated human embryonic stem cells requires activation of Smad2/3. J. Biol. Chem. 2004;279:45076–45084. doi: 10.1074/jbc.M404979200. [DOI] [PubMed] [Google Scholar]
- 16.Dvash T., Sharon N., Yanuka O., Benvenisty N. Molecular analysis of LEFTY-expressing cells in early human embryoid bodies. Stem Cells. 2007;25:465–472. doi: 10.1634/stemcells.2006-0179. [DOI] [PubMed] [Google Scholar]
- 17.Thomson J.A., Itskovitz-Eldor J., Shapiro S.S., Waknitz M.A., Swiergiel J.J., Marshall V.S., Jones J.M. Embryonic stem cell lines derived from human blastocysis. Science. 1998;282:1145–1147. doi: 10.1126/science.282.5391.1145. [DOI] [PubMed] [Google Scholar]
- 18.Takahashi K., Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126:663–676. doi: 10.1016/j.cell.2006.07.024. [DOI] [PubMed] [Google Scholar]
- 19.Takahashi K., Tanabe K., Ohnuki M., Narita M., Ichisaka T., Tomoda K., Yamanaka S. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 2007;131:861–872. doi: 10.1016/j.cell.2007.11.019. [DOI] [PubMed] [Google Scholar]
- 20.Yu J., Vodyanik M.A., Smuga-Otto K., Antosiewicz-Bourget J., Frane J.L., Tian S., Nie J., Jonsdottir G.A., Ruotti V., Stewart R., Slukvin I.I., Thomson J.A. Induced pluripotent stem cell lines derived from human somatic cells. Science. 2007;318:1917–1920. doi: 10.1126/science.1151526. [DOI] [PubMed] [Google Scholar]
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.