Skip to main content
Cellular & Molecular Biology Letters logoLink to Cellular & Molecular Biology Letters
. 2006 Sep 26;11(4):461–474. doi: 10.2478/s11658-006-0038-y

Osteoblast differentiation of NIH3T3 fibroblasts is associated with changes in the IGF-I/IGFBP expression pattern

Basem M Abdallah 1
PMCID: PMC6275977  PMID: 17001448

Abstract

Insulin-like growth factors (IGFs) and IGF-binding proteins (IGFBPs) are essential regulators for osteoblast proliferation and differentiation. It has been reported that Dexamethasone (Dex), an active glucocorticoid (GC) analogue, synergizes the stimulatory effect of 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) on osteoblast differentiation in the mouse fibroblastic cell line NIH3T3. I investigated whether this stimulatory effect is associated with changes in the expression pattern of the IGF/IGFBP system. Quantitative real-time PCR technology was used to quantify the gene expression levels of the IGF-system during osteoblast differentiation and in response to 1,25(OH)2D3 or Dex alone under serum-containing and serum-free culture conditions. Interestingly, NIH3T3 was shown to express high mRNA levels of IGF-I, IGF-II and IGFBP-5, and low levels of both IGFBP-2 and-6. During osteoblast differentiation (days 6-12), IGF-I mRNA was repressed by more than 60%, while the transcript of IGFBP-5 was markedly up-regulated, by more than 50-fold. Similarly, treatment with Dex alone resulted in a dose-and time-dependent increase in the expression of IGFBP-5 and a decrease in IGF-I mRNA. Treatment with 1,25(OH)2D3 alone increased the mRNA levels of IGF-I and IGFBP-6 by around 4-and 7-fold, respectively, in a dose-and time-dependent manner. In conclusion, my data demonstrated that osteoblast differentiation of NIH3T3 is associated with changes in the expression pattern of IGFs/IGFBPs, which are regulated by glucocorticoid in the presence of 1,25(OH)2D3. Modulation of the IGF/IGFBP levels by glucocorticoid might suggest important roles for the IGF-system in mediating the osteoblast differentiation of the NIH3T3 cell line.

Key words: IGFs/IGFBPs, NIH3T3, Gene expression, Osteoblast differentiation

Full Text

The Full Text of this article is available as a PDF (498.9 KB).

Abbreviations used

ALP

alkaline phosphatase

BMP-2

Bone morphogenetic protein-2

Cbfa1/Runx2

Core binding factor

runt domain

alfa subunit 1

Dex

Dexamethasone

GC

glucocorticoid

IGFBPs

insulin like growth factor binding proteins

IGFs

insulin like growth factors

MSC

mesenchymal stem cells

OC

osteocalcin

OPN

osteopontein

RT

reverse transcriptase

References

  • 1.Kassem M., Kristiansen M., Abdallah B.M. Mesenchymal stem cells: cell biology and potential use in therapy. Basic Clin. Pharmacol. Toxicol. 2004;95:209–214. doi: 10.1111/j.1742-7843.2004.pto950502.x. [DOI] [PubMed] [Google Scholar]
  • 2.Langdahl B.L., Kassem M., Moller M.K., Eriksen E.F. The effects of IGF-I and IGF-II on proliferation and differentiation of human osteoblasts and interactions with growth hormone. Eur. J. Clin. Invest. 1998;28:176–183. doi: 10.1046/j.1365-2362.1998.00265.x. [DOI] [PubMed] [Google Scholar]
  • 3.Rajaram S., Baylink D.J., Mohan S. Insulin-like growth factor-binding proteins in serum and other biological fluids: regulation and functions. Endocr. Rev. 1997;18:801–831. doi: 10.1210/er.18.6.801. [DOI] [PubMed] [Google Scholar]
  • 4.Mohan S., Baylink D.J. IGF-binding proteins are multifunctional and act via IGF-dependent and-independent mechanisms. J. Endocrinol. 2002;175:19–31. doi: 10.1677/joe.0.1750019. [DOI] [PubMed] [Google Scholar]
  • 5.Robson H., Siebler T., Shalet S.M., Williams G.R. Interactions between GH, IGF-I, glucocorticoids, and thyroid hormones during skeletal growth. Pediatr. Res. 2002;52:137–147. doi: 10.1203/01.PDR.0000023494.70201.1C. [DOI] [PubMed] [Google Scholar]
  • 6.Eijken M., Koedam M., van Driel M., Buurman C.J., Pols H.A., van Leeuwen J.P. The essential role of glucocorticoids for proper human osteoblast differentiation and matrix mineralization. Mol. Cell Endocrinol. 2006;248:87–93. doi: 10.1016/j.mce.2005.11.034. [DOI] [PubMed] [Google Scholar]
  • 7.Delany A.M., Canalis E. Transcriptional repression of insulin-like growth factor I by glucocorticoids in rat bone cells. Endocrinology. 1995;136:4776–4781. doi: 10.1210/en.136.11.4776. [DOI] [PubMed] [Google Scholar]
  • 8.Cheng S.L., Zhang S.F., Mohan S., Lecanda F., Fausto A., Hunt A.H., Canalis E., Avioli L.V. Regulation of insulin-like growth factors I and II and their binding proteins in human bone marrow stromal cells by dexamethasone. J. Cell Biochem. 1998;71:449–458. doi: 10.1002/(SICI)1097-4644(19981201)71:3<449::AID-JCB13>3.0.CO;2-D. [DOI] [PubMed] [Google Scholar]
  • 9.Gurlek A., Pittelkow M.R., Kumar R. Modulation of growth factor/cytokine synthesis and signaling by 1alpha,25-dihydroxyvitamin D(3): implications in cell growth and differentiation. Endocr. Rev. 2002;23:763–786. doi: 10.1210/er.2001-0044. [DOI] [PubMed] [Google Scholar]
  • 10.Kveiborg M., Flyvbjerg A., Eriksen E.F., Kassem M. 1,25-Dihydroxyvitamin D3 stimulates the production of insulin-like growth factor-binding proteins-2,-3 and-4 in human bone marrow stromal cells. Eur. J. Endocrinol. 2001;144:549–557. doi: 10.1530/eje.0.1440549. [DOI] [PubMed] [Google Scholar]
  • 11.Nakao Y., Hilliker S., Baylink D.J., Mohan S. Studies on the regulation of insulin-like growth factor binding protein 3 secretion in human osteosarcoma cells in vitro. J. Bone Miner. Res. 1994;9:865–872. doi: 10.1002/jbmr.5650090612. [DOI] [PubMed] [Google Scholar]
  • 12.Shui C., Scutt A.M. Mouse embryo-derived NIH3T3 fibroblasts adopt an osteoblast-like phenotype when treated with 1alpha,25-dihydroxyvitamin D(3) and dexamethasone in vitro. J. Cell Physiol. 2002;193:164–172. doi: 10.1002/jcp.10157. [DOI] [PubMed] [Google Scholar]
  • 13.Wang E.A., Israel D.I., Kelly S., Luxenberg D.P. Bone morphogenetic protein-2 causes commitment and differentiation in C3H10T1/2 and 3T3 cells. Growth Factors. 1993;9:57–71. doi: 10.3109/08977199308991582. [DOI] [PubMed] [Google Scholar]
  • 14.Xiao Z.S., Hinson T.K., Quarles L.D. Cbfa1 isoform overexpression upregulates osteocalcin gene expression in non-osteoblastic and pre-osteoblastic cells. J. Cell Biochem. 1999;74:596–605. doi: 10.1002/(SICI)1097-4644(19990915)74:4<596::AID-JCB9>3.0.CO;2-F. [DOI] [PubMed] [Google Scholar]
  • 15.Abdallah B.M., Haack-Sorensen M., Fink T., Kassem M. Inhibition of osteoblast differentiation but not adipocyte differentiation of mesenchymal stem cells by sera obtained from aged females. Bone. 2006;39:181–188. doi: 10.1016/j.bone.2005.12.082. [DOI] [PubMed] [Google Scholar]
  • 16.Koch H., Jadlowiec J.A., Campbell P.G. Insulin-like growth factor-I induces early osteoblast gene expression in human mesenchymal stem cells. Stem Cells Dev. 2005;14:621–631. doi: 10.1089/scd.2005.14.621. [DOI] [PubMed] [Google Scholar]
  • 17.Barnes P.J. Corticosteroids: the drugs to beat. Eur. J. Pharmacol. 2006;533:2–14. doi: 10.1016/j.ejphar.2005.12.052. [DOI] [PubMed] [Google Scholar]
  • 18.Canalis E., Bilezikian J.P., Angeli A., Giustina A. Perspectives on glucocorticoid-induced osteoporosis. Bone. 2004;34:593–598. doi: 10.1016/j.bone.2003.11.026. [DOI] [PubMed] [Google Scholar]
  • 19.Smith E., Coetzee G.A., Frenkel B. Glucocorticoids inhibit cell cycle progression in differentiating osteoblasts via glycogen synthase kinase-3beta. J. Biol. Chem. 2002;277:18191–18197. doi: 10.1074/jbc.M109708200. [DOI] [PubMed] [Google Scholar]
  • 20.Jorgensen N.R., Henriksen Z., Sorensen O.H., Civitelli R. Dexamethasone, BMP-2and 1,25-dihydroxyvitamin D enhance a more differentiated osteoblast phenotype: validation of an in vitro model for human bone marrow-derived primary osteoblasts. Steroids. 2004;69:219–226. doi: 10.1016/j.steroids.2003.12.005. [DOI] [PubMed] [Google Scholar]
  • 21.Minuto F., Palermo C., Arvigo M., Barreca A.M. The IGF system and bone. J. Endocrinol. Invest. 2005;28:8–10. [PubMed] [Google Scholar]
  • 22.Chen T.L., Mallory J.B., Hintz R.L. Dexamethasone and 1,25(OH)2 vitamin D3 modulate the synthesis of insulin-like growth factor-I insteoblast-like cells. Calcif. Tissue Int. 1991;48:278–282. doi: 10.1007/BF02556380. [DOI] [PubMed] [Google Scholar]
  • 23.Chevalley T., Strong D.D., Mohan S., Baylink D., Linkhart T.A. Evidence for a role for insulin-like growth factor binding proteins in glucocorticoid inhibition of normal human osteoblast-like cell proliferation. Eur. J. Endocrinol. 1996;134:591–601. doi: 10.1530/eje.0.1340591. [DOI] [PubMed] [Google Scholar]
  • 24.Conover C.A., Clarkson J.T., Bale L.K. Effect of glucocorticoid on insulin-like growth factor (IGF) regulation of IGF-binding protein expression in fibroblasts. Endocrinology. 1995;136:1403–1410. doi: 10.1210/en.136.4.1403. [DOI] [PubMed] [Google Scholar]
  • 25.Fielder P.J., Tauber J.P., Wilson K.F., Pham H.M., Rosenfeld R.G. Insulin-like growth factors (IGFs) stimulate and dexamethasone inhibits IGF binding protein (BP)-5 expression in a mouse pituitary cell line. Growth Regul. 1993;3:226–234. [PubMed] [Google Scholar]
  • 26.Firth S.M., Baxter R.C. Cellular actions of the insulin-like growth factor binding proteins. Endocr. Rev. 2002;23:824–854. doi: 10.1210/er.2001-0033. [DOI] [PubMed] [Google Scholar]
  • 27.Miyakoshi N., Richman C., Kasukawa Y., Linkhart T.A., Baylink D.J., Mohan S. Evidence that IGF-binding protein-5 functions as a growth factor. J. Clin. Invest. 2001;107:73–81. doi: 10.1172/JCI10459. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 28.Durant D., Pereira R.M., Canalis E. Overexpression of insulin-like growth factor binding protein-5 decreases osteoblastic function in vitro. Bone. 2004;35:1256–1262. doi: 10.1016/j.bone.2004.08.011. [DOI] [PubMed] [Google Scholar]
  • 29.Jia D., Heersche J.N. Expression of insulin-like growth factor system constituents in differentiating rat osteoblastic cell populations. Growth Horm. IGF. Res. 2002;12:399–410. doi: 10.1016/S1096-6374(02)00117-X. [DOI] [PubMed] [Google Scholar]
  • 30.Chen T.L., Chang L.Y., Bates R.L., Perlman A.J. Dexamethasone and 1,25-dihydroxyvitamin D3 modulation of insulin-like growth factor-binding proteins in rat osteoblast-like cell cultures. Endocrinology. 1991;128:73–80. doi: 10.1210/endo-128-1-73. [DOI] [PubMed] [Google Scholar]
  • 31.Chenu C., Valentin-Opran A., Chavassieux P., Saez S., Meunier P.J., Delmas P.D. Insulin like growth factor I hormonal regulation by growth hormone and by 1,25(OH)2D3 and activity on human osteoblast-like cells in short-term cultures. Bone. 1990;11:81–86. doi: 10.1016/8756-3282(90)90054-3. [DOI] [PubMed] [Google Scholar]
  • 32.Linkhart T.A., Keffer M.J. Differential regulation of insulin-like growth factor-I (IGF-I) and IGF-II release from cultured neonatal mouse calvaria by parathyroid hormone, transforming growth factor-betaand 1,25-dihydroxyvitamin D3. Endocrinology. 1991;128:1511–1518. doi: 10.1210/endo-128-3-1511. [DOI] [PubMed] [Google Scholar]
  • 33.Schmid C., Schlapfer I., Gosteli-Peter M.A., Hauri C., Froesch E.R., Zapf J. 1 alpha,25-dihydroxyvitamin D3 increases IGF binding protein-5 expression in cultured osteoblasts. FEBS Lett. 1996;392:21–24. doi: 10.1016/0014-5793(96)00777-6. [DOI] [PubMed] [Google Scholar]
  • 34.Kim E.J., Schaffer B.S., Kang Y.H., Macdonald R.G., Park J.H. Decreased production of insulin-like growth factor-binding protein (IGFBP)-6 by transfection of colon cancer cells with an antisense IGFBP-6 cDNA construct leads to stimulation of cell proliferation. J. Gastroenterol. Hepatol. 2002;17:563–570. doi: 10.1046/j.1440-1746.2002.02703.x. [DOI] [PubMed] [Google Scholar]
  • 35.Schmid C. Insulin-like growth factors. Cell Biol. Int. 1995;19:445–457. doi: 10.1006/cbir.1995.1088. [DOI] [PubMed] [Google Scholar]
  • 36.Yan T., Wergedal J., Zhou Y., Mohan S., Baylink D.J., Strong D.D. Inhibition of human osteoblast marker gene expression by retinoids is mediated in part by insulin-like growth factor binding protein-6. Growth Horm. IGF. Res. 2001;11:368–377. doi: 10.1054/ghir.2001.0249. [DOI] [PubMed] [Google Scholar]
  • 37.Bach L.A. IGFBP-6 five years on; not so ‘forgotten’? Growth Horm. IGF. Res. 2005;15:185–192. doi: 10.1016/j.ghir.2005.04.001. [DOI] [PubMed] [Google Scholar]

Articles from Cellular & Molecular Biology Letters are provided here courtesy of BMC

RESOURCES