Skip to main content
Cellular & Molecular Biology Letters logoLink to Cellular & Molecular Biology Letters
. 2013 May 15;18(2):263–283. doi: 10.2478/s11658-013-0089-9

Enhancement of wound closure in diabetic mice by ex vivo expanded cord blood CD34+ cells

Kamonnaree Chotinantakul 189,289, Chavaboon Dechsukhum 389,489, Duangnapa Dejjuy 189,289, Wilairat Leeanansaksiri 189,289,
PMCID: PMC6275982  PMID: 23666595

Abstract

Diabetes can impair wound closure, which can give rise to major clinical problems. Most treatments for wound repair in diabetes remain ineffective. This study aimed to investigate the influence on wound closure of treatments using expanded human cord blood CD34+ cells (CB-CD34+ cells), freshly isolated CB-CD34+ cells and a cytokine cocktail. The test subjects were mice with streptozotocin-induced diabetes. Wounds treated with fresh CB-CD34+ cells showed more rapid repair than mice given the PBS control. Injection of expanded CB-CD34+ cells improved wound closure significantly, whereas the injection of the cytokine cocktail alone did not improve wound repair. The results also demonstrated a significant decrease in epithelial gaps and advanced re-epithelialization over the wound bed area after treatment with either expanded CB-CD34+ cells or freshly isolated cells compared with the control. In addition, treatments with both CB-CD34+ cells and the cytokine cocktail were shown to promote recruitment of CD31+-endothelial cells in the wounds. Both the CB-CD34+ cell population and the cytokine treatments also enhanced the recruitment of CD68-positive cells in the early stages (day 3) of treatment compared with PBS control, although the degree of this enhancement was found to decline in the later stages (day 9). These results demonstrated that expanded CB-CD34+ cells or freshly isolated CB-CD34+ cells could accelerate wound repair by increasing the recruitment of macrophages and capillaries and the reepithelialization over the wound bed area. Our data suggest an effective role in wound closure for both ex vivo expanded CB-CD34+ cells and freshly isolated cells, and these may serve as therapeutic options for wound treatment for diabetic patients. Wound closure acceleration by expanded CB-CD34+ cells also breaks the insufficient quantity obstacle of stem cells per unit of cord blood and other stem cell sources, which indicates a broader potential for autologous transplantation.

Electronic Supplementary Material

Supplementary material is available for this article at 10.2478/s11658-013-0089-9 and is accessible for authorized users.

Key words: CD31+ cells, CD34+ cells, CD68+ cells, Cord blood, Diabetic mice, Ex vivo expansion, Hematopoietic stem cells, Macrophages, Stem cell therapy, Wound closure

Full Text

The Full Text of this article is available as a PDF (815.2 KB).

Abbreviations used

CB

cord blood

DAPI

4′,6-diamidino-2-phenylindole

Flt3-L

Flt-3 ligand

HSC

hematopoietic stem cell

IGF

insulin-like growth factor

IL

interleukin

MSC

mesenchymal stem cell

PB

peripheral blood

PDGF

plateletderived growth factor

SCF

stem cell factor

STZ

streptozotocin

TGF-β

transforming growth factor-β

TPO

thrombopoietin

VEGF

vascular endothelial growth factor

References

  • 1.Pradhan L, Nabzdyk C, Andersen ND, LoGerfo FW, Veves A. Inflammation and neuropeptides: the connection in diabetic wound healing. Expert Rev. Mol. Med. 2009;11:e2. doi: 10.1017/S1462399409000945. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 2.Danaei G, Finucane MM, Lu Y, Singh GM, Cowan MJ, Paciorek CJ, Lin JK, Farzadfar F, Khang YH, Stevens GA, Rao M, Ali MK, Riley LM, Robinson CA, Ezzati M. National, regional, and global trends in fasting plasma glucose and diabetes prevalence since 1980: systematic analysis of health examination surveys and epidemiological studies with 370 country-years and 2.7 million participants. Lancet. 2011;378:31–40. doi: 10.1016/S0140-6736(11)60679-X. [DOI] [PubMed] [Google Scholar]
  • 3.Junrungsee S, Kosachunhanun N, Wongthanee A, Rerkasem K. History of foot ulcers increases mortality among patients with diabetes in Northern Thailand. Diabet. Med. 2011;28:608–611. doi: 10.1111/j.1464-5491.2011.03262.x. [DOI] [PubMed] [Google Scholar]
  • 4.Iversen MM, Tell GS, Riise T, Hanestad BR, Ostbye T, Graue M, Midthjell K. History of foot ulcer increases mortality among individuals with diabetes: ten-year follow-up of the Nord-Trondelag Health Study, Norway. Diabetes Care. 2009;32:2193–2199. doi: 10.2337/dc09-0651. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 5.Broughton G, 2nd, Janis JE, Attinger CE. The basic science of wound healing. Plast. Reconstr. Surg. 2006;117:12S–34S. doi: 10.1097/01.prs.0000225430.42531.c2. [DOI] [PubMed] [Google Scholar]
  • 6.Blakytny R, Jude E. The molecular biology of chronic wounds and delayed healing in diabetes. Diabet. Med. 2006;23:594–608. doi: 10.1111/j.1464-5491.2006.01773.x. [DOI] [PubMed] [Google Scholar]
  • 7.Tsuboi R, Shi CM, Sato C, Cox GN, Ogawa H. Co-administration of insulin-like growth factor (IGF)-I and IGF-binding protein-1 stimulates wound healing in animal models. J. Invest. Dermatol. 1995;104:199–203. doi: 10.1111/1523-1747.ep12612755. [DOI] [PubMed] [Google Scholar]
  • 8.Roberts AB. Transforming growth factor-beta: activity and efficacy in animal models of wound healing. Wound Repair Regen. 1995;3:408–418. doi: 10.1046/j.1524-475X.1995.30405.x. [DOI] [PubMed] [Google Scholar]
  • 9.Heldin CH, Westermark B. Mechanism of action and in vivo role of platelet-derived growth factor. Physiol. Rev. 1999;79:1283–1316. doi: 10.1152/physrev.1999.79.4.1283. [DOI] [PubMed] [Google Scholar]
  • 10.Muangman P, Muffley LA, Anthony JP, Spenny ML, Underwood RA, Olerud JE, Gibran NS. Nerve growth factor accelerates wound healing in diabetic mice. Wound Repair Regen. 2004;12:44–52. doi: 10.1111/j.1067-1927.2004.012110.x-1. [DOI] [PubMed] [Google Scholar]
  • 11.Behm B, Babilas P, Landthaler M, Schreml S. Cytokines, chemokines and growth factors in wound healing. J. Eur. Acad. Dermatol. Venereol. 2012;26:812–820. doi: 10.1111/j.1468-3083.2011.04415.x. [DOI] [PubMed] [Google Scholar]
  • 12.Barrientos S, Stojadinovic O, Golinko MS, Brem H, Tomic-Canic M. Growth factors and cytokines in wound healing. Wound Repair Regen. 2008;16:585–601. doi: 10.1111/j.1524-475X.2008.00410.x. [DOI] [PubMed] [Google Scholar]
  • 13.Gary Sibbald R, Woo KY. The biology of chronic foot ulcers in persons with diabetes. Diabetes Metab. Res. Rev. 2008;24(Suppl1):S25–30. doi: 10.1002/dmrr.847. [DOI] [PubMed] [Google Scholar]
  • 14.Lamers ML, Almeida ME, Vicente-Manzanares M, Horwitz AF, Santos MF. High glucose-mediated oxidative stress impairs cell migration. PLoS ONE. 2011;6:e22865–22873. doi: 10.1371/journal.pone.0022865. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 15.Smith PG, Liu M. Impaired cutaneous wound healing after sensory denervation in developing rats: effects on cell proliferation and apoptosis. Cell Tissue Res. 2002;307:281–291. doi: 10.1007/s00441-001-0477-8. [DOI] [PubMed] [Google Scholar]
  • 16.Kondo M, Wagers AJ, Manz MG, Prohaska SS, Scherer DC, Beilhack GF, Shizuru JA, Weissman IL. Biology of hematopoietic stem cells and progenitors: implications for clinical application. Annu. Rev. Immunol. 2003;21:759–806. doi: 10.1146/annurev.immunol.21.120601.141007. [DOI] [PubMed] [Google Scholar]
  • 17.Otrock ZK, Mahfouz RA, Makarem JA, Shamseddine AI. Understanding the biology of angiogenesis: review of the most important molecular mechanisms. Blood Cells Mol. Dis. 2007;39:212–220. doi: 10.1016/j.bcmd.2007.04.001. [DOI] [PubMed] [Google Scholar]
  • 18.Majka M, Janowska-Wieczorek A, Ratajczak J, Ehrenman K, Pietrzkowski Z, Kowalska MA, Gewirtz AM, Emerson SG, Ratajczak MZ. Numerous growth factors, cytokines, and chemokines are secreted by human CD34(+) cells, myeloblasts, erythroblasts, and megakaryoblasts and regulate normal hematopoiesis in an autocrine/ paracrine manner. Blood. 2001;97:3075–3085. doi: 10.1182/blood.V97.10.3075. [DOI] [PubMed] [Google Scholar]
  • 19.Sivan-Loukianova E, Awad OA, Stepanovic V, Bickenbach J, Schatteman GC. CD34+ blood cells accelerate vascularization and healing of diabetic mouse skin wounds. J. Vasc. Res. 2003;40:368–377. doi: 10.1159/000072701. [DOI] [PubMed] [Google Scholar]
  • 20.Caballero S, Sengupta N, Afzal A, Chang KH, Li Calzi S, Guberski DL, Kern TS, Grant MB. Ischemic vascular damage can be repaired by healthy, but not diabetic, endothelial progenitor cells. Diabetes. 2007;56:960–967. doi: 10.2337/db06-1254. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 21.Chan RK, Garfein E, Gigante PR, Liu P, Agha RA, Mulligan R, Orgill DP. Side population hematopoietic stem cells promote wound healing in diabetic mice. Plast. Reconstr. Surg. 2007;120:407–411. doi: 10.1097/01.prs.0000267696.98789.66. [DOI] [PubMed] [Google Scholar]
  • 22.Barcelos LS, Duplaa C, Krankel N, Graiani G, Invernici G, Katare R, Siragusa M, Meloni M, Campesi I, Monica M, Simm A, Campagnolo P, Mangialardi G, Stevanato L, Alessandri G, Emanueli C, Madeddu P. Human CD133+ progenitor cells promote the healing of diabetic ischemic ulcers by paracrine stimulation of angiogenesis and activation of Wnt signaling. Circ. Res. 2009;104:1095–1102. doi: 10.1161/CIRCRESAHA.108.192138. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 23.Pedroso DC, Tellechea A, Moura L, Fidalgo-Carvalho I, Duarte J, Carvalho E, Ferreira L. Improved survival, vascular differentiation and wound healing potential of stem cells co-cultured with endothelial cells. PLoS ONE. 2011;6:e16114. doi: 10.1371/journal.pone.0016114. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 24.Elsharawy MA, Naim M, Greish S. Human CD34+ stem cells promote healing of diabetic foot ulcers in rats. Interact. Cardiovasc. Thorac. Surg. 2012;14:288–293. doi: 10.1093/icvts/ivr068. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 25.Motyl K, McCabe LR. Streptozotocin, type I diabetes severity and bone. Biol. Proced. Online. 2009;11:296–315. doi: 10.1007/s12575-009-9000-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 26.Nishio Y, Koda M, Kamada T, Someya Y, Yoshinaga K, Okada S, Harada H, Okawa A, Moriya H, Yamazaki M. The use of hemopoietic stem cells derived from human umbilical cord blood to promote restoration of spinal cord tissue and recovery of hindlimb function in adult rats. J. Neurosurg. Spine. 2006;5:424–433. doi: 10.3171/spi.2006.5.5.424. [DOI] [PubMed] [Google Scholar]
  • 27.Templin C, Grote K, Schledzewski K, Ghadri JR, Schnabel S, Napp LC, Schieffer B, Kurzen H, Goerdt S, Landmesser U, Koenen W, Faulhaber J. Ex vivo expanded haematopoietic progenitor cells improve dermal wound healing by paracrine mechanisms. Exp. Dermatol. 2009;18:445–453. doi: 10.1111/j.1600-0625.2008.00809.x. [DOI] [PubMed] [Google Scholar]
  • 28.Badillo AT, Redden RA, Zhang L, Doolin EJ, Liechty KW. Treatment of diabetic wounds with fetal murine mesenchymal stromal cells enhances wound closure. Cell Tissue Res. 2007;329:301–311. doi: 10.1007/s00441-007-0417-3. [DOI] [PubMed] [Google Scholar]
  • 29.Snarski E, Milczarczyk A, Torosian T, Paluszewska M, Urbanowska E, Krol M, Boguradzki P, Jedynasty K, Franek E, Wiktor-Jedrzejczak W. Independence of exogenous insulin following immunoablation and stem cell reconstitution in newly diagnosed diabetes type I. Bone Marrow Transplant. 2011;46:562–566. doi: 10.1038/bmt.2010.147. [DOI] [PubMed] [Google Scholar]
  • 30.Couri CE, Oliveira MC, Stracieri AB, Moraes DA, Pieroni F, Barros GM, Madeira MI, Malmegrim KC, Foss-Freitas MC, Simoes BP, Martinez EZ, Foss MC, Burt RK, Voltarelli JC. C-peptide levels and insulin independence following autologous nonmyeloablative hematopoietic stem cell transplantation in newly diagnosed type 1 diabetes mellitus. JAMA. 2009;301:1573–1579. doi: 10.1001/jama.2009.470. [DOI] [PubMed] [Google Scholar]
  • 31.Feng K, Xu YW, Ye FG, Xiao L, Ma XH, Gao Y, Zhang X, Yao SZ, Shi BY. [Autologous peripheral blood hematopoietic stem cell transplantation in the treatment of type 1 diabetic mellitus: a report of 16 cases] Zhonghua Yi Xue Za Zhi. 2011;91:1966–1969. [PubMed] [Google Scholar]
  • 32.Singer AJ, Clark RA. Cutaneous wound healing. N. Engl. J. Med. 1999;341:738–746. doi: 10.1056/NEJM199909023411006. [DOI] [PubMed] [Google Scholar]
  • 33.Kim JY, Song SH, Kim KL, Ko JJ, Im JE, Yie SW, Ahn YK, Kim DK, Suh W. Human cord blood-derived endothelial progenitor cells and their conditioned media exhibit therapeutic equivalence for diabetic wound healing. Cell Transplant. 2010;19:1635–1644. doi: 10.3727/096368910X516637. [DOI] [PubMed] [Google Scholar]
  • 34.Broughton GI, Janis JE, Attinger CE. Wound Healing: An Overview. Plast. Reconstr. Surg. 2006;117:1e-S–32e-S. doi: 10.1097/01.prs.0000222562.60260.f9. [DOI] [PubMed] [Google Scholar]
  • 35.Di Rocco G, Gentile A, Antonini A, Ceradini F, Wu JC, Capogrossi MC, Toietta G. Enhanced healing of diabetic wounds by topical administration of adipose tissue-derived stromal cells overexpressing stromal-derived factor-1: biodistribution and engraftment analysis by bioluminescent imaging. Stem Cells Int. 2010;2011:304562. doi: 10.4061/2011/304562. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 36.Zhang S, Anderson DF, Bradding P, Coward WR, Baddeley SM, MacLeod JD, McGill JI, Church MK, Holgate ST, Roche WR. Human mast cells express stem cell factor. J. Pathol. 1998;186:59–66. doi: 10.1002/(SICI)1096-9896(199809)186:1<59::AID-PATH140>3.0.CO;2-J. [DOI] [PubMed] [Google Scholar]
  • 37.Longley BJ, Jr., Morganroth GS, Tyrrell L, Ding TG, Anderson DM, Williams DE, Halaban R. Altered metabolism of mast-cell growth factor (c-kit ligand) in cutaneous mastocytosis. N. Engl. J. Med. 1993;328:1302–1307. doi: 10.1056/NEJM199305063281803. [DOI] [PubMed] [Google Scholar]
  • 38.Weiss RR, Whitaker-Menezes D, Longley J, Bender J, Murphy GF. Human dermal endothelial cells express membrane-associated mast cell growth factor. J. Invest. Dermatol. 1995;104:101–106. doi: 10.1111/1523-1747.ep12613587. [DOI] [PubMed] [Google Scholar]
  • 39.Huttunen M, Naukkarinen A, Horsmanheimo M, Harvima IT. Transient production of stem cell factor in dermal cells but increasing expression of Kit receptor in mast cells during normal wound healing. Arch. Dermatol. Res. 2002;294:324–330. doi: 10.1007/s00403-002-0331-1. [DOI] [PubMed] [Google Scholar]
  • 40.Lam CR, Tan MJ, Tan SH, Tang MB, Cheung PC, Tan NS. TAK1 regulates SCF expression to modulate PKBalpha activity that protects keratinocytes from ROS-induced apoptosis. Cell Death Differ. 2011;18:1120–1129. doi: 10.1038/cdd.2010.182. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 41.Morita E, Tanaka T, Shinoda S, Kameyoshi Y, Yamamoto S, Lee DG, Sugiyama M. Expression of multiple forms of fetal liver kinase-2 (flk-2/flt-3) ligand in cultured human keratinocytes. Arch. Dermatol. Res. 1997;289:177–179. doi: 10.1007/s004030050176. [DOI] [PubMed] [Google Scholar]
  • 42.Bohannon J, Cui W, Cox R, Przkora R, Sherwood E, Toliver-Kinsky T. Prophylactic treatment with fms-like tyrosine kinase-3 ligand after burn injury enhances global immune responses to infection. J. Immunol. 2008;180:3038–3048. doi: 10.4049/jimmunol.180.5.3038. [DOI] [PubMed] [Google Scholar]
  • 43.Bohannon J, Cui W, Sherwood E, Toliver-Kinsky T. Dendritic cell modification of neutrophil responses to infection after burn injury. J. Immunol. 2010;185:2847–2853. doi: 10.4049/jimmunol.0903619. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 44.Toliver-Kinsky TE, Cui W, Murphey ED, Lin C, Sherwood ER. Enhancement of dendritic cell production by fms-like tyrosine kinase-3 ligand increases the resistance of mice to a burn wound infection. J. Immunol. 2005;174:404–410. doi: 10.4049/jimmunol.174.1.404. [DOI] [PubMed] [Google Scholar]
  • 45.Ghazizadeh M. Essential role of IL-6 signaling pathway in keloid pathogenesis. J. Nihon Med. Sch. 2007;74:11–22. doi: 10.1272/jnms.74.11. [DOI] [PubMed] [Google Scholar]
  • 46.Paquet P, Pierard GE. Interleukin-6 and the skin. Int. Arch. Allergy Immunol. 1996;109:308–317. doi: 10.1159/000237257. [DOI] [PubMed] [Google Scholar]
  • 47.Sawamura D, Meng X, Ina S, Sato M, Tamai K, Hanada K, Hashimoto I. Induction of keratinocyte proliferation and lymphocytic infiltration by in vivo introduction of the IL-6 gene into keratinocytes and possibility of keratinocyte gene therapy for inflammatory skin diseases using IL-6 mutant genes. J. Immunol. 1998;161:5633–5639. [PubMed] [Google Scholar]
  • 48.Lee MJ, Kim J, Lee KI, Shin JM, Chae JI, Chung HM. Enhancement of wound healing by secretory factors of endothelial precursor cells derived from human embryonic stem cells. Cytotherapy. 2011;13:165–178. doi: 10.3109/14653249.2010.512632. [DOI] [PubMed] [Google Scholar]
  • 49.Cheon SS, Cheah AY, Turley S, Nadesan P, Poon R, Clevers H, Alman BA. beta-Catenin stabilization dysregulates mesenchymal cell proliferation, motility, and invasiveness and causes aggressive fibromatosis and hyperplastic cutaneous wounds. Proc. Natl. Acad. Sci. USA. 2002;99:6973–6978. doi: 10.1073/pnas.102657399. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 50.Cheon S, Poon R, Yu C, Khoury M, Shenker R, Fish J, Alman BA. Prolonged beta-catenin stabilization and tcf-dependent transcriptional activation in hyperplastic cutaneous wounds. Lab. Invest. 2005;85:416–425. doi: 10.1038/labinvest.3700237. [DOI] [PubMed] [Google Scholar]
  • 51.Fathke C, Wilson L, Shah K, Kim B, Hocking A, Moon R, Isik F. Wnt signaling induces epithelial differentiation during cutaneous wound healing. BMC Cell Biol. 2006;7:4. doi: 10.1186/1471-2121-7-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 52.Slavik MA, Allen-Hoffmann BL, Liu BY, Alexander CM. Wnt signaling induces differentiation of progenitor cells in organotypic keratinocyte cultures. BMC Dev. Biol. 2007;7:9. doi: 10.1186/1471-213X-7-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 53.Kim DW, Lee JS, Yoon ES, Lee BI, Park SH, Dhong ES. Influence of human adipose-derived stromal cells on Wnt signaling in organotypic skin culture. J. Craniofac. Surg. 2011;22:694–698. doi: 10.1097/SCS.0b013e3182077fa2. [DOI] [PubMed] [Google Scholar]
  • 54.Janowska-Wieczorek A, Majka M, Ratajczak J, Ratajczak MZ. Autocrine/paracrine mechanisms in human hematopoiesis. Stem Cells. 2001;19:99–107. doi: 10.1634/stemcells.19-2-99. [DOI] [PubMed] [Google Scholar]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

11658_2013_89_MOESM1_ESM.pdf (1.1MB, pdf)

Supplementary material, approximately 1.12 MB.


Articles from Cellular & Molecular Biology Letters are provided here courtesy of BMC

RESOURCES