Skip to main content
Cellular & Molecular Biology Letters logoLink to Cellular & Molecular Biology Letters
. 2006 Sep 14;11(4):536–556. doi: 10.2478/s11658-006-0044-0

Plant dehydrins — Tissue location, structure and function

Tadeusz Rorat 1
PMCID: PMC6275985  PMID: 16983453

Abstract

Dehydrins (DHNs) are part of a large group of highly hydrophilic proteins known as LEA (Late Embryogenesis Abundant). They were originally identified as group II of the LEA proteins. The distinctive feature of all DHNs is a conserved, lysine-rich 15-amino acid domain, EKKGIMDKIKEKLPG, named the K-segment. It is usually present near the C-terminus. Other typical dehydrin features are: a track of Ser residues (the S-segment); a consensus motif, T/VDEYGNP (the Y-segment), located near the N-terminus; and less conserved regions, usually rich in polar amino acids (the Φ-segments). They do not display a well-defined secondary structure. The number and order of the Y-, S-and K-segments define different DHN sub-classes: YnSKn, YnKn, SKn, Kn and KnS. Dehydrins are distributed in a wide range of organisms including the higher plants, algae, yeast and cyanobacteria. They accumulate late in embryogenesis, and in nearly all the vegetative tissues during normal growth conditions and in response to stress leading to cellular dehydration (e.g. drought, low temperature and salinity). DHNs are localized in different cell compartments, such as the cytosol, nucleus, mitochondria, vacuole, and the vicinity of the plasma membrane; however, they are primarily localized to the cytoplasm and nucleus. The precise function of dehydrins has not been established yet, but in vitro experiments revealed that some DHNs (YSKn-type) bind to lipid vesicles that contain acidic phospholipids, and others (KnS) were shown to bind metals and have the ability to scavenge hydroxyl radicals [Asghar, R. et al. Protoplasma 177 (1994) 87–94], protect lipid membranes against peroxidation or display cryoprotective activity towards freezing-sensitive enzymes. The SKn-and K-type seem to be directly involved in cold acclimation processes. The main question arising from the in vitro findings is whether each DHN structural type could possess a specific function and tissue distribution. Much recent in vitro data clearly indicates that dehydrins belonging to different subclasses exhibit distinct functions.

Key words: Dehydration stress, Drought, Cold acclimation, Freezing tolerance, LEA proteins, Dehydrin

Full Text

The Full Text of this article is available as a PDF (443.7 KB).

Abbreviations used

DHNs

dehydrins

Kn-type

dehydrins containing n-copies of K-segments

KnS-type

dehydrins containing n-copies of K-segments followed a single copy of S-segment

LEA

late embryogenesis abundant

SKn-type

dehydrins containing a single copy of S-segment followed by n-copies of K-segments

YnKn-type

dehydrins containing n-copies of Y-segments followed by n-copies of K-segments

YnSKn-type

dehydrins containing n-copies of Y-segments followed a single copy of S-segment and n-copies of K-segments

Footnotes

An erratum to this article is available at http://dx.doi.org/10.2478/s11658-006-0071-x.

References

  • 1.Ingram J., Bartels D. The molecular basis of dehydration tolerance in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 1996;47:377–403. doi: 10.1146/annurev.arplant.47.1.377. [DOI] [PubMed] [Google Scholar]
  • 2.Allagulova Ch.R., Gilamov F.R., Shakirova F.M., Vakhitov V.A. The plant dehydrins: structure and functions. Biochemistry (Moscow) 2003;68:945–951. doi: 10.1023/A:1026077825584. [DOI] [PubMed] [Google Scholar]
  • 3.Garay-Arroyo A., Colmenoro-Florest J.M., Garciarrubio A., Covarrubias A.A. Highly hydrophilic proteins in prokaryotes and eucaryotes are common during conditions of water deficit. J. Biol. Chem. 2000;275:5668–5674. doi: 10.1074/jbc.275.8.5668. [DOI] [PubMed] [Google Scholar]
  • 4.Dure L., Crouch M., Harada J., Ho T.-H.D., Mundy J., Quatrano R., Thomas T., Sung Z.R. Common amino acid sequence domains among the LEA proteins of higher plants. Plant Mol. Biol. 1989;12:475–486. doi: 10.1007/BF00036962. [DOI] [PubMed] [Google Scholar]
  • 5.Cuming A. C. LEA proteins. In: Shewry P. R., Casey R., editors. Seed Proteins. Dordrecht: Kluwer Academic Publishers; 1999. pp. 753–780. [Google Scholar]
  • 6.Bray E. A. Molecular responses to water deficit. Plant Physiol. 1993;103:1035–1040. doi: 10.1104/pp.103.4.1035. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 7.Wise M.J. LEAping to conclusions: a computational reanalysis of late embryogenesis abundant proteins and their possible roles. BMC Bioinform. 2003;4:52. doi: 10.1186/1471-2105-4-52. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 8.McCubbin W.D., Kay C.M., Lane B.G. Hydrodynamic and optical properties of the wheat germ Em protein. Can. J. Biochem. Cell Biol. 1985;63:803–811. doi: 10.1139/o85-102. [DOI] [Google Scholar]
  • 9.Dure L., III Occurrence of a repeating 11-mer amino acid sequence motif in diverse organisms. Protein Pept. Lett. 2001;8:115–122. doi: 10.2174/0929866013409643. [DOI] [Google Scholar]
  • 10.Solomon A., Salomon R., Paperna I., Glazer I. Desiccation stress of entomopathogenic nematodes induces the accumulation of a novel heat stable product. Parasitology. 2000;121:409–416. doi: 10.1017/S0031182099006563. [DOI] [PubMed] [Google Scholar]
  • 11.Browne J., Tunnacliffe A., Burnell A. Plant desiccation gene found in a nematode. Nature (London) 2002;416:38. doi: 10.1038/416038a. [DOI] [PubMed] [Google Scholar]
  • 12.Goyal K., Tisi L., Basran A., Browne J., Burnell A., Zurdo J., Tunnacliffe A. Transition from natively unfolded to folded state induced by desiccation in an anhydrobiotic nematode protein. J. Biol. Chem. 2003;278:12977–12984. doi: 10.1074/jbc.M212007200. [DOI] [PubMed] [Google Scholar]
  • 13.Wolkers W.F., McCready S., Brandt W.F., Lindsey G.G., Hoekstra F.A. Isolation and characterization of a D-7 LEA protein that stabilizes glasses in vitro. Biochim. Biophys. Acta. 2001;1544:196–206. doi: 10.1016/s0167-4838(00)00220-x. [DOI] [PubMed] [Google Scholar]
  • 14.Close T.J. Dehydrins: A commonality in the response of plants to dehydration and low temperature. Physiol. Plant. 1997;100:291–296. doi: 10.1111/j.1399-3054.1997.tb04785.x. [DOI] [Google Scholar]
  • 15.Campbell S.A., Close T.J. Dehydrins: genes, proteins, and association with phenotypic traits. New Phytol. 1997;137:61–74. doi: 10.1046/j.1469-8137.1997.00831.x. [DOI] [Google Scholar]
  • 16.Li R., Brawley S.H., Close T.J. Dehydrin-like proteins in fucoid algae. Plant Physiol. 1997;114:479–479. [Google Scholar]
  • 17.Mitwisha L., Brandt W., McCread L., Lindsey G.G. HSP12 is a LEA-like protein in Saccharomyces cerevisiae. Plant Mol. Biol. 1998;37:513–521. doi: 10.1023/A:1005904219201. [DOI] [PubMed] [Google Scholar]
  • 18.Davidson W.S., Jonas A., Clayton D.F., George J.M. Stabilization of alpha-synuclein secondary structure upon binding to synthetic membranes. J. Biol. Chem. 1998;273:9443–9449. doi: 10.1074/jbc.273.16.9443. [DOI] [PubMed] [Google Scholar]
  • 19.Segrest J.P., Deloof H., Dohlman J.G., Brouilette C.G., Anantharamaiah G.M. Amphipathic helix motif: classes and properties. Proteins Struct. Funct. Genet. 1990;8:103–117. doi: 10.1002/prot.340080202. [DOI] [PubMed] [Google Scholar]
  • 20.Close T.J., Kortt A.A., Chandler P.M. A cDNA-Based Comparison of Dehydration-Induced Proteins (Dehydrins) in Barley and Corn. Plant Mol. Biol. 1989;13:95–108. doi: 10.1007/BF00027338. [DOI] [PubMed] [Google Scholar]
  • 21.Lisse T., Bartels D., Kalbitzer H.R., Jaenicke R. The recombinant dehydrinlike desiccation stress protein from the resurrection plant Craterostigma plantagineum displays no defined three-dimensional structure in its native state. Biol. Chem. 1996;377:555–561. doi: 10.1515/bchm3.1996.377.9.555. [DOI] [PubMed] [Google Scholar]
  • 22.Ismail A.M., Hall A.E., Close T.J. Purification and partial characterization of a dehydrin involved in chilling tolerance during seedling emergence of cowpea. Plant Physiol. 1999;120:237–244. doi: 10.1104/pp.120.1.237. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 23.Puhakainen T., Hess M.V., Mäkela P., Svenson J., Heino P., Palva E.T. Overexpression of multiple dehydrin genes enhances tolerance to freezing stress in Arabidopsis. Plant Mol. Biol. 2004;54:743–753. doi: 10.1023/B:PLAN.0000040903.66496.a4. [DOI] [PubMed] [Google Scholar]
  • 24.Choi D.W., Zhu B., Close T.J. The barley (Hordeum vulgare L.) dehydrin multigene family: sequences, allele types, chromosome assignments, and expression characteristics of 11 Dhn genes of cv Dicktoo. Theor. Appl. Genet. 1999;98:1234–1247. doi: 10.1007/s001220051189. [DOI] [Google Scholar]
  • 25.Rodriguez E.M., Svenson J.T., Malatrasi M., Choi D.-W., Close T.J. Barley Dhn13 encodes a KS-type dehydrin with constitutive and stress responsive expression. Theor. Appl. Genet. 2005;110:852–858. doi: 10.1007/s00122-004-1877-4. [DOI] [PubMed] [Google Scholar]
  • 26.Svenson, J., Ismail, A.M., Palva, E.T and Close, T.J. Dehydrins. In: Sensing, Signalling and Cell Adaptation (Storey, K.B. and Storey, J.M. Eds.), Elsevier Science B.V. (2002) 155–171.
  • 27.Goday A., Jensen A.B., Culianezmacia F.A., Alba M.M., Figueras M., Serratosa J., Torrent M., Pages M. The maize abscisic acid-responsive protein RAB17 is located in the nucleus and interacts with nuclear-localization signals. Plant Cell. 1994;6:351–360. doi: 10.1105/tpc.6.3.351. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 28.Robertson M., Chandler P.M. A dehydrin cognate protein from pea (Pisum sativum L.) with an atypical pattern of expression. Plant Mol. Biol. 1994;26:805–816. doi: 10.1007/BF00028850. [DOI] [PubMed] [Google Scholar]
  • 29.Kiyosue T., Yamaguchi-Shinozaki K., Shinozaki K., Kamada H., Harada H. cDNA cloning of Ecp40, an embryogenic-cell protein in carrot, and its expression during somatic and zygotic embryogenesis. Plant Mol. Biol. 1993;21:1053–1068. doi: 10.1007/BF00023602. [DOI] [PubMed] [Google Scholar]
  • 30.Momma M., Haraguchi K., Saito M., Chikuni K., Harada K. Purification and characterization of the acid soluble 26-kDa polypeptide from soybean seeds. Biosci. Biotechnol. Biochem. 1997;61:1286–1291. doi: 10.1271/bbb.61.1286. [DOI] [PubMed] [Google Scholar]
  • 31.Momma M., Kaneko S., Haraguchi K., Matsukura U. Peptide mapping and assessment of cryoprotective activity of 26/27-kDa dehydrin from soybean seeds. Biosci. Biotechnol. Biochem. 2003;67:1832–1835. doi: 10.1271/bbb.67.1832. [DOI] [PubMed] [Google Scholar]
  • 32.Nylander M., Svensson J., Palva E.T., Welin B.V. Stress-induced accumulation and tissue-specific localisation of dehydrins in Arabidopsis thaliana. Plant Mol. Biol. 2001;45:263–279. doi: 10.1023/A:1006469128280. [DOI] [PubMed] [Google Scholar]
  • 33.Bravo L.A., Close T.J., Corcuera L.J., Guy C.L. Characterization of an 80-kDa dehydrin-like protein in barley responsive to cold acclimation. Physiol. Plant. 1999;106:177–183. doi: 10.1034/j.1399-3054.1999.106205.x. [DOI] [Google Scholar]
  • 34.Houde M., Daniel C., Lachapelle M., Allard F., Laliberte S., Sarhan F. Immunolocalization of freezing-tolerance-associated proteins in the cytoplasm and nucleoplasm of wheat crown tissues. Plant J. 1995;8:583–593. doi: 10.1046/j.1365-313X.1995.8040583.x. [DOI] [PubMed] [Google Scholar]
  • 35.Danyluk J., Perron A., Houde M., Limin A., Fowler B., Benhamou N., Sarhan F. Accumulation of an acidic dehydrin in the vicinity of the plasma membrane during cold acclimation of wheat. Plant Cell. 1998;10:623–638. doi: 10.1105/tpc.10.4.623. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 36.Godoy J.A., Lunar R., Torresschumann S., Moreno J., Rodrigo R.M., Pintortoro J.A. Expression, tissue distribution and subcellular-localization of dehydrin Tas14 in salt-stressed tomato plants. Plant Mol. Biol. 1994;26:1921–1934. doi: 10.1007/BF00019503. [DOI] [PubMed] [Google Scholar]
  • 37.Rorat T., Grygorowicz W.J., Irzykowski W., Rey P. Expression of KS-type dehydrins is primarily regulated by factors related to organ type and leaf developmental stage under vegetative growth. Planta. 2004;218:878–885. doi: 10.1007/s00425-003-1171-8. [DOI] [PubMed] [Google Scholar]
  • 38.Rorat T., Szabala B.M., Grygorowicz W.J., Wojtowicz B., Yin Z., Rey P. Expression of SK3-type dehydrin in transporting organs is associated with cold acclimation in Solanum species. Planta. 2006;224:205–221. doi: 10.1007/s00425-005-0200-1. [DOI] [PubMed] [Google Scholar]
  • 39.Koag M.-C., Fenton R.D., Wilken S., Close T.J. The binding of maize DHN1 to lipid vesicles. Gain of structure and lipid specificity. Plant. Physiol. 2003;131:309–316. doi: 10.1104/pp.011171. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 40.Krüger C., Berkowith O., Stephan U.W., Hell R. A metal-binding member of the late embryogenesis abundant protein family transports iron in the phloem of Ricuinus communis L. J. Biol. Chem. 2002;277:25062–25062. doi: 10.1074/jbc.M201896200. [DOI] [PubMed] [Google Scholar]
  • 41.Hara M., Fujinaga M., Kuboi T. Metal binding by citrus dehydrin with histidine-rich domains. J. Exp. Bot. 2005;56:2695–2703. doi: 10.1093/jxb/eri262. [DOI] [PubMed] [Google Scholar]
  • 42.Hara M., Fujinaga M., Kuboi T. Radical scavenging activity and oxidative modification of citrus dehydrin. Plant. Physiol. Biol. 2004;42:657–662. doi: 10.1016/j.plaphy.2004.06.004. [DOI] [PubMed] [Google Scholar]
  • 43.Hara M., Terashima S., Fukaya T., Kuboi T. Enhancement of cold tolerance and inhibition of lipid peroxidation by citrus dehydrin in transgenic tobacco. Planta. 2003;217:290–298. doi: 10.1007/s00425-003-0986-7. [DOI] [PubMed] [Google Scholar]
  • 44.Wisniewski M., Webb R., Balsamo R., Close T.J., Yu X.M., Griffith M. Purification, immunolocalization, cryoprotective, and antifreeze activity of PCA60: A dehydrin from peach (Prunus persica) Physiol. Plant. 1999;105:600–608. doi: 10.1034/j.1399-3054.1999.105402.x. [DOI] [Google Scholar]
  • 45.Rinne P.L.H., Kaikuranta P.L.M., van der Plas L.H.W., van der Schoot C. Dehydrins in cold-acclimated apices of birch (Betula pubescens Ehrh.): production, localization and potential role in rescuing enzyme function during dehydration. Planta. 1999;209:377–388. doi: 10.1007/s004250050740. [DOI] [PubMed] [Google Scholar]
  • 46.Hara M., Terashima S., Kuboi T. Characterization and cryoprotective activity of cold-responsive dehydrin from Citrus unshiu. J. Plant. Physiol. 2001;158:1333–1339. doi: 10.1078/0176-1617-00600. [DOI] [Google Scholar]
  • 47.Lang V., Palva E.T. The expression of a RAB-related gene, RAB18, is induced by abscisic-acid during the cold-acclimation process of Arabidopsis thaliana (L) Heynh. Plant Mol. Biol. 1992;20:951–962. doi: 10.1007/BF00027165. [DOI] [PubMed] [Google Scholar]
  • 48.Karlson D.T., Fujino T., Kimura S., Baba K., Itoh T., Ashworth E.N. Novel plasmodesmata association of dehydrin-like proteins in cold acclimation red-osier dogwood (Cornus sericea) Tree Physiol. 2003;23:759–767. doi: 10.1093/treephys/23.11.759. [DOI] [PubMed] [Google Scholar]
  • 49.Schneider K., Wells B., Schmelzer E., Salamini F., Bartels D. Desiccation leads to the rapid accumulation of both cytosolic and chloroplastic proteins in the resurrection plant Craterostigma plantagineum Hochst. Planta. 1993;189:120–131. doi: 10.1007/BF00201352. [DOI] [Google Scholar]
  • 50.Egerton-Warburton L.M., Balsamo R.A., Close T.J. Temporal accumulation and ultrastructural localization of dehydrins in Zea mays. Physiol. Plant. 1997;101:545–555. doi: 10.1111/j.1399-3054.1997.tb01036.x. [DOI] [Google Scholar]
  • 51.Borovskii G.B., Stupnikova I.V., Antipina A.I., Voinikov V.K. Accumulation of protein, immunochemically related to dehydrins in the mitochondria of cold treated plants. Dokl. Akad. Nauk. 2000;371:251–254. [PubMed] [Google Scholar]
  • 52.Heyen B.J., Alsheikh M.K., Smith E.A., Torvik C.F., Seals D.F., Randall S.K. The calcium-binding activity of a vacuole-associated, dehydrin-like protein is regulated by phosphorylation. Plant Physiol. 2002;130:675–687. doi: 10.1104/pp.002550. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 53.Asghar R., Fenton R.D., Demason D.A., Close T.J. Nuclear and cytoplasmic localization of maize embryo and aleurone dehydrin. Protoplasma. 1994;177:87–94. doi: 10.1007/BF01378983. [DOI] [Google Scholar]
  • 54.Bracale M., Levi M., Savini C., Dicorato W., Galli M.G. Water deficit in pea root tips: Effects on the cell cycle and on the production of dehydrin-like proteins. Ann. Bot. 1997;79:593–600. doi: 10.1006/anbo.1996.0356. [DOI] [Google Scholar]
  • 55.Jensen A.B., Goday A., Figueras M., Jessop A.C., Pages M. Phosphorylation mediates the nuclear targeting of the maize RAB17 protein. Plant J. 1998;13:691–697. doi: 10.1046/j.1365-313X.1998.00069.x. [DOI] [PubMed] [Google Scholar]
  • 56.Mundy J., Chua N.H. Abscisic acid and water-stress induce the expression of a novel rice gene. Embo J. 1988;7:2279–2286. doi: 10.1002/j.1460-2075.1988.tb03070.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 57.Neven L., Haskell G.D.W., Hofig A., Li Q.B., Guy C.L. Characterization of a spinach gene responsive to low-temperature and water-stress. Plant Mol. Biol. 1993;21:291–305. doi: 10.1007/BF00019945. [DOI] [PubMed] [Google Scholar]
  • 58.Vilardell J., Goday A., Freire M.A., Torrent M., Martinez M.C., Torne J. M., Pages M. Gene, sequence, developmental regulation and protein phosphorylation of RAB17 in maize. Plant Mol. Biol. 1990;14:423–432. doi: 10.1007/BF00028778. [DOI] [PubMed] [Google Scholar]
  • 59.Plana M., Itarte E., Eritja R., Goday A., Pages M., Martinez M.C. Phosphorylation of maize RAB-17 protein by casein kinase-2. J. Biol. Chem. 1991;266:22510–22514. [PubMed] [Google Scholar]
  • 60.Alsheikh M.K., Heyen B.J., Randall S.K. Ion binding properties of the dehydrin ERD14 are dependent upon phosphorylation. J. Biol. Chem. 2003;278:40882–40889. doi: 10.1074/jbc.M307151200. [DOI] [PubMed] [Google Scholar]
  • 61.Golan-Goldhirsh A., Peri I., Birk Y., Smirnoff P. Inflorescence bud proteins of Pistacia vera. Trees-Struct. Funct. 1998;12:415–419. [Google Scholar]
  • 62.Levi A., Panta G.R., Parmentier C.M., Muthalif M.M., Arora R., Shanker S., Rowland L.J. Complementary DNA cloning, sequencing and expression of an unusual dehydrin from blueberry floral buds. Physiol. Plant. 1999;107:98–109. doi: 10.1034/j.1399-3054.1999.100114.x. [DOI] [Google Scholar]
  • 63.Sarhan F., Oullet F., Vazquez-Tello A. The wheat wcs120 gene family: a useful model to understand the molecular genetics of freezing tolerance in cereals. Physiol. Plant. 1997;101:439–445. doi: 10.1111/j.1399-3054.1997.tb01019.x. [DOI] [Google Scholar]
  • 64.Ismail A.M., Hall A.E., Close T.J. Allelic variation of a dehydrin gene cosegregates with chilling tolerance during seedling emergence. Proc. Natl. Acad. Sci. U. S. A. 1999;96:13566–13570. doi: 10.1073/pnas.96.23.13566. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 65.Whitsitt M.S., Collins R.G., Mullet J.E. Modulation of dehydration tolerance in soybean seedlings. Plant Physiol. 1997;114:917–925. doi: 10.1104/pp.114.3.917. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 66.Cellier F., Conéjéro G., Breitler J.-C., Casse F. Molecular and physiological responses to water deficit in drought-tolerant and drought-sensitive lines of sunflower. Plant Physiol. 1998;116:319–328. doi: 10.1104/pp.116.1.319. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 67.Ismail A.M., Hall A.E., Close T.J. Chilling tolerance during emergence of cowpea associate with a dehydrin and slow electrolyte leakage. Crop Sci. 1997;37:1270–1277. doi: 10.2135/cropsci1997.0011183X003700040041x. [DOI] [Google Scholar]
  • 68.Tabaei-Aghdaei S.R., Harrison P., Pearce R.S. Expression of dehydratio-stress-related genes in the crowns of wheatgresses species [Lophopyrum elongatum (Host) A. Love and Agropyron desertorum (Fisch. Ex Link.) Schult. having contrasting acclimation to salt, cold and drought. Plant Cell Environ. 2000;23:561–571. doi: 10.1046/j.1365-3040.2000.00572.x. [DOI] [Google Scholar]
  • 69.Zhu B., Choi D.W., Fenton R., Close T.J. Expression of the barley dehydrin multigene family and the development of freezing tolerance. Mol. Gen. Genet. 2000;264:145–153. doi: 10.1007/s004380000299. [DOI] [PubMed] [Google Scholar]
  • 70.Kaye C., Neven L., Hofig A., Li Q.B., Haskell D., Guy C. Characterization of a gene for spinach CAP160 and expression of two spinach cold-acclimation proteins in tobacco. Plant Physiol. 1998;116:1367–1377. doi: 10.1104/pp.116.4.1367. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 71.Frank W., Munnik T., Kerkmann K., Salamini F., Bartels D. Water deficit triggers phospholipase D activity in the resurrection plant Craterostigma plantagineum. Plant Cell. 2000;12:111–123. doi: 10.1105/tpc.12.1.111. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 72.Munnik T. Phosphatidic acid: an emerging plant lipid second messenger. Trends Plant Sci. 2001;6:227–233. doi: 10.1016/S1360-1385(01)01918-5. [DOI] [PubMed] [Google Scholar]
  • 73.Cullis P.R., Hope M.J., Tilcock C.P.S. Lipid polymorphism and the roles of lipids in membranes. Chem. Phys. Lipids. 1986;40:127–144. doi: 10.1016/0009-3084(86)90067-8. [DOI] [PubMed] [Google Scholar]
  • 74.Pearce R.S. Extracellular ice and cell shape in frost-stressed cereals leaves: a low temperature scanning-electron microscopy study. Planta. 1988;175:313–324. doi: 10.1007/BF00396336. [DOI] [PubMed] [Google Scholar]
  • 75.Pearce R.S., Ashworth E.N. Cell shape and localization of ice in leaves of overwintering wheat during frost stress in the field. Planta. 1992;188:324–331. doi: 10.1007/BF00192798. [DOI] [PubMed] [Google Scholar]
  • 76.Welin B.V., Olson A., Nylander M., Palva E.T. characterization and differential expression of DHN/LEA/RAB-like genes during cold-acclimation and drought stress in Arabidopsis thaliana. Plant Mol. Biol. 1994;26:131–144. doi: 10.1007/BF00039526. [DOI] [PubMed] [Google Scholar]
  • 77.Houde M., Danyluk J., Laliberte J.F., Rassart E., Dhindsa R.S., Sarhan F. Cloning, characterization, and expression of a cDNA encoding a 50-kilodalton protein specifically induced by cold-acclimation in wheat. Plant Physiol. 1992;99:1381–1387. doi: 10.1104/pp.99.4.1381. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Cellular & Molecular Biology Letters are provided here courtesy of BMC

RESOURCES