Skip to main content
Cellular & Molecular Biology Letters logoLink to Cellular & Molecular Biology Letters
. 2008 Oct 6;14(1):23. doi: 10.2478/s11658-008-0031-8

The effects of superoxide dismutase knockout on the oxidative stress parameters and survival of mouse erythrocyt

Agnieszka Grzelak 1, Marcin Kruszewski 1,2, Ewa Macierzyńska 1, Łukasz Piotrowski 1,, Łukasz Pułaski 1,3, Błażej Rychlik 1, Grzegorz Bartosz 1,4
PMCID: PMC6275986  PMID: 18839073

Abstract

The erythrocytes of 12-month old Sod1 −/− mice showed an increased level of reactive oxygen species (ROS), as estimated by the degree of dihydroethidine and dihydrorhodamine oxidation, and the increased level of Heinz bodies. No indices of severe oxidative stress were found in the red blood cells and blood plasma of Sod1 −/− mice as judged from the lack of significant changes in the levels of erythrocyte and plasma glutathione, plasma protein thiol and carbonyl groups and thiobarbituric-acid reactive substances in the blood plasma. However, a decreased erythrocyte lifespan, increased reticulocyte count and splenomegaly were noted, indicating the importance of superoxide dismutase for maintaining erythrocyte viability. The levels of erythrocyte ROS and Heinz bodies and the reticulocyte count were indistinguishable in Sod1 +/+ and Sod1 +/− mice, suggesting that a superoxide dismutase activity decrease to half of its normal value may be sufficient to secure the protective effects of the enzyme.

Key words: Superoxide dismutase, Erythrocyte, Red blood cell, Reactive oxygen species, Oxidative stress, Heinz bodies, Acetylcholinesterase

Full Text

The Full Text of this article is available as a PDF (420.7 KB).

Abbreviations used

DMSO

dimethylsulfoxide

DT

dithionite

DTPA

diethylenetriaminepentaacetatic acid

EDTA

ethylenediaminetetraacetic acid

GPx

glutathione peroxidase

GSH

glutathione

GSSG

glutathione disulfide

Hb

hemoglobin

HB

Heinz bodies

HBS

Hank’s buffered solution

Ig

immunoglobulin

KO

knockout

NEM

N-ethylmaleimide

NHS

N-hydroxysuccinimide

PE

phycoerythrin

Prdx

peroxiredoxin

RBC

red blood cell

SOD

superoxide dismutase

TBARS

thiobarbituric-acid reactive substances

tBOOH

tert-butyl hydroperoxide

References

  • 1.Mehta A.B. Glucose-6-phosphate dehydrogenase deficiency. Postgrad. Med. J. 1994;70:871–877. doi: 10.1136/pgmj.70.830.871. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 2.Ho H.Y., Cheng M.L., Chiu D.T. Glucose-6-phosphate dehydrogenase—from oxidative stress to cellular functions and degenerative diseases. Redox Rep. 2007;12:109–118. doi: 10.1179/135100007X200209. [DOI] [PubMed] [Google Scholar]
  • 3.Góth L., Rass P., Páy A. Catalase enzyme mutations and their association with diseases. Mol. Diagn. 2004;8:141–149. doi: 10.2165/00066982-200408030-00001. [DOI] [PubMed] [Google Scholar]
  • 4.Beutler E. Red cell enzyme deficiencies as non-disease. Biomed. Biochim. Acta. 1983;42:S234–S241. [PubMed] [Google Scholar]
  • 5.Neumann C.A., Krause D.S., Carman C.V., Das S., Dubey D.P., Abraham J.L., Bronson R.T., Fujiwara Y., Orkin S.H., Van Etten R.A. Essential role for the peroxiredoxin Prdx1 in erythrocyte antioxidant defence and tumour suppression. Nature. 2003;424:561–565. doi: 10.1038/nature01819. [DOI] [PubMed] [Google Scholar]
  • 6.Elchuri S., Oberley T.D., Qi W., Eisenstein R.S., Jackson Roberts L., Van Remmen H., Epstein C.J., Huang T.T. CuZnSOD deficiency leads to persistent and widespread oxidative damage and hepatocarcinogenesis later in life. Oncogene. 2005;24:367–380. doi: 10.1038/sj.onc.1208207. [DOI] [PubMed] [Google Scholar]
  • 7.Sentman M.L., Granström M., Jakobson H., Reaume A., Basu S., Marklund S.L. Phenotypes of mice lacking extracellular superoxide dismutase and copper- and zinc-containing superoxide dismutase. J. Biol. Chem. 2006;281:6904–6909. doi: 10.1074/jbc.M510764200. [DOI] [PubMed] [Google Scholar]
  • 8.Muller F.L., Song W., Liu Y., Chaudhuri A., Pieke-Dahl S., Strong R., Huang T. T., Epstein C.J., Roberts L.J.N., Csete M., Faulkner J.A., Van Remmen H. Absence of CuZn superoxide dismutase leads to elevated oxidative stress and acceleration of age-dependent skeletal muscle atrophy. Free Radic. Biol. Med. 2006;40:1993–2004. doi: 10.1016/j.freeradbiomed.2006.01.036. [DOI] [PubMed] [Google Scholar]
  • 9.Iuchi Y., Okada F., Onuma K., Onoda T., Asao H., Kobayashi M., Fujii J. Elevated oxidative stress in erythrocytes due to a SOD1 deficiency causes anaemia and triggers autoantibody production. Biochem. J. 2007;402:219–227. doi: 10.1042/BJ20061386. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 10.Matzuk M.M., Dionne L., Guo Q., Kumar T.R., Lebovitz R.M. Ovarian function in superoxide dismutase 1 and 2 knockout mice. Endocrinology. 1998;139:4008–4011. doi: 10.1210/en.139.9.4008. [DOI] [PubMed] [Google Scholar]
  • 11.Judkiewicz L., Bartosz G., Oplatowska A., Szczepanek A. Modified osmotic fragility test for the laboratory diagnosis of hereditary spherocytosis. Am. J. Hematol. 1989;31:136–137. doi: 10.1002/ajh.2830310214. [DOI] [PubMed] [Google Scholar]
  • 12.Misra H.P., Fridovich I. The role of superoxide anion in the autoxidation of epinephrine and a simple assay for superoxide dismutase. J. Biol. Chem. 1972;247:3170–3175. [PubMed] [Google Scholar]
  • 13.Bartosz G. The other face of oxygen. Free radicals in nature. Warsaw: Polish Scientific Publishers; 2003. [Google Scholar]
  • 14.Fossati P., Prencipe L., Berti G. Use of 3,5-dichloro-2-hydroxybenzenesulfonic acid/4-aminophenazone chromogenic system in direct enzymic assay of uric acid in serum and urine. Clin. Chem. 1980;26:227–231. [PubMed] [Google Scholar]
  • 15.Smith A.D., Levander O.A. High-throughput 96-well microplate assays for determining specific activities of glutathione peroxidase and thioredoxin reductase. Methods Enzymol. 2002;347:113–121. doi: 10.1016/S0076-6879(02)47012-7. [DOI] [PubMed] [Google Scholar]
  • 16.Lowry O.H., Rosebrough N.J., Farr A.L., Randall R.J. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 1951;193:265–275. [PubMed] [Google Scholar]
  • 17.Ellman G. Tissue sulfhydryl groups. Arch. Biochem. Biophys. 1959;82:70–77. doi: 10.1016/0003-9861(59)90090-6. [DOI] [PubMed] [Google Scholar]
  • 18.Patsoukis N., Georgiou C.D. Fluorometric determination of thiol redox state. Anal. Bioanal. Chem. 2005;383:923–929. doi: 10.1007/s00216-005-0095-5. [DOI] [PubMed] [Google Scholar]
  • 19.Senft A.P., Dalton T.P., Shertzer H.G. Determining glutathione and glutathione disulfide using the fluorescence probe o-phthalaldehyde. Anal. Biochem. 2000;280:80–86. doi: 10.1006/abio.2000.4498. [DOI] [PubMed] [Google Scholar]
  • 20.Stocks J., Gutteridge J.M.C., Sharp R.J., Dormandy T.L. The inhibition of lipid autoxidation by human serum and its relation to serum proteins and alpha-tocopherol. Clin. Sci. Mol. Med. 1974;47:223–233. doi: 10.1042/cs0470223. [DOI] [PubMed] [Google Scholar]
  • 21.Alayash A.I., Patel R.P., Cashon R.E. Redox reactions of hemoglobin and myoglobin: biological and toxicological implications. Antioxid. Redox Signal. 2001;3:313–327. doi: 10.1089/152308601300185250. [DOI] [PubMed] [Google Scholar]
  • 22.Bartosz G. Artifactual peroxidase activity in animal tissues. Clin. Chem. 1984;30:598. [PubMed] [Google Scholar]
  • 23.Starzynski R.R., Lipinski P., Drapier J.C., Diet A., Smuda E., Bartlomiejczyk T., Gralak M.A., Kruszewski M. Down-regulation of iron regulatory protein 1 activities and expression in superoxide dismutase 1 knock-out mice is not associated with alterations in iron metabolism. J. Biol. Chem. 2005;280:4207–4712. doi: 10.1074/jbc.M411055200. [DOI] [PubMed] [Google Scholar]
  • 24.Bartosz G. Use of spectroscopic probes for detection of reactive oxygen species. Clin. Chim. Acta. 2006;368:53–76. doi: 10.1016/j.cca.2005.12.039. [DOI] [PubMed] [Google Scholar]
  • 25.Wardman P. Fluorescent and luminescent probes for measurement of oxidative and nitrosative species in cells and tissues: progress, pitfalls, and prospects. Free Radic. Biol. Med. 2007;43:995–1022. doi: 10.1016/j.freeradbiomed.2007.06.026. [DOI] [PubMed] [Google Scholar]
  • 26.Jackson M.J. Lack of CuZnSOD activity: A pointer to the mechanism underying age-related loss of muscle function, a commentary on “Absence of CuZn superoxide dismutase leads to elevated oxidative stress and acceleration of age-dependent skeletal muscle atrophy”. Free Radic. Biol. Med. 2006;40:1900–1902. doi: 10.1016/j.freeradbiomed.2006.02.022. [DOI] [PubMed] [Google Scholar]
  • 27.Lutz H.U. Innate immune and non-immune mediators of erythrocyte clearance. Cell. Mol. Biol. 2004;50:107–116. [PubMed] [Google Scholar]
  • 28.Zupko I., Hohmann J., Redei D., Falkay G., Janicsak G., Mathe I. Antioxidant activity of leaves of Salvia species in enzyme-dependent and enzyme-independent systems of lipid peroxidation and their phenolic constituents. Planta Med. 2001;67:366–368. doi: 10.1055/s-2001-14327. [DOI] [PubMed] [Google Scholar]
  • 29.Prall Y.G., Gambhir K.K., Ampy F.R. Acetylcholinesterase: an enzymatic marker of human red blood cell aging. Life Sci. 1998;63:177–184. doi: 10.1016/S0024-3205(98)00258-6. [DOI] [PubMed] [Google Scholar]
  • 30.Bartosz G. Erythrocyte aging: physical and chemical membrane changes. Gerontology. 1991;37:33–67. doi: 10.1159/000213251. [DOI] [PubMed] [Google Scholar]
  • 31.Bartosz G. Aging of the erythrocyte. VII. On the possible causes of inactivation of red cell enzymes. Mech. Ageing Dev. 1980;13:379–385. doi: 10.1016/0047-6374(80)90079-2. [DOI] [PubMed] [Google Scholar]

Articles from Cellular & Molecular Biology Letters are provided here courtesy of BMC

RESOURCES