Skip to main content
Cellular & Molecular Biology Letters logoLink to Cellular & Molecular Biology Letters
. 2008 Apr 10;13(2):250–259. doi: 10.2478/s11658-007-0052-8

The cytoplasmic domain of chondrolectin interacts with the β-subunit of rab geranylgeranyl transferase

An Claessens 1, Christine Weyn 1, Joseph Merregaert 1,
PMCID: PMC6275987  PMID: 18161010

Abstract

Mouse chondrolectin (chodl) was isolated out of the tail tip of four-day old 129/SvJ mice as a by-product of a PCR-based subtractive cDNA library screening. The gene is predominantly expressed in adult skeletal muscle, heart, testes and lungs and in embryonic stadia. Chodl is the mouse homologue of human chondrolectin (CHODL), a gene that encodes for a type Ia transmembrane protein and that is expressed in human testis, prostate, heart and skeletal muscle tissue. CHODL-splice variants (CHODL f, CHODL fΔE, CHODL ΔE) are detected in human leukocytes. The proteins of the chondrolectin family belong to the family of C-type lectins. As the members of this protein family are important for a wide array of biological processes, the function of chodl was investigated by searching for its protein interaction partners. The β-subunit of Rab geranylgeranyl transferase (Rabggtb) was isolated 8 times after a complete Sos recruitment system (SRS) screen with the cytoplasmic domain of chodl. The interaction was confirmed with in vitro transcription/translation and co-immunoprecipitation (co-IP) experiments.

Key Words: C-type lectin, Chondrolectin, SRS

Full Text

The Full Text of this article is available as a PDF (485.6 KB).

Abbreviations used

chodl

chondrolectin

co-IP

co-immunoprecipitation

CRD

carbohydrate recognition domain

dpc

days post coitum

ECM

extracellular matrix

Rabggtb

Rab geranylgeranyl transferase β

SRS

Sos recruitment system

References

  • 1.Weng L., Hübner R., Claessens A., Smits P., Wauters J., Tylzanowski P., Van Marck E., Merregaert J. Isolation and characterization of a novel C-type lectin, Chondrolectin (Chodl), which is predominantly expressed in muscle cells. Gene. 2003;308:21–29. doi: 10.1016/S0378-1119(03)00425-6. [DOI] [PubMed] [Google Scholar]
  • 2.Weng L., Smits P., Wauters J., Merregaert J. Molecular cloning and characterization of human Chondrolectin, a novel type I transmembrane protein homologous to C-type lectins. Genomics. 2002;80:62–70. doi: 10.1006/geno.2002.6806. [DOI] [PubMed] [Google Scholar]
  • 3.Claessens A., Van de Vijver K., Van Bockstaele D.R., Wauters J., Berneman Z.W., Van Marck E., Merregaert J. Expression and localization of CHODLdeltaE/CHODLfdeltaE, the soluble isoform of chondrolectin. Cell Biol. Int. 2007;31:1323–1330. doi: 10.1016/j.cellbi.2007.05.014. [DOI] [PubMed] [Google Scholar]
  • 4.Weng L., Van Bockstaele D.R., Wauters J., Van Marck E., Plum J., Berneman Z.N., Merregaert J. A novel alternative spliced Chondrolectin isoform lacking the transmembrane domain is expressed during T cell maturation. J. Biol. Chem. 2003;278:19164–19170. doi: 10.1074/jbc.M300653200. [DOI] [PubMed] [Google Scholar]
  • 5.Drickamer K. Ca2+-dependent carbohydrate-recognition domains in animal proteins. Curr. Opin. Struct. Biol. 1993;3:393–400. doi: 10.1016/S0959-440X(05)80112-5. [DOI] [Google Scholar]
  • 6.Drickamer K., Taylor M.E. Biology of animal lectins. Annu. Rev. Cell. Biol. 1993;9:237–264. doi: 10.1146/annurev.cb.09.110193.001321. [DOI] [PubMed] [Google Scholar]
  • 7.Zelensky A.N., Gready J.E. The C-type lectin-like domain superfamily. FEBS Lett. 2005;272:6179–6217. doi: 10.1111/j.1742-4658.2005.05031.x. [DOI] [PubMed] [Google Scholar]
  • 8.Kresse, H. and Schönherr, E. Proteoglycans of the extracellular matrix and growth control. J. Cell. Physiol. J. Cell. Physiol. (2001) 266–274. [DOI] [PubMed]
  • 9.Ellgaard L., Helenius A. Quality control in the endoplasmic reticulum. Nat. Rev. 2003;4:181–191. doi: 10.1038/nrm1052. [DOI] [PubMed] [Google Scholar]
  • 10.Aronheim A., Zandi E., Hennemann H., Elledge S.J., Karin M. Isolation of an AP-1 repressor by a novel method for detecting proteinprotein interactions. Mol. Cell. Biol. 1997;17:3094–3102. doi: 10.1128/mcb.17.6.3094. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 11.Huang W., Wang S., Lozano G., de Crombrugghe B. cDNA library screening using the Sos recruitment system. Biotechniques. 2001;30:94–100. doi: 10.2144/01301st06. [DOI] [PubMed] [Google Scholar]
  • 12.Beil B., Screaton G., Stamm S. Molecular cloning of htra2-beta-1 and htra2-beta-2, two human homologs of tra-2 generated by alternative splicing. DNA Cell Biol. 1997;16:679–690. doi: 10.1089/dna.1997.16.679. [DOI] [PubMed] [Google Scholar]
  • 13.Chinpaisal C., Lee C., Wei L. Studies of the mouse Rab geranylgeranyl transferase β-subunit: gene structure, expression and regulation. Gene. 1997;184:237–243. doi: 10.1016/S0378-1119(96)00605-1. [DOI] [PubMed] [Google Scholar]
  • 14.Armstrong S.A., Seabra M.C., Sudhof T.C., Goldstein J.L., Brown M.S. cDNA cloning and expression of the α and β subunits of Rat Rab geranylgeranyl transferase. J. Biol. Chem. 1993;268:12221–12229. [PubMed] [Google Scholar]
  • 15.Khosravi-Far R., Clark G.J., Abe K., Cox A.D., McLain T., Lutz R.J., Sinensky M., Der C.J. Ras (CXXX) and Rab (CC/CXC) prenylation signal sequences are unique and functionally distinct. J. Biol. Chem. 1992;267:24363–24368. [PubMed] [Google Scholar]
  • 16.Leung K.F., Baron R., Ali B.R., Magree A.I., Seabra M.C. Rab GTPases containing a CAAX motif are processed post-geranylgeranylation by proteolysis and methylation. J. Biol. Chem. 2007;282:1487–1497. doi: 10.1074/jbc.M605557200. [DOI] [PubMed] [Google Scholar]

Articles from Cellular & Molecular Biology Letters are provided here courtesy of BMC

RESOURCES