Skip to main content
Cellular & Molecular Biology Letters logoLink to Cellular & Molecular Biology Letters
. 2014 Aug 29;19(3):500–516. doi: 10.2478/s11658-014-0209-1

The effect of resveratrol and its methylthio-derivatives on the Nrf2-ARE pathway in mouse epidermis and HaCaT keratinocytes

Violetta Krajka-Kuźniak 1, Hanna Szaefer 1, Tomasz Stefański 2, Stanisław Sobiak 2, Michał Cichocki 1, Wanda Baer-Dubowska 1,
PMCID: PMC6276002  PMID: 25169438

Abstract

Resveratrol is the most extensively studied stilbene derivative. We previously showed that methylthiostilbenes were more effective inhibitors of CYP1A1 and 1B1 activity than resveratrol. In this study, we investigated whether resveratrol and its methylthio-substituted derivatives, i.e. 3-M-4′-MTS (S2), 3,5-DM-4′-MTS (S5) and 3,4,5-TM-4′-MTS (S7) could activate Nrf2 signaling in the mouse epidermis and in human keratinocytes. Western blot analysis showed translocation of Nrf2 from the cytosol to the nucleus in both models. All of the tested stilbenes increased GST activity, but resveratrol was the most effective inducer. Moreover, only resveratrol increased the protein level of GSTP in the mouse epidermis. GSTM was enhanced in HaCaT cells after the treatment with derivatives S2 and S5. The same effect was observed for GSTP in the case of compound S2. Resveratrol and its derivatives reduced the NQO2 protein level in HaCaT cells. Thus, it is possible that increased expression of GSTP or GSTM and GST activity was linked with NQO2 inhibition in these cells. The results of this study indicate that resveratrol and its methylthioderivatives activate Nrf2 not only in the mouse epidermis, but also in human keratinocytes. Upregulating GST isozymes might be particularly important for deactivating chemical carcinogens, such as PAH.

Keywords: Nrf2, GST, NQO, Resveratrol, Methylthiostilbenes, HaCaT cells, Mouse epidermis

Full Text

The Full Text of this article is available as a PDF (2.0 MB).

Abbreviations used

AhR

aryl hydrocarbon receptor

ARE

antioxidant response element

CDNB

1-chloro-2,4-dinitrobenzene

CYPs

cytochromes P450

DMEM

Dulbecco’s modified Eagle’s medium

DMF

dimethylformamide

DMSO

dimethyl sulfoxide

DTT

dithiothreitol

FBS

fetal bovine serum

GSH

glutathione

GST

glutathione-S-transferase

GSTA

glutathione-S-transferase A

GSTM

glutathione-Stransferase M

GSTP

glutathione-S-transferase P

HaCaT

spontaneously immortalized human keratinocyte cell line

Keap1

Kelch-like ECH-associated protein 1

MTT

3-(4,5-dimethylthiazol-2-yl)2,5-diphenyl tetrazolium bromide

Nrf2

nuclear factor erythroid 2-related factor 2

NQO

NAD(P)H: quinone oxidoreductase

PAHs

polycyclic aromatic hydrocarbons

Res

resveratrol

S2

3-methoxy-4′-methylthio-transstilbene (3-M-4′-MTS)

S5

3,5-dimethoxy-4′-methylthio-trans-stilbene (3,5-DM-4′-MTS)

S7

3,4,5-trimethoxy-4′-methylthio-trans-stilbene (3,4,5-TM-4′-MTS)

References

  • 1.Gescher A, Steward WP, Brown K. Resveratrol in the management of human cancer: how strong is the clinical evidence? Ann. NY Acad. Sci. 2013;1290:12–20. doi: 10.1111/nyas.12205. [DOI] [PubMed] [Google Scholar]
  • 2.Jang M, Cai L, Udeani GO, Slowing KV, Thomas CF, Beecher CW, Fong HH, Farnsworth NR, Kinghorn AD, Mehta RG, Moon RC, Pezzuto JM. Cancer chemopreventive activity of resveratrol, a natural product derived from grapes. Science. 1997;275:218–220. doi: 10.1126/science.275.5297.218. [DOI] [PubMed] [Google Scholar]
  • 3.DiGiovanni J. Multistage carcinogenesis in mouse skin. Pharmacol. Ther. 1992;54:63–128. doi: 10.1016/0163-7258(92)90051-Z. [DOI] [PubMed] [Google Scholar]
  • 4.Anzenbacher P, Anzenbacherová E. Cytochromes P450 and metabolism of xenobiotics. Cell. Mol. Life Sci. 2001;58:737–747. doi: 10.1007/PL00000897. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 5.Iskander K, Paquet M, Brayton C, Jaiswal AK. Deficiency of NRH:quinone oxidoreductase 2 increases susceptibility to 7,12-dimethylbenz(a)anthracene and benzo(a)pyrene-induced skin carcinogenesis. Cancer Res. 2004;64:5925–5928. doi: 10.1158/0008-5472.CAN-04-0763. [DOI] [PubMed] [Google Scholar]
  • 6.Dinkova-Kostova AT, Talalay P. Direct and indirect antioxidant properties of inducers of cytoprotective proteins. Mol. Nutr. Food Res. 2008;52:S128–138. doi: 10.1002/mnfr.200700195. [DOI] [PubMed] [Google Scholar]
  • 7.Baer-Dubowska W, Szaefer H. Modulation of carcinogen-metabolizing cytochromes P450 by phytochemicals in humans. Expert Opin. Drug Metab. Toxicol. 2013;9:927–941. doi: 10.1517/17425255.2013.795219. [DOI] [PubMed] [Google Scholar]
  • 8.Mikstacka R, Gnojkowski J, Baer-Dubowska W. Effect of natural phenols on the catalytic activity of cytochrome P450 2E1. Acta Biochim. Pol. 2002;49:917–925. [PubMed] [Google Scholar]
  • 9.Szaefer H, Cichocki M, Brauze D, Baer-Dubowska W. Alteration in phase I and II enzyme activities and polycyclic aromatic hydrocarbons-DNA adduct formation by plant phenolics in mouse epidermis. Nutr. Cancer. 2004;48:70–77. doi: 10.1207/s15327914nc4801_10. [DOI] [PubMed] [Google Scholar]
  • 10.Szaefer H, Krajka-Kuźniak V, Baer-Dubowska W. The effect of initiating doses of benzo[a]pyrene and 7,12-dimethylbenz[a]anthracene on the expression of PAH activating enzymes and its modulation by plant phenols. Toxicology. 2008;251:28–34. doi: 10.1016/j.tox.2008.07.047. [DOI] [PubMed] [Google Scholar]
  • 11.Shimada T, Sugie A, Yamada H, Kawazoe H, Hashimoto M, Azuma E, Nakajima T, Inoue K, Oda Y. Dose — response studies on the induction of liver cytochrome P4501A1 and 1B1 by polycyclic aromatic hydrocarbons in arylhydrocarbon-responsive C57BL/6J mice. Xenobiotica. 2003;33:957–971. doi: 10.1080/0049825031000140896. [DOI] [PubMed] [Google Scholar]
  • 12.Itoh K, Wakabayashi N, Katoh Y, Ishii T, Igarashi K, Engel JD, Yamamoto M. Keap1 represses nuclear activation of antioxidant responsive elements by Nrf2 through binding to the amino-terminal Neh2 domain. Genes Dev. 1999;13:76–86. doi: 10.1101/gad.13.1.76. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 13.Itoh K, Wakabayashi N, Katoh Y, Ishii T, O’Connor T, Yamamoto M. Keap1 regulates both cytoplasmic-nuclear shuttling and degradation of Nrf2 in response to electrophiles. Genes Cells. 2003;8:379–391. doi: 10.1046/j.1365-2443.2003.00640.x. [DOI] [PubMed] [Google Scholar]
  • 14.McMahon M, Itoh K, Yamamoto M, Hayes JD. Keap1-dependent proteasomal degradation of transcription factor Nrf2 contributes to the negative regulation of antioxidant response element-driven gene expression. J. Biol. Chem. 2003;28:21592–21600. doi: 10.1074/jbc.M300931200. [DOI] [PubMed] [Google Scholar]
  • 15.Itoh K, Tong KI, Yamamoto M. Molecular mechanism activating Nrf2-Keap1 pathway in regulation of adaptive response to electrophiles. Free Radic. Biol. Med. 2004;36:1208–1213. doi: 10.1016/j.freeradbiomed.2004.02.075. [DOI] [PubMed] [Google Scholar]
  • 16.Nguyen T, Yang CS, Pickett CB. The pathways and molecular mechanisms regulating Nrf2 activation in response to chemical stress. Free Radic. Biol. Med. 2004;37:433–441. doi: 10.1016/j.freeradbiomed.2004.04.033. [DOI] [PubMed] [Google Scholar]
  • 17.Surh YJ. Cancer chemoprevention with dietary phytochemicals. Nat. Rev. Cancer. 2003;3:768–780. doi: 10.1038/nrc1189. [DOI] [PubMed] [Google Scholar]
  • 18.Ramos-Gomez M, Kwak MK, Dolan PM, Itoh K, Yamamoto M, Talalay P, Kensler TW. Sensitivity to carcinogenesis is increased and chemoprotective efficacy of enzyme inducers is lost in nrf2 transcription factor-deficient mice. Proc. Natl. Acad. Sci. USA. 2001;98:3410–3415. doi: 10.1073/pnas.051618798. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 19.Walle T, Hsieh F, DeLegge MH, Oatis JEJ, Walle UK. High absorption but very low bioavailability of oral resveratrol in humans. Drug Metab. Dispos. 2004;32:1377–1382. doi: 10.1124/dmd.104.000885. [DOI] [PubMed] [Google Scholar]
  • 20.Mikstacka R, Baer-Dubowska W, Wieczorek M, Sobiak S. Thiomethylstilbenes as inhibitors of CYP1A1, CYP1A2 and CYP1B1 activities. Mol. Nutr. Food Res. 2008;52:S77–83. doi: 10.1002/mnfr.200700202. [DOI] [PubMed] [Google Scholar]
  • 21.Mikstacka R, Rimando AM, Dutkiewicz Z, Stefański T, Sobiak S. Design, synthesis and evaluation of the inhibitory selectivity of novel transresveratrol analogues on human recombinant CYP1A1, CYP1A2 and CYP1B1. Bioorg. Med. Chem. 2012;20:5117–5126. doi: 10.1016/j.bmc.2012.07.012. [DOI] [PubMed] [Google Scholar]
  • 22.van Eijl S, Zhu Z, Cupitt J, Gierula M, Götz C, Fritsche E, Edwards RJ. Elucidation of xenobiotic metabolism pathways in human skin and human skin models by proteomic profiling. PLoS One. 2012;7:e41721. doi: 10.1371/journal.pone.0041721. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 23.Rajeshwaran GG, Nandakumar M, Sureshbabu R, Mohanakrishnan AK. Lewis acid-mediated Michaelis-Arbuzov reaction at room temperature: A facile preparation of arylmethyl/heteroarylmethyl phosphonates. Org. Lett. 2011;13:1270–1273. doi: 10.1021/ol1029436. [DOI] [PubMed] [Google Scholar]
  • 24.Ianni A, Waldvogel SR. Reliable and versatile synthesis of 2-Arylsubstituted cinnamic acid esters. Synthesis. 2006;13:2103–2112. [Google Scholar]
  • 25.Claridge TDW, Davies SG, Lee JA, Nicholson RL, Roberts PM, Russel AJ, Smith AD, Toms SM. Highly (E)-selective wadsworthemmons reactions promoted by methylmagnesium bromide. Org. Lett. 2008;10:5437–5440. doi: 10.1021/ol802212e. [DOI] [PubMed] [Google Scholar]
  • 26.Mosman T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J. Immunol. Methods. 1983;65:55–63. doi: 10.1016/0022-1759(83)90303-4. [DOI] [PubMed] [Google Scholar]
  • 27.Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970;227:680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  • 28.Towbin H, Staehelin T, Gordon J. Electrophoretic transfer of proteins from polyarylamide gels to nitrocellulose sheets: procedure and some applications. Proc. Natl. Acad. Sci. USA. 1979;76:4350–4354. doi: 10.1073/pnas.76.9.4350. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 29.Lowry OH, Rosenbrough NJ, Farr AL, Randall RJ. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 1951;193:265–275. [PubMed] [Google Scholar]
  • 30.Habig WH, Pabst MJ, Jakoby WB. Glutathione S-transferases. The first enzymatic step in mercapturic acid formation. J. Biol. Chem. 1974;249:7130–7139. [PubMed] [Google Scholar]
  • 31.Slocum SL, Kensler TW. Nrf2: control of sensitivity to carcinogens. Arch. Toxicol. 2011;85:273–284. doi: 10.1007/s00204-011-0675-4. [DOI] [PubMed] [Google Scholar]
  • 32.Canistro D, Bonamassa B, Pozzetti L, Sapone A, Abdel-Rahman SZ, Biagi GL, Paolini M. Alteration of xenobiotic metabolizing enzymes by resveratrol in liver and lung of CD1 mice. Food Chem. Toxicol. 2009;47:454–461. doi: 10.1016/j.fct.2008.11.040. [DOI] [PubMed] [Google Scholar]
  • 33.Numazawa S, Yoshida T. Nrf2-dependent gene expressions: a molecular toxicological aspect. J. Toxicol. Sci. 2004;29:81–89. doi: 10.2131/jts.29.81. [DOI] [PubMed] [Google Scholar]
  • 34.Dinkova-Kostova AT, Holtzclaw WD, Cole RN, Itoh K, Wakabayashi N, Katoh Y, Yamamoto M, Talalay P. Direct evidence that sulfhydryl groups of Keap1 are the sensors regulating induction of phase 2 enzymes that protect against carcinogens and oxidants. Proc. Natl. Acad. Sci. USA. 2002;99:11908–11913. doi: 10.1073/pnas.172398899. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 35.Chow HH, Garland LL, Hsu CH, Vining DR, Chew WM, Miller JA, Perloff M, Crowell JA, Alberts DS. Resveratrol modulates drug- and carcinogen-metabolizing enzymes in a healthy volunteer study. Cancer Prev. Res. (Phila) 2010;3:1168–1175. doi: 10.1158/1940-6207.CAPR-09-0155. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 36.Hsieh TC, Wang Z, Deng H, Wu JM. Identification of glutathione sulfotransferase-pi (GSTP1) as a new resveratrol targeting protein (RTP) and studies of resveratrol-responsive protein changes by resveratrol affinity chromatography. Anticancer Res. 2008;28:29–36. [PMC free article] [PubMed] [Google Scholar]
  • 37.Phillips MF, Mantle TJ. The initial-rate kinetics of mouse glutathione S-transferase YfYf. Evidence for an allosteric site for ethacrynic acid. Biochem. J. 1991;275:703–709. doi: 10.1042/bj2750703. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 38.Hayes JD, Pulford DJ. The glutathione S-transferase supergene family: regulation of GST and the contribution of the isoenzymes to cancer chemoprotection and drug resistance. Crit. Rev. Biochem. Mol. Biol. 1995;30:445–600. doi: 10.3109/10409239509083491. [DOI] [PubMed] [Google Scholar]
  • 39.Zhang Y, Gonzalez V, Xu MJ. Expressions and regulation of glutathione S-transferase P1-1 in cultured human epidermal cells. J. Dermatol. Sci. 2002;30:205–214. doi: 10.1016/S0923-1811(02)00107-X. [DOI] [PubMed] [Google Scholar]
  • 40.Radjendirane V, Joseph P, Jaiswal AK. Gene expression of DTdiaphorase (NQO1) in cancer cells. In: Forman HJ, Cadenas E, editors. Oxidative stress and signal transduction. New York: Chapman & Hall; 1997. pp. 441–475. [Google Scholar]
  • 41.Shen G, Kong AN. Nrf2 plays an important role in coordinated regulation of Phase II drug metabolism enzymes and Phase III drug transporters. Biopharm. Drug Dispos. 2009;30:345–355. doi: 10.1002/bdd.680. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 42.Buryanovskyy L, Fu Y, Boyd M, Ma Y, Hsieh TC, Wu JM, Zhang Z. Crystal structure of quinone reductase 2 in complex with resveratrol. Biochemistry. 2004;43:11417–11426. doi: 10.1021/bi049162o. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 43.Zhang X, Wang Y, Yang W, Hou X, Zou J, Cao K. Resveratrol inhibits angiotensin II-induced ERK1/2 activation by downregulating quinone reductase 2 in rat vascular smooth muscle cells. J. Biomed. Res. 2012;26:103–109. doi: 10.1016/S1674-8301(12)60019-0. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Cellular & Molecular Biology Letters are provided here courtesy of BMC

RESOURCES