Skip to main content
Cellular & Molecular Biology Letters logoLink to Cellular & Molecular Biology Letters
. 2009 May 30;14(4):548–574. doi: 10.2478/s11658-009-0020-6

The transcriptional regulation and cell-specific expression of the MAPK-activated protein kinase MK5

Nancy Gerits 1, Alexey Shiryaev 1, Sergiy Kostenko 1, Helle Klenow 1, Olga Shiryaeva 1, Mona Johannessen 1, Ugo Moens 1,
PMCID: PMC6276003  PMID: 19484198

Abstract

The mitogen-activated protein kinase (MAPK) cascades regulate important cellular processes, including growth, differentiation, apoptosis, embryogenesis, motility and gene expression. Although MAPKs mostly appear to be constitutively expressed, the transcript levels of some MAPK-encoding genes increase upon treatment with specific stimuli. This applies to the MAPKactivated protein kinases MK2 and MK3. By contrast, the transcriptional regulation of the related MK5 has not yet been studied. The MK5 promoters of mouse, rat and human contain a plethora of putative transcription factor sites, and the spatio-temporal expression of MK5 suggests inducible transcription of the gene. We examined the transcription pattern of MK5 in different tissues, and studied the kinetics of MK5 expression at the transcriptional and/or translation level in PC12 cells exposed to arsenite, forskolin, KCl, lipopolysaccharide, spermine NONOate, retinoic acid, serum, phorbol ester, temperature shock, and vanadate. Cells exposed to forskolin display a transient increase in MK5 mRNA, despite their unaltered MK5 protein levels. The MK5 promoters of human, mouse and rat contain a cAMP-responsive element that binds the cAMPresponsive element-binding protein (CREB) in vitro. Luciferase reporter constructs containing an 850-base pair human MK5 promoter fragment encompassing the CRE showed a basal activity that was 10-fold higher than the corresponding construct in which the CRE motif was deleted. siRNA-mediated depletion of CREB had no effect on the endogenous MK5 protein levels. Several binding motifs for heat shock factor are dispersed in the mouse and rat promoter, and temperature shock transiently enhanced the MK5 transcript levels. None of the other tested stimuli had an effect on the MK5 mRNA or protein levels. Our results indicate an inducible regulation of MK5 transcription in response to specific stimuli. However, the MK5 protein levels remained unaffected by all the stimuli tested. There is still no explanation for the discrepancy between the increased mRNA and unchanged MK5 protein levels.

Key words: Mitogen-activated protein kinase-activated protein kinase, MK5, Promoter, CREB, Heat-shock, Oxidative stress

Full Text

The Full Text of this article is available as a PDF (13.5 MB).

Abbreviations used

bp

base pairs

CRE

cAMP-response element

CREB

CREbinding protein

HSF

heat shock factor

LPS

lipopolysaccharide

MAPK

mitogenactivated protein kinase

miRNA

microRNA

MK

MAPK-activated protein kinase

MNK

MAPK-interacting kinases

MSK

mitogen- and stress-activated kinases

PKA

protein kinase A or cAMP-dependent protein kinase

RA

retinoic acid

RSK

ribosomal S6 kinase

siRNA

small interfering RNA

TPA

tetradecanoyl phorbol acetate

References

  • 1.Manning G., Whyte D.B., Martinez R., Hunter T. The protein kinase complement of the human genome. Science. 2002;298:1912–1934. doi: 10.1126/science.1075762. [DOI] [PubMed] [Google Scholar]
  • 2.Imajo M., Tsuchiya Y., Nishida E. Regulatory mechanisms and functions of MAP kinase signalling pathways. IUBMB Life. 2006;58:312–317. doi: 10.1080/15216540600746393. [DOI] [PubMed] [Google Scholar]
  • 3.Raman M., Chen W., Cobb M.H. Differential regulation and properties of MAPKs. Oncogene. 2007;26:3100–3112. doi: 10.1038/sj.onc.1210392. [DOI] [PubMed] [Google Scholar]
  • 4.Song F., Goodman R.M. OsBIMK1, a rice MAP kinase gene involved in disease resistance responses. Planta. 2002;215:997–1005. doi: 10.1007/s00425-002-0794-5. [DOI] [PubMed] [Google Scholar]
  • 5.Hong W.F., He C., Wang L., Wang D.J., Joseph L.M., Jantasuriyarat C., Dai L., Wang G.L. BWMK1 Responds to Multiple Environmental Stresses and Plant Hormones. J. Integ. Plant Biol. 2007;49:843–851. doi: 10.1111/j.1744-7909.2007.00505.x. [DOI] [Google Scholar]
  • 6.Fu S.F., Chou W.C., Huang D.D., Huang H.J. Transcriptional regulation of a rice mitogen-activated protein kinase gene, OsMAPK4, in response to environmental stresses. Plant Cell Phys. 2002;43:958–963. doi: 10.1093/pcp/pcf111. [DOI] [PubMed] [Google Scholar]
  • 7.Huang H.J., Fu S.F., Tai Y.H., Chou W.C., Huang D.D. Expression of Oryza sativa MAP kinase gene is developmentally regulated and stressresponsive. Physiol. Plant. 2002;114:572–580. doi: 10.1034/j.1399-3054.2002.1140410.x. [DOI] [PubMed] [Google Scholar]
  • 8.Ma S., Bohnert H.J. Integration of Arabidopsis thaliana stress-related transcript profiles, promoter structures, and cell-specific expression. Genome Biol. 2007;8:R49. doi: 10.1186/gb-2007-8-4-r49. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 9.Mizoguchi Y., Irie K., Hirayama T., Hayashida N., Yamaguchi-Shinozaki K., Matsumoto K., Shinozaki K. A gene encoding a mitogen-activated protein kinase kinase kinase is induced simultaneously with genes for a mitogen-activated protein kinase and an S6 ribosomal protein kinase by touch, cold, and water stress in Arabidopsis thaliana. Proc. Nat. Acad. Sci. USA. 1996;93:765–769. doi: 10.1073/pnas.93.2.765. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 10.Rasar M., De Franco D.B., Hammes S. R. Paxillin regulates steroidtriggered meiotic resumption in oocytes by enhancing an all-or-none positive feedback kinase loop. J. Biol. Chem. 2006;281:39455–39464. doi: 10.1074/jbc.M608959200. [DOI] [PubMed] [Google Scholar]
  • 11.Schneider E.M., Weiss M., Du W., Leder G., Buttenschön K., Liener U.C., Brückner U.B. MAPkinase gene expression, as determined by microarray analysis, distinguishes uncomplicated from complicated reconstitution after major surgical trauma. Ann. N.Y. Acad. Sci. 2006;1090:429–444. doi: 10.1196/annals.1378.046. [DOI] [PubMed] [Google Scholar]
  • 12.Fambrough D., McClure K., Kazlauskas A., Lander E.S. Diverse signaling pathways activated by growth factor receptors induce broadly overlapping, rather than independent, sets of genes. Cell. 1999;97:727–741. doi: 10.1016/S0092-8674(00)80785-0. [DOI] [PubMed] [Google Scholar]
  • 13.Reynolds L.J., Richards R.J. Can toxicogenomics provide information on the bioreactivity of diesel exhaust particles? Toxicology. 2001;165:145–152. doi: 10.1016/S0300-483X(01)00417-6. [DOI] [PubMed] [Google Scholar]
  • 14.Gaestel M. MAPKAP kinases — MKs — two’s company, three’s a crowd. Nat. Rev. Mol. Cell. Biol. 2006;7:120–130. doi: 10.1038/nrm1834. [DOI] [PubMed] [Google Scholar]
  • 15.Maizels E.T., Mukherjee A., Sithanandam G., Peters C.A., Cottom J., Mayo K.E., Hunzicker-Dunn M. Developmental regulation of mitogenactivated protein kinase-activated kinases-2 and -3 (MAPKAPK-2/-3) in vivo during corpus luteum formation in the rat. Mol. Endocrinol. 2001;15:716–733. doi: 10.1210/me.15.5.716. [DOI] [PubMed] [Google Scholar]
  • 16.Vician L.J., Xu G., Liu W., Feldman J.D., Machado H.B., Herschman H.R. MAPKAP kinase-2 is a primary response gene induced by depolarization in PC12 cells and in brain. J. Neurosci. Res. 2004;78:315–328. doi: 10.1002/jnr.20251. [DOI] [PubMed] [Google Scholar]
  • 17.Travnickova-Bendova Z., Cermakian N., Reppert S.M., Sassone-Corsi P. Bimodal regulation of mPeriod promoters by CREB-dependent signaling and CLOCK/BMAL1 activity. Proc. Nat. Acad. Sci. USA. 2002;99:7728–7733. doi: 10.1073/pnas.102075599. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 18.Johannessen M., Delghandi M.P., Seternes O.M., Johansen B., Moens U. Synergistic activation of CREB-mediated transcription by forskolin and phorbol ester requires PKC and depends on the glutamine-rich Q2 transactivation domain. Cell. Signal. 2004;16:1187–1199. doi: 10.1016/j.cellsig.2004.03.009. [DOI] [PubMed] [Google Scholar]
  • 19.Moens U., Subramaniam N., Johansen B., Johansen T., Traavik T. A steroid hormone response unit in the late leader of the noncoding control region of the human polyomavirus BK confers enhanced host cell permissivity. J. Virol. 1994;68:2398–2408. doi: 10.1128/jvi.68.4.2398-2408.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 20.Mikalsen T., Johannessen M., Moens U. Sequence- and positiondependent tagging protects extracellular-regulated kinase 3 protein from 26S proteasome-mediated degradation. Int. J. Biochem. Cell Biol. 2005;37:2513–2520. doi: 10.1016/j.biocel.2005.06.007. [DOI] [PubMed] [Google Scholar]
  • 21.New L., Jiang Y., Zhao M., Liu K., Zhu W., Flood L.J., Kato Y., Parry G.C.N., Han J. PRAK, a novel protein kinase regulated by the p38 MAP kinase. EMBO J. 1998;17:3372–3384. doi: 10.1093/emboj/17.12.3372. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 22.Ni H., Wang X.S., Diener K., Yao Z. MAPKAPK5, a novel mitogen-activated protein kinase (MAPK)-activated protein kinase, is a substrate of the extracellular-regulated kinase (ERK) and p38 kinase. Biochem. Biophys. Res. Commun. 1998;243:492–496. doi: 10.1006/bbrc.1998.8135. [DOI] [PubMed] [Google Scholar]
  • 23.Natale D.R., Paliga A.J.M., Beier F., D’Souza S.J.A., Watson A.J. p38 MAPK signaling during murine preimplantation development. Dev. Biol. 2004;268:76–88. doi: 10.1016/j.ydbio.2003.12.011. [DOI] [PubMed] [Google Scholar]
  • 24.Paliga A.J., Natale D.R., Watson A.J. p38 mitogen-activated protein kinase (MAPK) first regulates filamentous actin at the 8–16-cell stage during preimplantation development. Biol. Cell. 2005;97:629–640. doi: 10.1042/BC20040146. [DOI] [PubMed] [Google Scholar]
  • 25.Wingender E., Chen X., Hehl R., Karas H., Liebich I., Matys V., Meinhardt T., Pruss M., Reuter I., Schacherer F. TRANSFAC: an integrated system for gene expression regulation. Nucleic Acids Res. 2000;28:316–319. doi: 10.1093/nar/28.1.316. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 26.Ryseck R.P., Bravo R. c-JUN, JUN B, and JUN D differ in their binding affinities to AP-1 and CRE consensus sequences: effect of FOS proteins. Oncogene. 1991;6:533–542. [PubMed] [Google Scholar]
  • 27.Johannessen M., Moens U. Multisite phosphorylation of the cAMP response element-binding protein (CREB) by a diversity of protein kinases. Front. Biosci. 2007;12:1814–1832. doi: 10.2741/2190. [DOI] [PubMed] [Google Scholar]
  • 28.Fass D.M., Butler J.E.F., Goodman R.H. Deacetylase activity is required for cAMP activation of a subset of CREB target genes. J. Biol. Chem. 2003;278:43014–43019. doi: 10.1074/jbc.M305905200. [DOI] [PubMed] [Google Scholar]
  • 29.Johannessen M., Moens U. Transcription of genes in response to activated cAMP/protein kinase A signalling pathway: There is more to it than CREB. In: Caplin D., editor. Trends in Cellular Signalling. New York: Nova Science Publishers.; 2005. pp. 41–78. [Google Scholar]
  • 30.Ravnskjaer K., Kester H., Liu Y., Zhang X., Lee D., Yates J.R., 3rd, Montminy M. Cooperative interactions between CBP and TORC2 confer selectivity to CREB target gene expression. EMBO J. 2007;26:2880–2889. doi: 10.1038/sj.emboj.7601715. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 31.Lee W., Mitchell P., Tjian R. Purified transcription factor AP-1 interacts with TPA-inducible enhancer elements. Cell. 1987;49:741–752. doi: 10.1016/0092-8674(87)90612-X. [DOI] [PubMed] [Google Scholar]
  • 32.Imagawa M., Chiu R., Karin M. Transcription factor AP-2 mediates induction by two different signal-transduction pathways: protein kinase C and cAMP. Cell. 1987;51:251–260. doi: 10.1016/0092-8674(87)90152-8. [DOI] [PubMed] [Google Scholar]
  • 33.Luscher B., Mitchell P.J., Williams T., Tjian R. Regulation of transcription factor AP-2 by the morphogen retinoic acid and by second messengers. Genes Dev. 1989;3:1507–1517. doi: 10.1101/gad.3.10.1507. [DOI] [PubMed] [Google Scholar]
  • 34.Crowe D.L., Kim R., Chandraratna R.A.S. Retinoic acid differentially regulates cancer cell proliferation via dose-dependent modulation of the mitogen-activated protein kinase pathway. Mol. Cancer Res. 2003;1:532–540. [PubMed] [Google Scholar]
  • 35.Kim S.W., Hong J.S., Ryu S.H., Chung W.C., Yoon J.H., Koo J.S. Regulation of mucin gene expression by CREB via a nonclassical retinoic acid signalling pathway. Mol. Cell. Biol. 2007;27:6933–6947. doi: 10.1128/MCB.02385-06. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 36.De Ruiter N.D., Wolthuis R.M.F., van Dam H., Burgering B.M.T., Bos J.L. Ras-dependent regulation of c-Jun phosphorylation is mediated by the Ral guanine nucleotide exchange factor-Ral pathway. Mol. Cell. Biol. 2000;20:8480–8488. doi: 10.1128/MCB.20.22.8480-8488.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 37.Kitta K., Day R.M., Kim Y., Torregroza I., Evans T., Suzuki Y.J. Hepatocyte growth factor induces GATA-4 phosphorylation and cell survival in cardiac muscle cells. J. Biol. Chem. 2002;278:4705–4712. doi: 10.1074/jbc.M211616200. [DOI] [PubMed] [Google Scholar]
  • 38.Johannessen M., Delghandi M.P., Moens U. What turns CREB on? Cell. Signal. 2004;16:1211–1227. doi: 10.1016/j.cellsig.2004.05.001. [DOI] [PubMed] [Google Scholar]
  • 39.Imagawa S., Fujii S., Dong J., Furumoto T., Kaneko T., Zaman T., Satoh Y., Tsutsui H., Sobel B.E. Hepatocyte growth factor regulates E box-dependent plasminogen activator inhibitor type 1 gene expression in HepG2 liver cells. Arterioscler. Thromb. Vasc. Biol. 2006;26:2407–2413. doi: 10.1161/01.ATV.0000240318.61359.e3. [DOI] [PubMed] [Google Scholar]
  • 40.Coulombe P., Rodier G., Pelletier S., Pellerin J., Meloche S. Rapid turnover of extracellular signal-regulated kinase 3 by the ubiquitinproteasome pathway defines a novel paradigm of mitogen-activated protein kinase regulation during cellular differentiation. Mol. Cell. Biol. 2003;23:4542–4558. doi: 10.1128/MCB.23.13.4542-4558.2003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 41.Seternes O.M., Mikalsen T., Johansen B., Michaelsen E., Armstrong C.G., Morrice N.A., Turgeon B., Meloche S., Moens U., Keyse S.M. Activation of MK5/PRAK by the atypical MAP kinase ERK3 defines a novel signal transduction pathway. EMBO J. 2004;23:4780–4791. doi: 10.1038/sj.emboj.7600489. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 42.Vo N., Klein M.E., Varlamova O., Keller D.M., Yamamoto T., Goodman R.H., Impey S. A cAMP-response element binding proteininduced microRNA regulates neuronal morphogenesis. Proc. Nat. Acad. Sci. USA. 2005;102:16426–16431. doi: 10.1073/pnas.0508448102. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 43.Fusco D., Accornero N., Lavole B., Shenoy S.M., Blanchard J.M., Singer R.H., Bertrand E. Single mRNA molecules demonstrate probabilistic movement in living mammalian cells. Curr. Biol. 2003;13:161–167. doi: 10.1016/S0960-9822(02)01436-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 44.Santangelo P.J., Nix B., Tsourkas A., Bao G. Dual FRET molecular beacons for mRNA detection in living cells. Nucleic Acids Res. 2004;32:e57. doi: 10.1093/nar/gnh062. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 45.Impey S., McCorkle S.R., Cha-Molstad H., Dwyer J.M., Yochum G.S., Boss J.M., McWeeney S., Dunn J.J., Mandel G., Goodman R.H. Defining the CREB regulon: a genome-wide analysis of transcription factor regulatory regions. Cell. 2004;119:1041–1054. doi: 10.1016/j.cell.2004.10.032. [DOI] [PubMed] [Google Scholar]
  • 46.Zhang X., Odom D.T., Koo S.H., Conkright M.D., Canettieri G., Best J., Chen H., Jenner R., Herbolsheimer E., Jacobsen E., Kadam S., Ecker J.R., Emerson B., Hogenesch J.B., Unterman T., Young R.A., Montminy M. Genome-wide analysis of cAMP-response element binding protein occupancy, phosphorylation, and target gene activation in human tissues. Proc. Nat. Acad. Sci. USA. 2005;102:4459–4464. doi: 10.1073/pnas.0501076102. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 47.Montminy M. Transcriptional regulation by cyclic AMP. Annu. Rev. Biochem. 1997;66:807–822. doi: 10.1146/annurev.biochem.66.1.807. [DOI] [PubMed] [Google Scholar]
  • 48.Thomas T., Hitti E., Kotlyarov A., Potschka H., Gaestel M. Eur. J. Neurosci. 2008;28:642–654. doi: 10.1111/j.1460-9568.2008.06382.x. [DOI] [PubMed] [Google Scholar]
  • 49.Gerits N., Mikalsen T., Kostenko S., Shiryaev A., Johannessen M., Moens U. Modulation of F-actin rearrangement by the cyclic AMP/PKA pathway is mediated by MAPKAP Kinase 5 and requires PKA-induced nuclear export of MK5. J. Biol. Chem. 2007;282:37232–37243. doi: 10.1074/jbc.M704873200. [DOI] [PubMed] [Google Scholar]
  • 50.Benson D.A., Karsch-Mizrachi I., Lipman D.J., Ostell J., Wheeler D.L. GenBank. Nucleic Acids Res. 2007;35:D21–25. doi: 10.1093/nar/gkl986. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Cellular & Molecular Biology Letters are provided here courtesy of BMC

RESOURCES