Abstract
Cationic liposome-DNA (lipoplexes) or polymer-DNA (polyplexes) complexes have been used to deliver therapeutic genes, both in vitro and in vivo. However, gene transfer by these non-viral vectors is usually inhibited by biological milieu. A relatively high efficiency of transfection could be achieved in human oral cancer cells transfected with the polycationic liposome, Metafectene, and the polyamine reagent, GeneJammer, in the presence of 60% fetal bovine serum (FBS) (Konopka et al., Cell. Mol. Biol. Lett. 10 (2005) 455–470). Here, we examined the efficacy of these vectors to deliver β-galactosidase (β-gal), luciferase and Herpes Simplex Virus thymidine kinase (HSV-tk) genes to SCCVII murine squamous cell carcinoma cells, which are used to generate an orthotopic murine model of oral cancer. We also evaluated the hydrodynamic size and zeta potential of the vectors and the effect of FBS and mouse serum (up to 60%) on the size of Metafectene and GeneJammer complexes with the pCMV.Luc plasmid. Our results indicate that Metafectene and GeneJammer are highly effective in transfecting SCCVII cells. Approximately 60–70% of SCCVII cells transfected with pCMV.lacZ were positive for β-gal staining. The expression of β-galactosidase was essentially not affected by serum. Mouse serum (20–60%) reduced both Metafectene-and GeneJammer-mediated luciferase expression by ∼30–45%, while FBS did not affect transfection efficiency. The delivery of the HSV-tk gene by Metafectene or GeneJammer in the presence of 0% or 60% FBS, followed by GCV treatment for 6 days, resulted in over 90% cytotoxicity. The mean diameters of the DNA complexes of Metafectene and GeneJammer decreased significantly as a function of the serum concentration. The reduction in the size of the lipoplexes and polyplexes by serum was essentially not inhibitory to transfection of SCCVII cells. This is in contrast to previous hypotheses that serum-induced decrease in the size of lipoplexes is the primary cause of serum inhibition of transfection.
Key words: Transfection, Metafectene, GeneJammer, Serum inhibition, HSV-tk gene, SCCVII murine squamous cell carcinoma cells
Full Text
The Full Text of this article is available as a PDF (480.4 KB).
Abbreviations used
- β-Gal
β-galactosidase
- DMEM
Dulbecco’s modified Eagle’s MEM medium
- FBS
fetal bovine serum
- GCV
ganciclovir
- HBS
HEPES-buffered saline
- HNSCC
head and neck squamous cell carcinoma
- HSV-tk
Herpes Simplex Virus thymidine kinase gene
- OSCC
oral squamous cell carcinoma
- RLU
relative light units
References
- 1.Goepfert H. Squamous cell carcinoma of the head and neck: past progress and future promise. CA Cancer J. Clin. 1998;48:195–198. doi: 10.3322/canjclin.48.4.195. [DOI] [PubMed] [Google Scholar]
- 2.Parkin D.M., Pisani P., Ferlay J. Global cancer statistics. CA Cancer J. Clin. 1999;49:33–64. doi: 10.3322/canjclin.49.1.33. [DOI] [PubMed] [Google Scholar]
- 3.Harras A., Edwards B.K., Blot W.J., Ries L.A. NIH Publication No. 96-691. Bethesda, MD: National Institutes of Health; 1996. Cancer Rates and Risks. [Google Scholar]
- 4.Hong W.K., Bromer R.H., Amato D.A., Shapsky S., Vincent M., Vaughan C., Willett B., Katz A., Welch J., Fotonoff S., et al. Patterns of relapse in locally advanced head and neck cancer patients who achieved complete remission after combined modality therapy. Cancer. 1985;56:1242–1245. doi: 10.1002/1097-0142(19850915)56:6<1242::aid-cncr2820560603>3.0.co;2-z. [DOI] [PubMed] [Google Scholar]
- 5.Silverman S., Jr. Oral cancer: complications of therapy. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 1999;88:122–126. doi: 10.1016/S1079-2104(99)70103-4. [DOI] [PubMed] [Google Scholar]
- 6.Shillitoe E.J. Gene therapy for oral cancer: recent progress in research. Oral Oncol. 1998;34:157–160. doi: 10.1016/S1368-8375(98)00002-5. [DOI] [PubMed] [Google Scholar]
- 7.O’Malley B.W., Couch M.E. Gene therapy principles and strategies for head and neck cancer. Adv. Otorhinolaryngol. 2000;56:279–288. doi: 10.1159/000059075. [DOI] [PubMed] [Google Scholar]
- 8.Xi S., Grandis J.R. Gene therapy for the treatment of oral squamous cell carcinoma. J. Dent. Res. 2003;82:11–16. doi: 10.1177/154405910308200104. [DOI] [PubMed] [Google Scholar]
- 9.Simões S., Pires P., Düzgünes N., Pedroso de Lima M.C. Cationic liposomes as gene transfer vectors: Barriers to successful application in gene therapy. Curr. Opin. Mol. Ther. 1999;1:147–157. [PubMed] [Google Scholar]
- 10.Pedroso de Lima M.C., Simões S., Pires P., Faneca H., Düzgünes N. Cationic lipid-DNA complexes in gene delivery: From biophysics to biological applications. Adv. Drug Deliv. Rev. 2001;47:277–294. doi: 10.1016/S0169-409X(01)00110-7. [DOI] [PubMed] [Google Scholar]
- 11.Zuber G., Dauty E., Nothisen M., Belguise P., Behr J.-P. Towards synthetic viruses. Adv. Drug Deliv. Rev. 2001;52:245–253. doi: 10.1016/S0169-409X(01)00213-7. [DOI] [PubMed] [Google Scholar]
- 12.Nabel G.J., Nabel E.G., Yang Y.Y., Fox B.A., Plautz G.E., Gao X., Huang L., Shu S., Gordon D., Chang A.E. Direct gene transfer with DNA-liposome complexes in melanoma: Expression, biological activity, and lack of toxicity in humans. Proc. Natl. Acad. Sci. USA. 1993;90:11307–11311. doi: 10.1073/pnas.90.23.11307. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 13.Zhu N., Liggitt D., Liu Y., Debs R. Systemic gene expression after intravenous DNA delivery into adult mice. Science. 1993;261:209–211. doi: 10.1126/science.7687073. [DOI] [PubMed] [Google Scholar]
- 14.Liu Y., Mounkes L.C., Liggitt H.D., Brown C.S., Solodin I., Heath T.D., Debs R.J. Factors influencing the efficiency of cationic liposome-mediated intravenous gene delivery. Nat. Biotechnol. 1997;15:167–173. doi: 10.1038/nbt0297-167. [DOI] [PubMed] [Google Scholar]
- 15.Templeton N.S., Lasic D.D., Frederik P.M., Strey H.H., Roberts D.D., Pavlakis G.N. Improved DNA:liposome complexes for increased systemic delivery and gene expression. Nat. Biotechnol. 1997;15:647–652. doi: 10.1038/nbt0797-647. [DOI] [PubMed] [Google Scholar]
- 16.Xu L., Pirollo K.F., Tang W.H., Rait A., Chang E.H. Transferrin liposome-mediated systemic p53 gene therapy in combination with radiation results in regression of human head and neck cancer xenografts. Hum. Gene Ther. 1999;10:2941–2952. doi: 10.1089/10430349950016357. [DOI] [PubMed] [Google Scholar]
- 17.Simões S., Slepushkin V., Pires P., Gaspar R., Pedroso de Lima M.C., Düzgünes N. Enhanced gene delivery by lipoplexes associated with human serum albumin. Biochim. Biophys. Acta. 2000;1463:459–469. doi: 10.1016/S0005-2736(99)00238-2. [DOI] [PubMed] [Google Scholar]
- 18.Vitadello M., Schiaffino M., Picard A., Scarpa M., Schiaffino S. Gene transfer in regenerating muscle. Hum. Gene Ther. 1994;5:11–18. doi: 10.1089/hum.1994.5.1-11. [DOI] [PubMed] [Google Scholar]
- 19.Zabner J., Fasbender A.J., Moninger T., Poellinger K.A., Welsch M.J. Cellular and molecular barriers to gene transfer by a cationic lipid. J. Biol. Chem. 1995;270:18997–19007. doi: 10.1074/jbc.270.32.18997. [DOI] [PubMed] [Google Scholar]
- 20.Mortimer I., Tam P., MacLachlan I., Graham R.W., Sravolec E.G., Joshi P. Cationic lipid-mediated transfection of cells in culture requires mitotic activity. Gene Ther. 1999;6:403–411. doi: 10.1038/sj.gt.3300837. [DOI] [PubMed] [Google Scholar]
- 21.O’Malley B.W., Cope K.A., Chen S.-H., Li D., Schwartz M.R., Woo S.L.C. Combination gene therapy for oral cancer in a murine model. Cancer Res. 1996;56:1737–1741. [PubMed] [Google Scholar]
- 22.O’Malley B.W., Cope K.A., Johnson C.S., Schwartz M.R. A new immunocompetent murine model for oral cancer. Arch. Otolaryngol. Head Neck Surg. 1997;123:20–24. doi: 10.1001/archotol.1997.01900010022003. [DOI] [PubMed] [Google Scholar]
- 23.O’Malley B.W., Sewell D.A., Li D., Kosai K., Chen S.H., Woo S.L., Duan L. The role of interleukin-2 in combination adenovirus gene therapy for head and neck cancer. Mol. Endocrinol. 1997;11:667–673. doi: 10.1210/me.11.6.667. [DOI] [PubMed] [Google Scholar]
- 24.Day K.V., Li D., Liu S., Guo M., O’Malley B.W. Granulocytemacrophage colony-stimulating factor in a combination gene therapy strategy for head and neck cancer. Laryngoscope. 2001;111:801–806. doi: 10.1097/00005537-200105000-00009. [DOI] [PubMed] [Google Scholar]
- 25.Li D., Shugert E., Guo M., Bishop J.S., O’Malley B.W., Jr. Combination nonviral interleukin 2 and interleukin 12 gene therapy for head and neck squamous cell carcinoma. Arch. Otolaryngol. Head Neck Surg. 2001;127:1319–1324. doi: 10.1001/archotol.127.11.1319. [DOI] [PubMed] [Google Scholar]
- 26.Konopka, K., Overlid, N. and Düzgünes, N. Efficient, serum-resistant transfection of murine squamous cell carcinoma cells by Metafectene and GeneJammer: Application to HSV-tk/ganciclovir gene therapy. 8th Meeting of the Am. Soc. Gene Ther., St. Louis, MO, 2005, Mol. Ther. Vol. 11(Suppl.1) Abstr. 590, S228.
- 27.Fu K.K., Rayner P.A., Lam K.N. Modification of the effects of continuous low dose irradiation by concurrent chemotherapy infusion. Int. J. Radiat. Oncol. Biol. Phys. 1984;10:1473–1478. doi: 10.1016/0360-3016(84)90371-7. [DOI] [PubMed] [Google Scholar]
- 28.Konopka K., Fallah B., Monzon-Duller J., Overlid N., Düzgünes N. Serum-resistant gene transfer to oral cancer cells by Metafectene and GeneJammer: Application to HSV-tk/ganciclovir-mediated cytotoxicity. Cell. Mol. Biol. Lett. 2005;10:455–470. [PubMed] [Google Scholar]
- 29.Konopka K., Lee A., Moser-Kim N., Saghezchi S., Kim A., Lim A., Suzara V.V., Düzgünes N. Gene transfer to human oral cancer cells via non-viral vectors and HSV-tk/ganciclovir-mediated cytotoxicity; Potential for suicide gene therapy. Gene Ther. Mol. Biol. 2004;8:307–318. [Google Scholar]
- 30.Fields R.D., Lancaster M.V. Dual-attribute continuous monitoring of cell proliferation/cytotoxicity. Am. Biotechnol. Lab. 1993;11:48–50. [PubMed] [Google Scholar]
- 31.Konopka K., Pretzer E., Felgner P.L., Düzgünes N. Human immunodeficiency virus type-1 (HIV-1) infection increases the sensitivity of macrophages and THP-1 cells to cytotoxicity by cationic liposomes. Biochim. Biophys. Acta. 1996;1312:186–196. doi: 10.1016/0167-4889(96)00033-X. [DOI] [PubMed] [Google Scholar]
- 32.Escriou V., Ciolina C., Lacroix F., Byk G., Scherman D., Wils P. Cationic lipid-mediated gene transfer: effect of serum on cellular uptake and intracellular fate of lypopolyamine/DNA complexes. Biochim. Biophys. Acta. 1998;1368:276–288. doi: 10.1016/S0005-2736(97)00194-6. [DOI] [PubMed] [Google Scholar]
- 33.Zelphati O., Uyechi L.S., Barron L.G., Szoka F.C., Jr. Effect of serum components on the physico-chemical properties of cationic lipid/oligonucleotide complexes and on their interactions with cells. Biochim. Biophys. Acta. 1998;1390:119–133. doi: 10.1016/s0005-2760(97)00169-0. [DOI] [PubMed] [Google Scholar]
- 34.Yang J.-P., Huang L. Overcoming the inhibitory effect of serum on lipofection by increasing the charge ratio of cationic liposome to DNA. Gene Ther. 1997;4:950–960. doi: 10.1038/sj.gt.3300485. [DOI] [PubMed] [Google Scholar]
- 35.Yang J.-P., Huang L. Time-dependent maturation of cationic liposome-DNA complex for serum resistance. Gene Ther. 1998;5:380–387. doi: 10.1038/sj.gt.3300596. [DOI] [PubMed] [Google Scholar]
- 36.Audouy S., Molema G., de Leij L., Hoekstra D. Serum as a modulator of lipoplex-mediated gene transfection: dependence of amphiphile, cell type and complex stability. J. Gene Med. 2000;2:465–476. doi: 10.1002/1521-2254(200011/12)2:6<465::AID-JGM141>3.0.CO;2-Z. [DOI] [PubMed] [Google Scholar]
- 37.Almofti M.R., Harashima H., Shinohara Y., Almofti A., Li W., Kiwada H. Lipoplex size determines lipofection efficiency with or without serum. Mol. Membr. Biol. 2003;20:35–43. doi: 10.1080/09687680210035104. [DOI] [PubMed] [Google Scholar]
- 38.Zhang Y., Anchordoquy T.J. The role of lipid charge density in the serum stability of cationic lipid/DNA complexes. Biochim. Biophys. Acta. 2004;1663:143–157. doi: 10.1016/j.bbamem.2004.03.004. [DOI] [PubMed] [Google Scholar]
- 39.Gebhart C.L., Kabanov A.V. Evaluation of polyplexes as gene transfer agents. J. Control. Release. 2001;73:401–416. doi: 10.1016/S0168-3659(01)00357-1. [DOI] [PubMed] [Google Scholar]
- 40.Uchida E., Mizuguchi H., Ishii-Watabe A., Hayakawa T. Comparison of the efficiency and safety of non-viral vector-mediated gene transfer into a wide range of human cells. Biol. Pharm. Bull. 2002;25:891–8977. doi: 10.1248/bpb.25.891. [DOI] [PubMed] [Google Scholar]
- 41.Li W., Ishida T., Tachibana R., Almofti M.R., Wang X., Kiwada H. Cell-type specific gene expression, mediated by TFL-3, a cationic liposomal vector, is controlled by a post-transcription process of delivered plasmid DNA. Int. J. Pharm. 2004;276:67–74. doi: 10.1016/j.ijpharm.2004.02.011. [DOI] [PubMed] [Google Scholar]
- 42.Almofti M.R., Harashima H., Shinohara Y., Almofti A., Baba Y., Kiwada H. Cationic liposome-mediated gene delivery: Biophysical study and mechanism of internalization. Arch. Biochem. Biophys. 2003;419:246–253. doi: 10.1016/S0003-9861(02)00725-7. [DOI] [PubMed] [Google Scholar]
- 43.Faneca H., Simões S., Pedroso de Lima M.C. Evaluation of lipid-based reagents to mediate intracellular gene delivery. Biochim. Biophys. Acta. 2002;1567:23–33. doi: 10.1016/S0005-2736(02)00545-X. [DOI] [PubMed] [Google Scholar]
- 44.Li S., Tseng W.C., Stolz D.B., Wu S.P., Watkins S.C., Huang L. Dynamic changes in the characteristics of cationic lipid vectors after exposure to mouse serum: implications for intravenous lipofection. Gene Ther. 1999;4:585–594. doi: 10.1038/sj.gt.3300865. [DOI] [PubMed] [Google Scholar]
- 45.Tandia B.-M., Vandenbranden M., Wattiez R., Lakhdar Z., Ruysschaert J.-M., Elouahabi A. Identification of human plasma proteins that bind to cationic lipid/DNA complex and analysis of their effects on transfection efficiency: implications for intravenous gene therapy. Mol. Ther. 2003;8:264–273. doi: 10.1016/S1525-0016(03)00150-3. [DOI] [PubMed] [Google Scholar]
- 46.Tandia B.-M., Lonez C., Vandenbranden M., Ruysschaert J.-M., Elouahabi A. Lipid mixing between lipoplexes and plasma lipoproteins is a major barrier for intravenous transfection mediated by cationic lipids. J. Biol. Chem. 2005;280:12255–12261. doi: 10.1074/jbc.M414517200. [DOI] [PubMed] [Google Scholar]
- 47.Ross P.C., Hui S.W. Lipoplex size is a major determinant of in vitro lipofection efficiency. Gene Ther. 1999;6:651–659. doi: 10.1038/sj.gt.3300863. [DOI] [PubMed] [Google Scholar]
- 48.Faneca H., Simões S., Pedroso de Lima M.C. Association of albumin and protamine to lipoplexes: enhancement of transfection and resistance to serum. J. Gene. Med. 2004;6:681–692. doi: 10.1002/jgm.550. [DOI] [PubMed] [Google Scholar]
- 49.Pires P., Simões S., Nir S., Gaspar R., Düzgünes N., Pedroso de Lima M.C. Interaction of cationic liposomes and their DNA complexes with monocytic leukemia cells. Biochim. Biophys. Acta. 1999;1418:71–84. doi: 10.1016/S0005-2736(99)00023-1. [DOI] [PubMed] [Google Scholar]
- 50.Goebel E.A., Davidson B.L., Zabner J., Graham S.M., Kern J.A. Adenovirus-mediated gene therapy for head and neck squamous cell carcinomas. Ann. Otol. Rhinol. Laryngol. 1996;105:562–567. doi: 10.1177/000348949610500713. [DOI] [PubMed] [Google Scholar]
- 51.Goebel E.A., Davidson B.L., Graham S.M., Kern J.A. Tumor reduction in vivo after adenoviral mediated gene transfer of the herpes simplex virus thymidine kinase gene and ganciclovir treatment in human head and neck squamous cell carcinoma. Otolaryngol. Head Neck Surg. 1998;119:331–336. doi: 10.1016/S0194-5998(98)70073-7. [DOI] [PubMed] [Google Scholar]
- 52.Fukui T., Hayashi Y., Kagmi H., Yamamoto N., Fukuhara H., Tohnai I., Ueda M., Mizuno M., Yoshida J. Suicide gene therapy for human oral squamous cell carcinoma cell lines with adeno-associated virus vector. Oral Oncol. 2001;37:211–215. doi: 10.1016/S1368-8375(00)00093-2. [DOI] [PubMed] [Google Scholar]
- 53.Fukuhara H., Hayashi Y., Yamamoto N., Fukui T., Nishikawa M., Mitsudo K., Tohnai I., Ueda M., Mizuno M., Yoshida J. Improvement of transduction efficiency of recombinant adenovirus vector conjugated with cationic liposome for human oral squamous cell carcinoma cell lines. Oral Oncol. 2003;39:601–609. doi: 10.1016/S1368-8375(03)00047-2. [DOI] [PubMed] [Google Scholar]
- 54.Sewell D.A., Li D., Duan L., Schwartz M.R., O’Malley B.W., Jr. Optimizing suicide gene therapy for head and neck cancer. Laryngoscope. 1997;107:1490–1495. doi: 10.1097/00005537-199711000-00012. [DOI] [PubMed] [Google Scholar]
- 55.Sewell D.A., Li D., Duan L., Westra W.H., O’Malley B.W., Jr. Safety of in vivo adenovirus-mediated thymidine kinase treatment of oral cancer. Arch. Otolaryngol. Head Neck Surg. 1997;123:1298–1302. doi: 10.1001/archotol.1997.01900120048007. [DOI] [PubMed] [Google Scholar]
