Abstract
Id1 (inhibitor of differentiation 1) is a member of the bHLH protein family. Consistent with its role in promoting proliferation and inhibiting differentiation, Id1 expression is low or negligible in normal prostate epithelial cells but is high in prostate cancer. Ectopic expression of Id1 in normal prostate epithelial cells could therefore provide a model for understanding early events involved in initiation of prostate cancer. Over-expression of Id1 immortalized but did not transform ventral prostate epithelial cells (Id1-RPE). Immortalization was associated with decreased Cdkn2a, Cdkn1a, androgen receptor and increased Tert expression. Gene expression profiling over successive doublings was used to identify transcriptomic changes involved during immortalization (Tieg, Jun, alpha actin, Klf10, Id2) and in maintaining the immortalized phenotype (Igfbp3, Igfbp5, Mmp2, Tgfb3). Network analysis indicated that Id1 promotes cancer/tumor morphology, cell cycle and epithelial to mesenchymal transition by influencing AP1, tnf, tgfβ, PdgfBB and estradiol pathways. During immortalization, the expression of majority of differentially expressed genes reduced over progressive doublings suggesting a decline in transcriptional regulatory mechanisms. The associated molecular/gene expression profile of Id1-RPE cells provides an opportunity to understand the molecular pathways associated with prostate epithelial cell survival and proliferation.
Key words: Id1, Prostate, epithelial cells, Immortalization, Cancer
Full Text
The Full Text of this article is available as a PDF (9.3 MB).
Abbreviations used
- bHLH
basic helix loop helix
- CDKI
cyclin dependent kinase inhibitor
- EMT
epithelial - mesenchymal transition
- HGF
hepatocyte growth factor
- Id
inhibitor of differentiation
- KGF
keratinocyte growth factor
- MAPK
mitogen activated protein kinase
- NHUC
normal human urothelial cells
- PrEC
prostate epithelial cells (human)
- R1881
methyltrienolone (non-aromatizable synthetic androgen analogue)
- RPE
rat prostate epithelial
- TERT
telomerase reverse transcriptase
References
- 1.Norton J.D., Deed R.W., Craggs G., Sablitzky F. Id helix-loop-helix proteins in cell growth and differentiation. Trends Cell. Biol. 1998;8:58–65. doi: 10.1016/S0962-8924(97)01183-5. [DOI] [PubMed] [Google Scholar]
- 2.Benezra R., Davis R.L., Lockshon D., Turner D.L., Weintraub H. The protein Id: a negative regulator of helix-loop-helix DNA binding proteins. Cell. 1990;61:49–59. doi: 10.1016/0092-8674(90)90214-Y. [DOI] [PubMed] [Google Scholar]
- 3.Barone M.V., Pepperkok R., Peverali F.A., Philipson L. Id proteins control growth induction in mammalian cells. Proc. Natl. Acad. Sci. USA. 1994;91:4985–4988. doi: 10.1073/pnas.91.11.4985. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 4.Hara E., Yamaguchi T., Nojima H., Ide T., Campisi J., Okayama H., Oda K. Id-related genes encoding helix-loop-helix proteins are required for G1 progression and are repressed in senescent human fibroblasts. J. Biol. Chem. 1994;269:2139–2145. [PubMed] [Google Scholar]
- 5.Coppe J.P., Smith A.P., Desprez P.Y. Id proteins in epithelial cells. Exp. Cell Res. 2003;285:131–145. doi: 10.1016/S0014-4827(03)00014-4. [DOI] [PubMed] [Google Scholar]
- 6.Israel M.A., Hernandez M.C., Florio M., Andres-Barquin P.J., Mantani A., Carter J.H., Julin C.M. Id gene expression as a key mediator of tumor cell biology. Cancer Res. 1999;59:1726s–1730s. [PubMed] [Google Scholar]
- 7.Norton J.D. ID helix-loop-helix proteins in cell growth, differentiation and tumorigenesis. J. Cell Sci. 2000;113:3897–3905. doi: 10.1242/jcs.113.22.3897. [DOI] [PubMed] [Google Scholar]
- 8.Perk J., Iavarone A., Benezra R. Id family of helix-loop-helix proteins in cancer. Nat. Rev. Cancer. 2005;5:603–614. doi: 10.1038/nrc1673. [DOI] [PubMed] [Google Scholar]
- 9.Ouyang X.S., Wang X., Lee D.T., Tsao S.W., Wong Y.C. Over expression of ID-1 in prostate cancer. J. Urol. 2002;167:2598–2602. doi: 10.1016/S0022-5347(05)65044-6. [DOI] [PubMed] [Google Scholar]
- 10.Forootan S.S., Wong Y.C., Dodson A., Wang X., Lin K., Smith P.H., Foster C.S., Ke Y. Increased Id-1 expression is significantly associated with poor survival of patients with prostate cancer. Hum. Pathol. 2007;38:1321–1329. doi: 10.1016/j.humpath.2007.02.011. [DOI] [PubMed] [Google Scholar]
- 11.Coppe J.P., Itahana Y., Moore D.H., Bennington J.L., Desprez P.Y. Id-1 and Id-2 proteins as molecular markers for human prostate cancer progression. Clin. Cancer Res. 2004;10:2044–2051. doi: 10.1158/1078-0432.CCR-03-0933. [DOI] [PubMed] [Google Scholar]
- 12.Ling M.T., Wang X., Ouyang X.S., Lee T.K., Fan T.Y., Xu K., Tsao S.W., Wong Y.C. Activation of MAPK signaling pathway is essential for Id-1 induced serum independent prostate cancer cell growth. Oncogene. 2002;21:8498–8505. doi: 10.1038/sj.onc.1206007. [DOI] [PubMed] [Google Scholar]
- 13.Ling M.T., Wang X., Ouyang X.S., Xu K., Tsao S.W., Wong Y.C. Id-1 expression promotes cell survival through activation of NF-kappaB signalling pathway in prostate cancer cells. Oncogene. 2003;22:4498–4508. doi: 10.1038/sj.onc.1206693. [DOI] [PubMed] [Google Scholar]
- 14.Ling M.T., Wang X., Tsao S.W., Wong Y.C. Down-regulation of Id-1 expression is associated with TGF beta 1-induced growth arrest in prostate epithelial cells. Biochim. Biophys. Acta. 2002;1570:145–152. doi: 10.1016/s0304-4165(02)00189-7. [DOI] [PubMed] [Google Scholar]
- 15.Chaudhary J., Schmidt M., Sadler-Riggleman I. Negative acting HLH proteins Id 1, Id 2, Id 3, and Id 4 are expressed in prostate epithelial cells. Prostate. 2005;64:253–264. doi: 10.1002/pros.20238. [DOI] [PubMed] [Google Scholar]
- 16.Ling M.T., Wang X., Lee D.T., Tam P.C., Tsao S.W., Wong Y.C. Id-1 expression induces androgen-independent prostate cancer cell growth through activation of epidermal growth factor receptor (EGF-R) Carcinogenesis. 2004;25:517–525. doi: 10.1093/carcin/bgh047. [DOI] [PubMed] [Google Scholar]
- 17.Asirvatham A.J., Schmidt M.A., Chaudhary J. Non-redundant inhibitor of differentiation (Id) gene expression and function in human prostate epithelial cells. Prostate. 2006;66:921–935. doi: 10.1002/pros.20366. [DOI] [PubMed] [Google Scholar]
- 18.Ouyang X.S., Wang X., Lee D.T., Tsao S.W., Wong Y.C. Upregulation of TRPM-2, MMP-7 and ID-1 during sex hormone-induced prostate carcinogenesis in the Noble rat. Carcinogenesis. 2001;22:965–973. doi: 10.1093/carcin/22.6.965. [DOI] [PubMed] [Google Scholar]
- 19.Wice B.M., Gordon J.I. Forced expression of Id-1 in the adult mouse small intestinal epithelium is associated with development of adenomas. J. Biol. Chem. 1998;273:25310–25319. doi: 10.1074/jbc.273.39.25310. [DOI] [PubMed] [Google Scholar]
- 20.Alani R.M., Hasskarl J., Grace M., Hernandez M.C., Israel M.A., Munger K. Immortalization of primary human keratinocytes by the helixloop-helix protein, Id-1. Proc. Natl. Acad. Sci. USA. 1999;96:9637–9641. doi: 10.1073/pnas.96.17.9637. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 21.Nickoloff B.J., Chaturvedi V., Bacon P., Qin J.Z., Denning M.F., Diaz M.O. Id-1 delays senescence but does not immortalize keratinocytes. J. Biol. Chem. 2000;275:27501–27504. doi: 10.1074/jbc.C000311200. [DOI] [PubMed] [Google Scholar]
- 22.Chaudhary J., Sadler-Riggleman I., Ague J.M., Skinner M.K. The helix-loop-helix inhibitor of differentiation proteins induce post-mitotic terminally differentiated sertoli cells to re-enter the cell cycle and proliferate. Biol. Reprod. 2005;72:1205–1217. doi: 10.1095/biolreprod.104.035717. [DOI] [PubMed] [Google Scholar]
- 23.Alani R.M., Young A.Z., Shifflett C.B. Id1 regulation of cellular senescence through transcriptional repression of p16/Ink4a. Proc. Natl. Acad. Sci. USA. 2001;98:7812–7816. doi: 10.1073/pnas.141235398. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 24.Zheng W., Wang H., Xue L., Zhang Z., Tong T. Regulation of cellular senescence and p16(INK4a) expression by Id1 and E47 proteins in human diploid fibroblast. J. Biol. Chem. 2004;279:31524–31532. doi: 10.1074/jbc.M400365200. [DOI] [PubMed] [Google Scholar]
- 25.Hasskarl J., Duensing S., Manuel E., Munger K. The helix-loop-helix protein ID1 localizes to centrosomes and rapidly induces abnormal centrosome numbers. Oncogene. 2004;23:1930–1938. doi: 10.1038/sj.onc.1207310. [DOI] [PubMed] [Google Scholar]
- 26.Man C., Rosa J., Yip Y.L., Cheung A.L., Kwong Y.L., Doxsey S.J., Tsao S.W. Id1 overexpression induces tetraploidization and multiple abnormal mitotic phenotypes by modulating aurora A. Mol. Biol. Cell. 2008;19:2389–2401. doi: 10.1091/mbc.E07-09-0875. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 27.Schwarze S.R., Shi Y., Fu V.X., Watson P.A., Jarrard D.F. Role of cyclin-dependent kinase inhibitors in the growth arrest at senescence in human prostate epithelial and uroepithelial cells. Oncogene. 2001;20:8184–8192. doi: 10.1038/sj.onc.1205049. [DOI] [PubMed] [Google Scholar]
- 28.Peehl D.M. Primary cell cultures as models of prostate cancer development. Endocr. Relat. Cancer. 2005;12:19–47. doi: 10.1677/erc.1.00795. [DOI] [PubMed] [Google Scholar]
- 29.Chowdhury A., Harber G.J., Chopra D.P. Characterization and serial propagation of mouse prostate epithelial cells in serum-free medium. Biol. Cell. 1989;67:281–287. doi: 10.1016/0248-4900(89)90065-8. [DOI] [PubMed] [Google Scholar]
- 30.Asirvatham A.J., Schmidt M., Gao B., Chaudhary J. Androgens regulate the immune/inflammatory response and cell survival pathways in rat ventral prostate epithelial cells. Endocrinology. 2006;147:257–271. doi: 10.1210/en.2005-0942. [DOI] [PubMed] [Google Scholar]
- 31.Schwarze S.R., DePrimo S.E., Grabert L.M., Fu V.X., Brooks J.D., Jarrard D.F. Novel pathways associated with bypassing cellular senescence in human prostate epithelial cells. J. Biol. Chem. 2002;277:14877–14883. doi: 10.1074/jbc.M200373200. [DOI] [PubMed] [Google Scholar]
- 32.Fujimoto N., Suzuki T., Honda H., Kitamura S. Estrogen enhancement of androgen-responsive gene expression in hormone-induced hyperplasia in the ventral prostate of F344 rats. Cancer Sci. 2004;95:711–715. doi: 10.1111/j.1349-7006.2004.tb03250.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 33.Homma Y., Kondo Y., Kaneko M., Kitamura T., Nyou W.T., Yanagisawa M., Yamamoto Y., Kakizoe T. Promotion of carcinogenesis and oxidative stress by dietary cholesterol in rat prostate. Carcinogenesis. 2004;25:1011–1014. doi: 10.1093/carcin/bgh105. [DOI] [PubMed] [Google Scholar]
- 34.Prins G.S., Birch L., Greene G.L. Androgen receptor localization in different cell types of the adult rat prostate. Endocrinology. 1991;129:3187–3199. doi: 10.1210/endo-129-6-3187. [DOI] [PubMed] [Google Scholar]
- 35.Rhim J.S. Research into molecular and genetic mechanisms underlying prostate carcinogenesis would be greatly advanced by in vitro prostate cell models. Drugs Today (Barc) 2003;39:837–847. doi: 10.1358/dot.2003.39.11.799462. [DOI] [PubMed] [Google Scholar]
- 36.Cussenot O., Berthon P., Cochand-Priollet B., Maitland N.J., Le Duc A. Immunocytochemical comparison of cultured normal epithelial prostatic cells with prostatic tissue sections. Exp. Cell Res. 1994;214:83–92. doi: 10.1006/excr.1994.1236. [DOI] [PubMed] [Google Scholar]
- 37.Ilio K.Y., Sensibar J.A., Lee C. Effect of TGF-beta 1, TGF-alpha, and EGF on cell proliferation and cell death in rat ventral prostatic epithelial cells in culture. J. Androl. 1995;16:482–490. [PubMed] [Google Scholar]
- 38.Itoh N., Patel U., Skinner M.K. Developmental and hormonal regulation of transforming growth factor-alpha and epidermal growth factor receptor gene expression in isolated prostatic epithelial and stromal cells. Endocrinology. 1998;139:1369–1377. doi: 10.1210/en.139.3.1369. [DOI] [PubMed] [Google Scholar]
- 39.Shibuki H., Katai N., Kuroiwa S., Kurokawa T., Arai J., Matsumoto K., Nakamura T., Yoshimura N. Expression and neuroprotective effect of hepatocyte growth factor in retinal ischemia-reperfusion injury. Invest. Ophthalmol. Vis. Sci. 2002;43:528–536. [PubMed] [Google Scholar]
- 40.Sugimura Y., Foster B.A., Hom Y.K., Lipschutz J.H., Rubin J.S., Finch P.W., Aaronson S.A., Hayashi N., Kawamura J., Cunha G.R. Keratinocyte growth factor (KGF) can replace testosterone in the ductal branching morphogenesis of the rat ventral prostate. Int. J. Dev. Biol. 1996;40:941–951. [PubMed] [Google Scholar]
- 41.Gmyrek G.A., Walburg M., Webb C.P., Yu H.M., You X., Vaughan E.D., Vande Woude G.F., Knudsen B.S. Normal and malignant prostate epithelial cells differ in their response to hepatocyte growth factor/scatter factor. Am. J. Pathol. 2001;159:579–590. doi: 10.1016/S0002-9440(10)61729-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 42.Tang J., Gordon G.M., Nickoloff B.J., Foreman K.E. The helix-loop-helix protein id-1 delays onset of replicative senescence in human endothelial cells. Lab. Invest. 2002;82:1073–1079. doi: 10.1097/01.lab.0000022223.65962.3a. [DOI] [PubMed] [Google Scholar]
- 43.Reddel R.R. The role of senescence and immortalization in carcinogenesis. Carcinogenesis. 2000;21:477–484. doi: 10.1093/carcin/21.3.477. [DOI] [PubMed] [Google Scholar]
- 44.Hahn W.C. Immortalization and transformation of human cells. Mol. Cells. 2002;13:351–361. [PubMed] [Google Scholar]
- 45.McConnell B.B., Starborg M., Brookes S., Peters G. Inhibitors of cyclin-dependent kinases induce features of replicative senescence in early passage human diploid fibroblasts. Curr. Biol. 1998;8:351–354. doi: 10.1016/S0960-9822(98)70137-X. [DOI] [PubMed] [Google Scholar]
- 46.Shao G., Balajee A.S., Hei T.K., Zhao Y. p16(INK4a) downregulation is involved in immortalization of primary human prostate epithelial cells induced by telomerase. Mol. Carcinog. 2008;47:775–783. doi: 10.1002/mc.20434. [DOI] [PubMed] [Google Scholar]
- 47.Chapman E.J., Hurst C.D., Pitt E., Chambers P., Aveyard J.S., Knowles M.A. Expression of hTERT immortalises normal human urothelial cells without inactivation of the p16/Rb pathway. Oncogene. 2006;25:5037–5045. doi: 10.1038/sj.onc.1209513. [DOI] [PubMed] [Google Scholar]
- 48.Iavarone A., Garg P., Lasorella A., Hsu J., Israel M.A. The helix-loop-helix protein Id-2 enhances cell proliferation and binds to the retinoblastoma protein. Genes Dev. 1994;8:1270–1284. doi: 10.1101/gad.8.11.1270. [DOI] [PubMed] [Google Scholar]
- 49.Lasorella A., Iavarone A., Israel M.A. Id2 specifically alters regulation of the cell cycle by tumor suppressor proteins. Mol. Cell. Biol. 1996;16:2570–2578. doi: 10.1128/mcb.16.6.2570. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 50.Zenzmaier C., Untergasser G., Hermann M., Dirnhofer S., Sampson N., Berger P. Dysregulation of Dkk-3 expression in benign and malignant prostatic tissue. Prostate. 2008;68:540–547. doi: 10.1002/pros.20711. [DOI] [PubMed] [Google Scholar]
- 51.Kawano Y., Kitaoka M., Hamada Y., Walker M.M., Waxman J., Kypta R.M. Regulation of prostate cell growth and morphogenesis by Dickkopf-3. Oncogene. 2006;25:6528–6537. doi: 10.1038/sj.onc.1209661. [DOI] [PubMed] [Google Scholar]
- 52.Tsuji T., Miyazaki M., Sakaguchi M., Inoue Y., Namba M. A REIC gene shows down-regulation in human immortalized cells and human tumor-derived cell lines. Biochem. Biophys. Res. Commun. 2000;268:20–24. doi: 10.1006/bbrc.1999.2067. [DOI] [PubMed] [Google Scholar]
- 53.Kashiwakura Y., Ochiai K., Watanabe M., Abarzua F., Sakaguchi M., Takaoka M., Tanimoto R., Nasu Y., Huh N.H., Kumon H. Down-regulation of inhibition of differentiation-1 via activation of activating transcription factor 3 and Smad regulates REIC/Dickkopf-3-induced apoptosis. Cancer Res. 2008;68:8333–8341. doi: 10.1158/0008-5472.CAN-08-0080. [DOI] [PubMed] [Google Scholar]
- 54.Damdinsuren B., Nagano H., Kondo M., Natsag J., Hanada H., Nakamura M., Wada H., Kato H., Marubashi S., Miyamoto A., Takeda Y., Umeshita K., Dono K., Monden M. TGF-beta1-induced cell growth arrest and partial differentiation is related to the suppression of Id1 in human hepatoma cells. Oncol. Rep. 2006;15:401–408. [PubMed] [Google Scholar]
- 55.Ling M.T., Lau T.C., Zhou C., Chua C.W., Kwok W.K., Wang Q., Wang X., Wong Y.C. Overexpression of Id-1 in prostate cancer cells promotes angiogenesis through the activation of vascular endothelial growth factor (VEGF) Carcinogenesis. 2005;26:1668–1676. doi: 10.1093/carcin/bgi128. [DOI] [PubMed] [Google Scholar]
- 56.Li Y., Yang J., Luo J.H., Dedhar S., Liu Y. Tubular epithelial cell dedifferentiation is driven by the helix-loop-helix transcriptional inhibitor Id1. J. Am. Soc. Nephrol. 2007;18:449–460. doi: 10.1681/ASN.2006030236. [DOI] [PubMed] [Google Scholar]
- 57.Goossens K., Deboel L., Swinnen J.V., Roskams T., Manin M., Rombauts W., Verhoeven G. Both retinoids and androgens are required to maintain or promote functional differentiation in reaggregation cultures of human prostate epithelial cells. Prostate. 2002;53:34–49. doi: 10.1002/pros.10125. [DOI] [PubMed] [Google Scholar]
- 58.Grant E.S., Batchelor K.W., Habib F.K. Androgen independence of primary epithelial cultures of the prostate is associated with a down-regulation of androgen receptor gene expression. Prostate. 1996;29:339–349. doi: 10.1002/(SICI)1097-0045(199612)29:6<339::AID-PROS1>3.0.CO;2-3. [DOI] [PubMed] [Google Scholar]