Skip to main content
Cellular & Molecular Biology Letters logoLink to Cellular & Molecular Biology Letters
. 2006 Mar 1;11(1):12–29. doi: 10.2478/s11658-006-0002-x

Direct Rho-associated kinase inhibiton induces cofilin dephosphorylation and neurite outgrowth in PC-12 cells

Zhiqun Zhang 1,2,3, Andrew K Ottens 1,2,3, Stephen F Larner 2,3, Firas H Kobeissy 1,2,3, Melissa L Williams 3, Ronald L Hayes 2,3,4, Kevin K W Wang 1,2,3,4,
PMCID: PMC6276008  PMID: 16847745

Abstract

Axons fail to regenerate in the adult central nervous system (CNS) following injury. Developing strategies to promote axonal regeneration is therapeutically attractive for various CNS pathologies such as traumatic brain injury, stroke and Alzheimer’s disease. Because the RhoA pathway is involved in neurite outgrowth, Rho-associated kinases (ROCKs), downstream effectors of GTP-bound Rho, are potentially important targets for axonal repair strategies in CNS injuries. We investigated the effects and downstream mechanisms of ROCK inhibition in promoting neurite outgrowth in a PC-12 cell model. Robust neurite outgrowth (NOG) was induced by ROCK inhibitors Y-27632 and H-1152 in a time-and dose-dependent manner. Dramatic cytoskeletal reorganization was noticed upon ROCK inhibition. NOG initiated within 5 to 30 minutes followed by neurite extension between 6 and 10 hours. Neurite processes were then sustained for over 24 hours. Rapid cofilin dephosphorylation was observed within 5 minutes of Y-27632 and H-1152 treatment. Re-phosphorylation was observed by 6 hours after Y-27632 treatment, while H-1152 treatment produced sustained cofilin dephosphorylation for over 24 hours. The results suggest that ROCK-mediated dephosphorylation of cofilin plays a role in the initiation of NOG in PC-12 cells.

Key words: Neurite outgrowth, ROCK, Y-27632, PC-12, Cofilin, Actin dynamics

Full Text

The Full Text of this article is available as a PDF (1.2 MB).

Abbreviations used

Y-27632

(R)-(+)-trans-N-(4-Pyridyl)-4-(1-aminoethyl)-cyclohexanecarboxamide

ROCK

Rho-associated kinase

NGF

nerve growth factor

NOG

neurite outgrowth

DAG

dorsal root ganglion

MAG

myelin associated glycoprotein

CSPG

chondroitin sulfate proteoglycan

OMgp

oligodendrocyte myelin

FGF

fibroblast growth factor

BDNF

brain-derived neurotrophic factor

NT-3

neurotrophin-3

PRK

protein kinase C-related kinase

LIMK

LIM-kinase

FITC

Fluorescein isothiocyanate

CNS

central nervous system

References

  • 1.McKerracher L., David S., Jackson D.L., Kottis V., Dunn R.J., Braun P.E. Identification of myelin-associated glycoprotein as a major myelin-derived inhibitor of neurite growth. Neuron. 1994;13:805–811. doi: 10.1016/0896-6273(94)90247-X. [DOI] [PubMed] [Google Scholar]
  • 2.McKerracher L., David S. Easing the brakes on spinal cord repair. Nat. Med. 2004;10:1052–1053. doi: 10.1038/nm1004-1052. [DOI] [PubMed] [Google Scholar]
  • 3.Wang K.C., Koprivica V., Kim J.A., Sivasankaran R., Guo Y., Neve R.L., He Z. Oligodendrocyte-myelin glycoprotein is a Nogo receptor ligand that inhibits neurite outgrowth. Nature. 2002;417:941–944. doi: 10.1038/nature00867. [DOI] [PubMed] [Google Scholar]
  • 4.Fournier A.E., Takizawa B.T., Strittmatter S.M. Rho kinase inhibition enhances axonal regeneration in the injured CNS. J. Neurosci. 2003;23:1416–1423. doi: 10.1523/JNEUROSCI.23-04-01416.2003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 5.Lehmann M., Fournier A., Selles-Navarro I., Dergham P., Sebok A., Leclerc N., Tigyi G., McKerracher L. Inactivation of Rho signaling pathway promotes CNS axon regeneration. J. Neurosci. 1999;19:7537–7547. doi: 10.1523/JNEUROSCI.19-17-07537.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6.Yamashita T., Higuchi H., Tohyama M. The p75 receptor transduces the signal from myelin-associated glycoprotein to Rho. J. Cell Biol. 2002;157:565–570. doi: 10.1083/jcb.200202010. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 7.Yamashita T., Fujitani M., Yamagishi S., Hata K., Mimura F. Multiple signals regulate axon regeneration through the nogo receptor complex. Mol. Neurobiol. 2005;32:105–112. doi: 10.1385/MN:32:2:105. [DOI] [PubMed] [Google Scholar]
  • 8.Bonini S., Rasi G., Bracci-Laudiero M.L., Procoli A., Aloe L. Nerve growth factor: neurotrophin or cytokine? Int. Arch. Allergy Immunol. 2003;131:80–84. doi: 10.1159/000070922. [DOI] [PubMed] [Google Scholar]
  • 9.Ebadi M., Bashir R.M., Heidrick M.L., Hamada F.M., Refaey H.E., Hamed A., Helal G., Baxi M.D., Cerutis D.R., Lassi N.K. Neurotrophins and their receptors in nerve injury and repair. Neurochem. Int. 1997;30:347–374. doi: 10.1016/S0197-0186(96)00071-X. [DOI] [PubMed] [Google Scholar]
  • 10.Petruska J.C., Mendell L.M. The many functions of nerve growth factor: multiple actions on nociceptors. Neurosci. Lett. 2004;361:168–171. doi: 10.1016/j.neulet.2003.12.012. [DOI] [PubMed] [Google Scholar]
  • 11.Ozdinler P.H., Erzurumlu R.S. Regulation of neurotrophin-induced axonal responses via Rho GTPases. J. Comp. Neurol. 2001;438:377–387. doi: 10.1002/cne.1321. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12.Yamaguchi Y., Katoh H., Yasui H., Mori K., Negishi M. RhoA inhibits the nerve growth factor-induced Rac1 activation through Rho-associated kinase-dependent pathway. J. Biol. Chem. 2001;276:18977–18983. doi: 10.1074/jbc.M100254200. [DOI] [PubMed] [Google Scholar]
  • 13.Kwon B.K., Borisoff J.F., Tetzlaff W. Molecular targets for therapeutic intervention after spinal cord injury. Mol. Intervent. 2002;2:244–258. doi: 10.1124/mi.2.4.244. [DOI] [PubMed] [Google Scholar]
  • 14.Amano M., Fukata Y., Kaibuchi K. Regulation and functions of Rho-associated kinase. Exp. Cell Res. 2000;261:44–51. doi: 10.1006/excr.2000.5046. [DOI] [PubMed] [Google Scholar]
  • 15.Hall A. Rho GTPases and the control of cell behaviour. Biochem. Soc. Trans. 2005;33:891–895. doi: 10.1042/BST20050891. [DOI] [PubMed] [Google Scholar]
  • 16.Somlyo A.P., Somlyo A.V. Signal transduction by G-proteins, rho-kinase and protein phosphatase to smooth muscle and non-muscle myosin II. J. Physiol. 2000;522:177–185. doi: 10.1111/j.1469-7793.2000.t01-2-00177.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 17.Kawano Y., Fukata Y., Oshiro N., Amano M., Nakamura T., Ito M., Matsumura F., Inagaki M., Kaibuchi K. Phosphorylation of myosin-binding subunit (MBS) of myosin phosphatase by Rho-kinase in vivo. J. Cell Biol. 1999;147:1023–1038. doi: 10.1083/jcb.147.5.1023. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 18.Riento K., Ridley A.J. Rocks: multifunctional kinases in cell behaviour. Nat. Rev. Mol. Cell Biol. 2003;4:446–456. doi: 10.1038/nrm1128. [DOI] [PubMed] [Google Scholar]
  • 19.Greene L.A., Tischler A.S. Establishment of a noradrenergic clonal line of rat adrenal pheochromocytoma cells which respond to nerve growth factor. Proc. Natl. Acad. Sci. 1976;73:2424–2428. doi: 10.1073/pnas.73.7.2424. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 20.Park Y.H., Kantor L., Guptaroy B., Zhang M., Wang K.K., Gnegy M.E. Repeated amphetamine treatment induces neurite outgrowth and enhanced amphetamine-stimulated dopamine release in rat pheochromocytoma cells (PC12 cells) via a protein kinase C-and mitogen activated protein kinase-dependent mechanism. J. Neurochem. 2003;87:1546–1557. doi: 10.1046/j.1471-4159.2003.02127.x. [DOI] [PubMed] [Google Scholar]
  • 21.Sebok A., Nusser N., Debreceni B., Guo Z., Santos M.F., Szeberenyi J., Tigyi G. Different roles for RhoA during neurite initiation, elongation, and regeneration in PC12 cells. J. Neurochem. 1999;73:949–960. doi: 10.1046/j.1471-4159.1999.0730949.x. [DOI] [PubMed] [Google Scholar]
  • 22.Tojima T., Ito E. Signal transduction cascades underlying de novo protein synthesis required for neuronal morphogenesis in differentiating neurons. Prog. Neurobiol. 2004;72:183–193. doi: 10.1016/j.pneurobio.2004.03.002. [DOI] [PubMed] [Google Scholar]
  • 23.Dent E.W., Gertler F.B. Cytoskeletal dynamics and transport in growth cone motility and axon guidance. Neuron. 2003;40:209–227. doi: 10.1016/S0896-6273(03)00633-0. [DOI] [PubMed] [Google Scholar]
  • 24.Maekawa M., Ishizaki T., Boku S., Watanabe N., Fujita A., Iwamatsu A., Obinata T., Ohashi K., Mizuno K., Narumiya S. Signaling from Rho to the actin cytoskeleton through protein kinases ROCK and LIM-kinase. Science. 1999;285:895–898. doi: 10.1126/science.285.5429.895. [DOI] [PubMed] [Google Scholar]
  • 25.Ohashi K., Nagata K., Maekawa M., Ishizaki T., Narumiya S., Mizuno K. Rho-associated kinase ROCK activates LIM-kinase 1 by phosphorylation at threonine 508 within the activation loop. J. Biol. Chem. 2000;275:3577–3582. doi: 10.1074/jbc.275.5.3577. [DOI] [PubMed] [Google Scholar]
  • 26.Hashimoto R., Nakamura Y., Goto H., Wada Y., Sakoda S., Kaibuchi K., Inagaki M., Takeda M. Domain-and site-specific phosphorylation of bovine NF-L by Rho-associated kinase. Biochem. Biophys. Res. Commun. 1998;245:407–411. doi: 10.1006/bbrc.1998.8446. [DOI] [PubMed] [Google Scholar]
  • 27.Amano M., Kaneko T., Maeda A., Nakayama M., Ito M., Yamauchi T., Goto H., Fukata Y., Oshiro N., Shinohara A., Iwamatsu A., Kaibuchi K. Identification of Tau and MAP2 as novel substrates of Rho-kinase and myosin phosphatase. J. Neurochem. 2003;87:780–790. doi: 10.1046/j.1471-4159.2003.02054.x. [DOI] [PubMed] [Google Scholar]
  • 28.Davies S.P., Reddy H., Caivano M., Cohen P. Specificity and mechanism of action of some commonly used protein kinase inhibitors. Biochem. J. 2000;351:95–105. doi: 10.1042/0264-6021:3510095. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 29.Ikenoya M., Hidaka H., Hosoya T., Suzuki M., Yamamoto N., Sasaki Y. Inhibition of rho-kinase-induced myristoylated alanine-rich C kinase substrate (MARCKS) phosphorylation in human neuronal cells by H-1152, a novel and specific Rho-kinase inhibitor. J. Neurochem. 2002;81:9–16. doi: 10.1046/j.1471-4159.2002.00801.x. [DOI] [PubMed] [Google Scholar]
  • 30.Nakajima M., Hayashi K., Egi Y., Katayama K., Amano Y., Uehata M., Ohtsuki M., Fujii A., Oshita K., Kataoka H., Chiba K., Goto N., Kondo T. Effect of Wf-536, a novel ROCK inhibitor, against metastasis of B16 melanoma. Cancer Chemother. Pharmacol. 2003;52:319–324. doi: 10.1007/s00280-003-0641-9. [DOI] [PubMed] [Google Scholar]
  • 31.Ishizaki T., Uehata M., Tamechika I., Keel J., Nonomura K., Maekawa M., Narumiya S. Pharmacological properties of Y-27632, a specific inhibitor of rho-associated kinases. Mol. Pharmacol. 2000;57:976–983. [PubMed] [Google Scholar]
  • 32.Christensen A.E., Selheim F., de Rooij J., Dremier S., Schwede F., Dao K.K., Martinez A., Maenhaut C., Bos J.L., Genieser H.G., Doskeland S.O. cAMP analog mapping of Epac1 and cAMP kinase. Discriminating analogs demonstrate that Epac and cAMP kinase act synergistically to promote PC-12 cell neurite extension. J. Biol. Chem. 2003;278:35394–35402. doi: 10.1074/jbc.M302179200. [DOI] [PubMed] [Google Scholar]
  • 33.Hundle B., McMahon T., Dadgar J., Messing R.O. Overexpression of epsilon-protein kinase C enhances nerve growth factor-induced phosphorylation of mitogen-activated protein kinases and neurite outgrowth. J. Biol. Chem. 1995;270:30134–30140. doi: 10.1074/jbc.270.50.30134. [DOI] [PubMed] [Google Scholar]
  • 34.Obara Y., Aoki T., Kusano M., Ohizumi Y. Beta-eudesmol induces neurite outgrowth in rat pheochromocytoma cells accompanied by an activation of mitogen-activated protein kinase. J. Pharmacol. Exp. Ther. 2002;301:803–811. doi: 10.1124/jpet.301.3.803. [DOI] [PubMed] [Google Scholar]
  • 35.Birkenfeld J., Betz H., Roth D. Inhibition of neurite extension by overexpression of individual domains of LIM kinase 1. J. Neurochem. 2001;78:924–927. doi: 10.1046/j.1471-4159.2001.00500.x. [DOI] [PubMed] [Google Scholar]
  • 36.Fujita A., Hattori Y., Takeuchi T., Kamata Y., Hata F. NGF induces neurite outgrowth via a decrease in phosphorylation of myosin light chain in PC12 cells. Neuroreport. 2001;12:3599–3602. doi: 10.1097/00001756-200111160-00045. [DOI] [PubMed] [Google Scholar]
  • 37.Kishida S., Yamamoto H., Kikuchi A. Wnt-3a and Dvl induce neurite retraction by activating Rho-associated kinase. Mol. Cell Biol. 2004;24:4487–4501. doi: 10.1128/MCB.24.10.4487-4501.2004. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 38.Sasaki Y., Suzuki M., Hidaka H. The novel and specific Rho-kinase inhibitor (S)-(+)-2-methyl-1-[(4-methyl-5-isoquinoline)sulfonyl]-homopiperazine as a probing molecule for Rho-kinase-involved pathway. Pharmacol. Ther. 2002;93:225–232. doi: 10.1016/S0163-7258(02)00191-2. [DOI] [PubMed] [Google Scholar]
  • 39.Braun H., Schafer K., Hollt V. BetaIII tubulin-expressing neurons reveal enhanced neurogenesis in hippocampal and cortical structures after a contusion trauma in rats. J. Neurotrauma. 2002;19:975–983. doi: 10.1089/089771502320317122. [DOI] [PubMed] [Google Scholar]
  • 40.Aizawa H., Wakatsuki S., Ishii A., Moriyama K., Sasaki Y., Ohashi K., Sekine-Aizawa Y., Sehara-Fujisawa A., Mizuno K., Goshima Y., Yahara I. Phosphorylation of cofilin by LIM-kinase is necessary for semaphorin 3A-induced growth cone collapse. Nat. Neurosci. 2001;4:367–373. doi: 10.1038/86011. [DOI] [PubMed] [Google Scholar]
  • 41.Niwa R., Nagata-Ohashi K., Takeichi M., Mizuno K., Uemura T. Control of actin reorganization by Slingshot, a family of phosphatases that dephosphorylate ADF/cofilin. Cell. 2002;108:233–246. doi: 10.1016/S0092-8674(01)00638-9. [DOI] [PubMed] [Google Scholar]
  • 42.Ambach A., Saunus J., Konstandin M., Wesselborg S., Meuer S.C., Samstag Y. The serine phosphatases PP1 and PP2A associate with and activate the actin-binding protein cofilin in human T lymphocytes. Eur. J. Immunol. 2000;30:3422–3431. doi: 10.1002/1521-4141(2000012)30:12<3422::AID-IMMU3422>3.0.CO;2-J. [DOI] [PubMed] [Google Scholar]
  • 43.Revenu C., Athman R., Robine S., Louvard D. The co-workers of actin filaments: from cell structures to signals. Nat. Rev. Mol. Cell Biol. 2004;5:635–646. doi: 10.1038/nrm1437. [DOI] [PubMed] [Google Scholar]
  • 44.Zhou Y., Su Y., Li B., Liu F., Ryder J.W., Wu X., Gonzalez-DeWhitt P.A., Gelfanova V., Hale J.E., May P.C., Paul S.M., Ni B. Nonsteroidal anti-inflammatory drugs can lower amyloidogenic Abeta42 by inhibiting Rho. Science. 2003;302:1215–1217. doi: 10.1126/science.1090154. [DOI] [PubMed] [Google Scholar]
  • 45.Ellezam B., Dubreuil C., Winton M., Loy L., Dergham P., Selles-Navarro I., McKerracher L. Inactivation of intracellular Rho to stimulate axon growth and regeneration. Prog. Brain. Res. 2002;137:371–380. doi: 10.1016/S0079-6123(02)37028-6. [DOI] [PubMed] [Google Scholar]
  • 46.Brabeck C., Beschorner R., Conrad S., Mittelbronn M., Bekure K., Meyermann R., Schluesener H.J., Schwab J.M. Lesional expression of RhoA and RhoB following traumatic brain injury in humans. J. Neurotrauma. 2004;21:697–706. doi: 10.1089/0897715041269597. [DOI] [PubMed] [Google Scholar]
  • 47.Brabeck C., Mittelbronn M., Bekure K., Meyermann R., Schluesener H.J., Schwab J.M. Effect of focal cerebral infarctions on lesional RhoA and RhoB expression. Arch. Neurol. 2003;60:1245–1249. doi: 10.1001/archneur.60.9.1245. [DOI] [PubMed] [Google Scholar]

Articles from Cellular & Molecular Biology Letters are provided here courtesy of BMC

RESOURCES