Skip to main content
Cellular & Molecular Biology Letters logoLink to Cellular & Molecular Biology Letters
. 2010 Dec 27;16(1):101–113. doi: 10.2478/s11658-010-0043-z

Ets-1 expression and gemcitabine chemoresistance in pancreatic cancer cells

Amit Khanna 1,3, Kulandaivelu Mahalingam 3, Debarshi Chakrabarti 2, Giridharan Periyasamy 1,
PMCID: PMC6276009  PMID: 21225469

Abstract

Gemcitabine, a novel pyrimidine nucleoside analog, has become the standard chemotherapeutic agent for pancreatic cancer patients. The clinical impact of gemcitabine remains modest owing to the high degree of inherent and acquired resistance. There are various lines of evidence that confirm the role of Ets-1, a proto-oncoprotein, in tumor invasion, progression, and chemoresistance. This study examines a hypothesis that implicates Ets-1 in the development of gemcitabine-resistance in pancreatic cancer cells. Ets-1 protein expression was assessed in parental pancreatic cancer cells and their gemcitabine-resistant clones. Western blot analysis revealed elevated levels of Ets-1 protein expression in gemcitabine-resistant PANC1GemRes (4.8-fold increase; P < 0.05), MIA PaCa2GemRes (3.2-fold increase; P < 0.05), and Capan2GemRes (2.1-fold increase; P < 0.05) cells as compared to their parental counterparts. A time course analysis was conducted to determine the change in Ets-1 expression in the parental cells after incubation with gemcitabine. Reverse transcriptase quantitative real-time PCR (RT-qPCR) and Western blot analysis revealed a significant increase in Ets-1 expression. All the three parental cells incubated with gemcitabine showed elevated Ets-1 protein expression at 6 h. By 24 h, the expression level had decreased. Using small interfering RNA (siRNA) against Ets-1 in gemcitabine-resistant cells, we demonstrated a reversal in gemcitabine chemosensitivity and also detected a marked reduction in the expression of the Ets-1 target genes MMP1 and uPA. Our novel finding demonstrates the significance of Ets-1 in the development of gemcitabine chemoresistance in pancreatic cancer cells. Based on these results, a new siRNA-based therapeutic strategy targeting the Ets-1 genes can be designed to overcome chemoresistance.

Key words: Gemcitabine, Ets-1, MMP1, uPA, PANC1, MIA PaCa2, Capan2

Full Text

The Full Text of this article is available as a PDF (1.6 MB).

Abbreviations used

cDNA

complementary DNA

Ct

cycle threshold

dFdCTP

2′,2′-difluorodeoxycytidine 5′-triphosphate (gemcitabine triphosphate)

DMEM

Dulbecco’s modified Eagle’s medium

DMSO

dimethyl sulfoxide

E26

avian erythroblastosis virus

Ets-1

E26 transformation specific sequence-1

FBS

fetal bovine serum

GAPDH

glyceraldehydes-3-phosphate dehydrogenase

MDR1

multiple drug resistance-1

MMP1

matrix metalloproteinase-1 (collagenase-1)

MMP3

matrix metallopeptidase-1 (stromelysin-1)

MTT

3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide

PDAC

pancreatic ductal adenocarcinoma

RT-qPCR

reverse transcriptase real-time quantitative PCR

siRNA

small interfering RNA

uPA

urokinase-type plasminogen activator

v-ets

viral transforming gene of E26

References

  • 1.Li D., Xie K., Wolff R., Abbruzzese J.L. Pancreatic cancer. Lancet. 2004;363:1049–1057. doi: 10.1016/S0140-6736(04)15841-8. [DOI] [PubMed] [Google Scholar]
  • 2.Klein B., Sadikov E., Mishaeli M., Levin I., Figer A. Comparison of 5-FU and leucovorin to gemcitabine in the treatment of pancreatic cancer. Oncol. Rep. 2000;7:875–877. doi: 10.3892/or.7.4.875. [DOI] [PubMed] [Google Scholar]
  • 3.Burris H.A., Moore M.J., Andersen J., Green M.R., Rothenberg M.L., Modiano M.R., Cripps M.C., Portenoy R.K., Storniolo A.M., Tarassoff P., Nelson R., Dorr F.A., Stephens C.D., Von Hoff D.D. Improvements in survival and clinical benefit with gemcitabine as first-line therapy for patients with advanced pancreas cancer: a randomized trial. J. Clin. Oncol. 1997;15:2403–2413. doi: 10.1200/JCO.1997.15.6.2403. [DOI] [PubMed] [Google Scholar]
  • 4.Ueno H., Kiyosawa K., Kaniwa N. Pharmacogenomics of gemcitabine: can genetic studies lead to tailor-made therapy. Br. J. Cancer. 2007;97:145–151. doi: 10.1038/sj.bjc.6603860. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 5.Galmarini C.M., Mackey J.R., Dumontet C. Nucleoside analogues: mechanisms of drug resistance and reversal strategies. Leukemia. 2001;15:875–890. doi: 10.1038/sj.leu.2402114. [DOI] [PubMed] [Google Scholar]
  • 6.Leprince D., Gegonne A., Coll J., De Taisne C., Schneeberger A., Lagrou C., Stehel D. A putative second cell-derived oncogene of the avian leukaemia retrovirus E26. Nature. 1983;306:395–397. doi: 10.1038/306395a0. [DOI] [PubMed] [Google Scholar]
  • 7.Nunn M.F., Hunte T. The Ets sequence is required for induction of erythroblastosis in chickens by avian retrovirus E26. J. Virol. 1989;63:398–402. doi: 10.1128/jvi.63.1.398-402.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 8.Koizumi S., Fisher R.J., Fujiwara S., Jorcyk C., Bhat N.K., Seth A. Isoforms of the human ets-1 protein: generation by alternative splicing and differential phosphorylation. Oncogene. 1990;81:675–681. [PubMed] [Google Scholar]
  • 9.Oda N., Abe M., Sato Y. Ets-1 converts endothelial cells to the angiogenic phenotype by inducing the expression of matrix metalloproteinases and integrin beta3. J. Cell Physiol. 1999;178:121–132. doi: 10.1002/(SICI)1097-4652(199902)178:2&#x0003c;121::AID-JCP1&#x0003e;3.0.CO;2-F. [DOI] [PubMed] [Google Scholar]
  • 10.Nakada M., Yamashita J., Okada Y., Sato H. Ets-1 positively regulates expression of urokinase-type plasminogen activator (uPA) and invasiveness of astrocytic tumors. J. Neuropathol. Exp. Neurol. 1999;58:329–334. doi: 10.1097/00005072-199904000-00003. [DOI] [PubMed] [Google Scholar]
  • 11.Sampath J., Sun D., Kidd V.J., Grenet J., Gandhi A., Shapiro L.H., Wang Q., Zambetti G.P., Schuetz J.D. Mutant p53 cooperates with Ets and selectively up-regulates human MDR1 not MRP1. J. Biol. Chem. 2001;276:39359–39367. doi: 10.1074/jbc.M103429200. [DOI] [PubMed] [Google Scholar]
  • 12.Kars M.D., Işeri O.D., Gunduz U., Ural A.U., Arpaci F., Molnar J. Development of rational in vitro models for drug resistance in breast cancer and modulation of MDR by selected compounds. Anti Can. Res. 2006;26:4559–4568. [PubMed] [Google Scholar]
  • 13.Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J. Immunol. Methods. 1983;65:55–63. doi: 10.1016/0022-1759(83)90303-4. [DOI] [PubMed] [Google Scholar]
  • 14.Liu X., Zhou B., Xue L., Yen F., Chu P., Un F., Yen Y. Ribonucleotide reductase subunits M2 and p53R2 are potential biomarkers for metastasis of colon cancer. Clin. Colorectal Canc. 2007;6:374–381. doi: 10.3816/CCC.2007.n.007. [DOI] [PubMed] [Google Scholar]
  • 15.Stephanie G., Melanie M., Jerome P., Olivier V.W., Catherine B., Laurent G. Normalization of qRT-PCR data: the necessity of adopting a systematic, experimental conditions-specific, validation of references. J. Exp. Bot. 2009;60:487–493. doi: 10.1093/jxb/ern305. [DOI] [PubMed] [Google Scholar]
  • 16.Lefter P., Dima S., Sunamura M., Furukawa T., Sato Y., Abe M., Chivu M., Popescu I., Horii A. Transcriptional silencing of Ets-1 efficiently suppresses angiogenesis of pancreatic cancer. Cancer Gene Ther. 2009;16:137–148. doi: 10.1038/cgt.2008.65. [DOI] [PubMed] [Google Scholar]
  • 17.Maroni P., Bendinelli P., Matteucci E., Desiderio M.A. HGF induces CXCR4 and CXCL12-mediated tumor invasion through Ets-1 and NF-B. Carcinogenesis. 2007;28:267–279. doi: 10.1093/carcin/bgl129. [DOI] [PubMed] [Google Scholar]
  • 18.Fujimoto J., Aoki I., Toyoki H., Khatun S., Sato E., Sakaguchi H., Tamaya T. Clinical implications of expression of Ets-1 related to angiogenesis in metastatic lesions of ovarian cancers. Oncology. 2004;66:420–428. doi: 10.1159/000079491. [DOI] [PubMed] [Google Scholar]
  • 19.Wernert N., Gilles F., Fafeur V., Bouali F., Raes M.-B., Pyke C., Dupressoir T., Seitz G., Vandenbunder B., Stéhelin D. Stromal expression of c-Ets-1 transcription factor correlates with tumor invasion. Cancer Res. 1994;54:5683–5688. [PubMed] [Google Scholar]
  • 20.Wilson L.A., Yamamoto H., Singh G. Role of the transcription factor Ets-1 in cisplatin resistance. Mol. Cancer Ther. 2004;3:823–830. [PubMed] [Google Scholar]
  • 21.Kitange G., Shibata S., Tokunaga Y., Yagi N., Yasunaga A., Kishikawa M., Naito S. Ets-1 transcription factor mediated urokinase-type plasminogen activator expression and invasion in glioma cells stimulated by serum and basic fibroblast growth factors. Lab. Invest. 1999;79:407–516. [PubMed] [Google Scholar]
  • 22.Naotaka H., Nobuo J., Motokuni A., Kunio M., Toshikazu N., Yasufumi S., Nahoko O., Toshio O., Yasufumi K., Ryuichi M. In vivo evidence of angiogenesis induced by transcription factor Ets-1: Ets-1 is located upstream of angiogenesis cascade. Circulation. 2004;109:3035–3041. doi: 10.1161/01.CIR.0000130643.41587.DB. [DOI] [PubMed] [Google Scholar]
  • 23.Hiromichi I., Mark D., Eric B., Thomas E. C., Michael J. Z., Stanley W. A., Edward E. W. Prostaglandin E2 Enhances Pancreatic Cancer Invasiveness through an Ets-1-Dependent Induction of Matrix Metalloproteinase-2. Cancer Res. 2004;64:7439–7446. doi: 10.1158/0008-5472.CAN-04-1177. [DOI] [PubMed] [Google Scholar]

Articles from Cellular & Molecular Biology Letters are provided here courtesy of BMC

RESOURCES