Skip to main content
Cellular & Molecular Biology Letters logoLink to Cellular & Molecular Biology Letters
. 2006 Jun 1;11(2):191–213. doi: 10.2478/s11658-006-0016-4

In-silico prediction and observations of nuclear matrix attachment

Adrian E Platts 1, Amelia K Quayle 2, Stephen A Krawetz 1,2,3,
PMCID: PMC6276010  PMID: 16847565

Abstract

The nuclear matrix is a functionally adaptive structural framework interior to the nuclear envelope. The nature and function of this nuclear organizer remains the subject of widespread discussion in the epigenetic literature. To draw this discussion together with a view to suggest a way forward we summarize the biochemical evidence for the modalities of DNA-matrix binding alongside the in-silico predictions. Concordance is exhibited at various, but not all levels. On the one hand, both the reiteration and sequence similarity of some elements of Matrix Attachment Regions suggest conservation. On the other hand, in-silico predictions suggest additional unique components. In bringing together biological and sequence evidence we conclude that binding may be hierarchical in nature, reflective of a biological role in replicating, transcribing and potentiating chromatin. Nuclear matrix binding may well be more complex than the widely accepted simple loop model.

Key words: Nuclear matrix, Matrix attachment regions, In-silico, Prediction, MARSCAN, MarFinder, MARWIZ, ChrClass, SMARTest, SIDD

Full Text

The Full Text of this article is available as a PDF (531.9 KB).

Abbreviations used

ChrClass

a linear discriminant analysis approach to MAR prediction

CS

chromosomal scaffold

CT

chromosome territory

IUPAC

International Union of Pure and Applied Chemists

LDA

linear discriminant analysis

MAR

matrix attachment region

MARFinder

a cumulative probability MAR prediction tool

MARSCAN

a MAR prediction tool to detect the MRS

MRS

the bipartite MAR recognition signature

MARWIZ

a commercial implementation of marfinder

MHC

major histocompatibility complex

mRNP

messenger ribonucleic acid protein

NM

nuclear matrix

PWM

position weight matrices

SIDD

stress induced duplex destabilization

S/MAR

scaffold/matrix attachment regions (synonymous with MAR)

SMARTest

a MAR prediction tool developed commercially by Genomatix

Tw

number of helical turns in a constrained DNA loop

Wr

wumber of superhelical turns in a constrained loop

Footnotes

Invited paper

All referenced websites were verified. URLs and their content are subject to change. The content referenced in this paper can be accessed using internet archive tools such as www.archive.org with the query restricted to November 2005.

References

  • 1.Boulikas T. Nature of DNA sequences at the attachment regions of genes to the nuclear matrix. J. Cell. Biochem. 1993;52:14–22. doi: 10.1002/jcb.240520104. [DOI] [PubMed] [Google Scholar]
  • 2.Fawcett D.W. On the occurrence of a fibrous lamina on the inner aspect of the nuclear envelope in certain cells of vertebrates. Am. J. Anat. 1966;119:129–145. doi: 10.1002/aja.1001190108. [DOI] [PubMed] [Google Scholar]
  • 3.He D., Zeng C., Brinkley B.R. Nuclear matrix proteins as structural and functional components of the mitotic apparatus. Int. Rev. Cytol. 1995;162B:1–74. doi: 10.1016/s0074-7696(08)62614-5. [DOI] [PubMed] [Google Scholar]
  • 4.Stadler S., Schnapp V., Mayer R., Stein S., Cremer C., Bonifer C., Cremer T., Dietzel S. The architecture of chicken chromosome territories changes during differentiation. BMC Cell Biol. 2004;5:44. doi: 10.1186/1471-2121-5-44. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 5.Cremer T., Cremer C. Chromosome territories, nuclear architecture and gene regulation in mammalian cells. Nat. Rev. Genet. 2001;2:292–301. doi: 10.1038/35066075. [DOI] [PubMed] [Google Scholar]
  • 6.Gotzmann J., Foisner R. Lamins and lamin-binding proteins in functional chromatin organization. Crit. Rev. Eukaryot. Gene Expr. 1999;9:257–265. doi: 10.1615/critreveukargeneexpr.v9.i3-4.100. [DOI] [PubMed] [Google Scholar]
  • 7.Mika, S. NMP-db Available from: http://cubic.bioc.columbia.edu/db/nmpdb/.
  • 8.Capco D.G., Wan K.M., Penman S. The nuclear matrix: three-dimensional architecture and protein composition. Cell. 1982;29:847–858. doi: 10.1016/0092-8674(82)90446-9. [DOI] [PubMed] [Google Scholar]
  • 9.Renz A., Fackelmayer F.O. Purification and molecular cloning of the scaffold attachment factor B (SAF-B), a novel human nuclear protein that specifically binds to S/MAR-DNA. Nucleic Acids Res. 1996;24:843–849. doi: 10.1093/nar/24.5.843. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 10.Kas E., Laemmli U.K. In vivo topoisomerase II cleavage of the Drosophila histone and satellite III repeats: DNA sequence and structural characteristics. Embo. J. 1992;11:705–716. doi: 10.1002/j.1460-2075.1992.tb05103.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 11.Dickinson L.A., Joh T., Kohwi Y., Kohwi-Shigematsu T. A tissue-specific MAR/SAR DNA-binding protein with unusual binding site recognition. Cell. 1992;70:631–645. doi: 10.1016/0092-8674(92)90432-C. [DOI] [PubMed] [Google Scholar]
  • 12.Zong R.T., Scheuermann R.H. Mutually exclusive interaction of a novel matrix attachment region binding protein and the NF-muNR enhancer repressor. Implications for regulation of immunoglobulin heavy chain expression. J. Biol. Chem. 1995;270:24010–24018. doi: 10.1074/jbc.270.43.25313. [DOI] [PubMed] [Google Scholar]
  • 13.Yusufzai T.M., Felsenfeld G. The 5′-HS4 chicken beta-globin insulator is a CTCF-dependent nuclear matrix-associated element. Proc. Natl. Acad. Sci. U. S. A. 2004;101:8620–8624. doi: 10.1073/pnas.0402938101. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 14.Steinert P.M., Roop D.R. Molecular and cellular biology of intermediate filaments. Annu. Rev. Biochem. 1988;57:593–625. doi: 10.1146/annurev.bi.57.070188.003113. [DOI] [PubMed] [Google Scholar]
  • 15.Rando O.J., Zhao K., Crabtree G.R. Searching for a function for nuclear actin. Trends Cell Biol. 2000;10:92–97. doi: 10.1016/S0962-8924(99)01713-4. [DOI] [PubMed] [Google Scholar]
  • 16.He D.C., Nickerson J.A., Penman S. Core filaments of the nuclear matrix. J. Cell Biol. 1990;110:569–580. doi: 10.1083/jcb.110.3.569. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 17.Narayan K.S., Steele W.J., Smetana K., Busch H. Ultrastructural aspects of the ribonucleo-protein network in nuclei of Walker tumor and rat liver. Exp. Cell Res. 1967;46:65–77. doi: 10.1016/0014-4827(67)90409-0. [DOI] [PubMed] [Google Scholar]
  • 18.Ma H., Siegel A.J., Berezney R. Association of chromosome territories with the nuclear matrix. Disruption of human chromosome territories correlates with the release of a subset of nuclear matrix proteins. J. Cell Biol. 1999;146:531–542. doi: 10.1083/jcb.146.3.531. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 19.Miralles F., Ofverstedt L.G., Sabri N., Aissouni Y., Hellman U., Skoglund U., Visa N. Electron tomography reveals posttranscriptional binding of pre-mRNPs to specific fibers in the nucleoplasm. J. Cell Biol. 2000;148:271–282. doi: 10.1083/jcb.148.2.271. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 20.Jackson D.A., Cook P.R. Visualization of a filamentous nucleoskeleton with a 23 nm axial repeat. EMBO. J. 1988;7:3667–3677. doi: 10.1002/j.1460-2075.1988.tb03248.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 21.Earnshaw W.C., Heck M.M. Localization of topoisomerase II in mitotic chromosomes. J. Cell Biol. 1985;100:1716–1725. doi: 10.1083/jcb.100.5.1716. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 22.Glazkov M.V., Poltaraus A.B., Lebedeva I.A. Nucleotide sequence of DNA isolated from protein cores of rosette-like structures (elementary chromomeres) of mouse interphase chromosomes. Genetika. 1994;30:1146–1154. [PubMed] [Google Scholar]
  • 23.Prusov A.N., Poliakov V., Zatsepina O.V., Fais D., Chentsov Iu S. Isolation of rosette-like structures from partially deproteinized chromatin in rat hepatocytes. Tsitologiia. 1985;27:1026–1030. [PubMed] [Google Scholar]
  • 24.van Driel R., Fransz P. Nuclear architecture and genome functioning in plants and animals: what can we learn from both? Exp. Cell Res. 2004;296:86–90. doi: 10.1016/j.yexcr.2004.03.009. [DOI] [PubMed] [Google Scholar]
  • 25.Ierardi L.A., Moss S.B., Bellve A.R. Synaptonemal complexes are integral components of the isolated mouse spermatocyte nuclear matrix. J. Cell Biol. 1983;96:1717–1726. doi: 10.1083/jcb.96.6.1717. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 26.Gautier T., Robert-Nicoud M., Guilly M.N., Hernandez-Verdun D. Relocation of nucleolar proteins around chromosomes at mitosis. A study by confocal laser scanning microscopy. J. Cell Sci. 1992;102Pt4:729–737. doi: 10.1242/jcs.102.4.729. [DOI] [PubMed] [Google Scholar]
  • 27.Hernandez-Verdun D., Gautier T. The chromosome periphery during mitosis. Bioessays. 1994;16:179–185. doi: 10.1002/bies.950160308. [DOI] [PubMed] [Google Scholar]
  • 28.Berezney R., Mortillaro M.J., Ma H., Wei X., Samarabandu J. The nuclear matrix: a structural milieu for genomic function. Int. Rev. Cytol. 1995;162A:1–65. doi: 10.1016/S0074-7696(08)61228-0. [DOI] [PubMed] [Google Scholar]
  • 29.Abney J.R., Cutler B., Fillbach M.L., Axelrod D., Scalettar B.A. Chromatin dynamics in interphase nuclei and its implications for nuclear structure. J. Cell Biol. 1997;137:1459–1468. doi: 10.1083/jcb.137.7.1459. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 30.Vogelstein B., Pardoll D.M., Coffey D.S. Supercoiled loops and eucaryotic DNA replicaton. Cell. 1980;22:79–85. doi: 10.1016/0092-8674(80)90156-7. [DOI] [PubMed] [Google Scholar]
  • 31.Ostermeier G.C., Liu Z., Martins R.P., Bharadwaj R.R., Ellis J., Draghici S., Krawetz S.A. Nuclear matrix association of the human beta-globin locus utilizing a novel approach to quantitative real-time PCR. Nucleic Acids Res. 2003;31:3257–3266. doi: 10.1093/nar/gkg424. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 32.Mielke C., Kohwi Y., Kohwi-Shigematsu T., Bode J. Hierarchical binding of DNA fragments derived from scaffold-attached regions: correlation of properties in vitro and function in vivo. Biochemistry. 1990;29:7475–7485. doi: 10.1021/bi00484a017. [DOI] [PubMed] [Google Scholar]
  • 33.Kramer J.A., Adams M.D., Singh G.B., Doggett N.A., Krawetz S.A. Extended analysis of the region encompassing the PRM1→PRM2→TNP2 domain: genomic organization, evolution and gene identification. J. Exp. Zool. 1998;282:245–253. doi: 10.1002/(SICI)1097-010X(199809/10)282:1/2<245::AID-JEZ26>3.0.CO;2-R. [DOI] [PubMed] [Google Scholar]
  • 34.Laborador M., Corces V.G. Setting the boundaries of chromatin domains and nuclear organization. Cell. 2002;111:151–154. doi: 10.1016/S0092-8674(02)01004-8. [DOI] [PubMed] [Google Scholar]
  • 35.Williams R.R. Transcription and the territory: the ins and outs of gene positioning. Trends Genet. 2003;19:298–302. doi: 10.1016/S0168-9525(03)00109-4. [DOI] [PubMed] [Google Scholar]
  • 36.Heun P., Laroche T., Shimada K., Furrer P., Gasser S.M. Chromosome dynamics in the yeast interphase nucleus. Science. 2001;294:2181–2186. doi: 10.1126/science.1065366. [DOI] [PubMed] [Google Scholar]
  • 37.Melcak I., Cermanova S., Jirsova K., Koberna K., Malinsky J., Raska I. Nuclear pre-mRNA compartmentalization: trafficking of released transcripts to splicing factor reservoirs. Mol. Biol. Cell. 2000;11:497–510. doi: 10.1091/mbc.11.2.497. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 38.Donev R.M., Doneva T.A., Bowen W.R., Sheer D. HnRNP-A1 binds directly to double-stranded DNA in vitro within a 36 bp sequence. Mol. Cell. Biochem. 2002;233:181–185. doi: 10.1023/A:1015504318726. [DOI] [PubMed] [Google Scholar]
  • 39.Cremer T., Kupper K., Dietzel S., Fakan S. Higher order chromatin architecture in the cell nucleus: on the way from structure to function. Biol. Cell. 2004;96:555–567. doi: 10.1016/j.biolcel.2004.07.002. [DOI] [PubMed] [Google Scholar]
  • 40.Krawetz, S.A., Draghici, S., Goodrich, R., Liu, Z and Ostermeier, G.C., In Silico and wet-bench identification of nuclear matrix attachment regions. in: Hypertension, Methods and Protocols (Fennell, J.P., Baker, A.H., Eds.), Vol. 108, Humana Press, 2004, 439–458. [DOI] [PubMed]
  • 41.Bode J., Stengert-Iber M., Kay V., Schlake T., Dietz-Pfeilstetter A. Scaffold/matrix-attached regions: topological switches with multiple regulatory functions. Crit. Rev. Eukaryot. Gene Expr. 1996;6:115–138. doi: 10.1615/critreveukargeneexpr.v6.i2-3.20. [DOI] [PubMed] [Google Scholar]
  • 42.Kramer J.A., McCarrey J.R., Djakiew D., Krawetz S.A. Differentiation: the selective potentiation of chromatin domains. Development. 1998;125:4749–4755. doi: 10.1242/dev.125.23.4749. [DOI] [PubMed] [Google Scholar]
  • 43.Gerasimova T.I., Corces V.G. Boundary and insulator elements in chromosomes. Curr. Opin. Genet. Dev. 1996;6:185–192. doi: 10.1016/S0959-437X(96)80049-9. [DOI] [PubMed] [Google Scholar]
  • 44.Cook P.R. The organization of replication and transcription. Science. 1999;284:1790–1795. doi: 10.1126/science.284.5421.1790. [DOI] [PubMed] [Google Scholar]
  • 45.Leonhardt H., Rahn H.P., Weinzierl P., Sporbert A., Cremer T., Zink D., Cardoso M.C. Dynamics of DNA replication factories in living cells. J. Cell Biol. 2000;149:271–280. doi: 10.1083/jcb.149.2.271. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 46.Strissel P.L., Espinosa R., III, Rowley J.D., Swift H. Scaffold attachment regions in centromere-associated DNA. Chromosoma. 1996;105:122–133. doi: 10.1007/s004120050167. [DOI] [PubMed] [Google Scholar]
  • 47.Lammerding J., Schulze P.C., Takahashi T., Kozlov S., Sullivan T., Kamm R.D., Stewart C.L., Lee R.T. Lamin A/C deficiency causes defective nuclear mechanics and mechanotransduction. J. Clin. Invest. 2004;113:370–378. doi: 10.1172/JCI200419670. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 48.Vorlickova M., Chladkova J., Kejnovska I., Fialova M., Kypr J. Guanine tetraplex topology of human telomere DNA is governed by the number of (TTAGGG) repeats. Nucleic Acids Res. 2005;33:5851–5860. doi: 10.1093/nar/gki898. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 49.Moyzis R.K., Buckingham J.M., Cram L.S., Dani M., Deaven L.L., Jones M.D., Meyne J., Ratliff R.L., Wu J.R. A highly conserved repetitive DNA sequence, (TTAGGG)n, present at the telomeres of human chromosomes. Proc. Natl. Acad. Sci. U.S.A. 1988;85:6622–6626. doi: 10.1073/pnas.85.18.6622. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 50.Lobov I.B., Tsutsui K., Mitchell A.R., Podgornaya O.I. Specificity of SAF-A and lamin B binding in vitro correlates with the satellite DNA bending state. J. Cell. Biochem. 2001;83:218–229. doi: 10.1002/jcb.1220. [DOI] [PubMed] [Google Scholar]
  • 51.Frisch M., Frech K., Klingenhoff A., Cartharius K., Liebich I., Werner T. In silico prediction of scaffold/matrix attachment regions in large genomic sequences. Genome Res. 2002;12:349–354. doi: 10.1101/gr.206602.ArticlepublishedonlinebeforeprintinJanuary2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 52.Singh G.B., Kramer J.A., Krawetz S.A. Mathematical model to predict regions of chromatin attachment to the nuclear matrix. Nucleic Acids Res. 1997;25:1419–1425. doi: 10.1093/nar/25.7.1419. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 53.van Drunen C.M., Sewalt R.G., Oosterling R.W., Weisbeek P.J., Smeekens S.C., van Driel R. A bipartite sequence element associated with matrix/scaffold attachment regions. Nucleic Acids Res. 1999;27:2924–2930. doi: 10.1093/nar/27.14.2924. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 54.Rudd S., Frisch M., Grote K., Meyers B.C., Mayer K., Werner T. Genome-wide in silico mapping of scaffold/matrix attachment regions in Arabidopsis suggests correlation of intragenic scaffold/matrix attachment regions with gene expression. Plant Physiol. 2004;135:715–722. doi: 10.1104/pp.103.037861. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 55.Morgenstern B., Dress A., Werner T. Multiple DNA and protein sequence alignment based on segment-to-segment comparison. Proc. Natl. Acad. Sci. U.S.A. 1996;93:12098–12103. doi: 10.1073/pnas.93.22.12098. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 56.Needleman S.B., Wunsch C.D. A general method applicable to the search for similarities in the amino acid sequence of two proteins. J. Mol. Biol. 1970;48:443–453. doi: 10.1016/0022-2836(70)90057-4. [DOI] [PubMed] [Google Scholar]
  • 57.Quandt K., Frech K., Karas H., Wingender E., Werner T. MatInd and MatInspector: new fast and versatile tools for detection of consensus matches in nucleotide sequence data. Nucleic Acids Res. 1995;23:4878–4884. doi: 10.1093/nar/23.23.4878. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 58.Wolfertstetter F., Frech K., Herrmann G., Werner T. Identification of functional elements in unaligned nucleic acid sequences by a novel tuple search algorithm. Comput. Appl. Biosci. 1996;12:71–80. doi: 10.1093/bioinformatics/12.1.71. [DOI] [PubMed] [Google Scholar]
  • 59.Tarhio, J. and Ukkonen, E. Approximate Boyer-Moore String Matching. 2005; Available from: http://www.cs.hut.fi/:_tarhio/papers/abm.ps.gz.
  • 60.RA Baeza-Yates G.G. Fast text searching for regular expressions or automaton searching on tries. Journal of the A.C.M. 1996;43:915–936. [Google Scholar]
  • 61.Donev R., Horton R., Beck S., Doneva T., Vatcheva R., Bowen W.R., Sheer D. Recruitment of heterogeneous nuclear ribonucleoprotein A1 in vivo to the LMP/TAP region of the major histocompatibility complex. J. Biol. Chem. 2003;278:5214–5226. doi: 10.1074/jbc.M206621200. [DOI] [PubMed] [Google Scholar]
  • 62.Wang H., Noordewier M., Benham C.J. Stress-induced DNA duplex destabilization (SIDD) in the E. coli genome: SIDD sites are closely associated with promoters. Genome Res. 2004;14:1575–1584. doi: 10.1101/gr.2080004. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 63.Bi C., Benham C.J. WebSIDD: server for predicting stress-induced duplex destabilized (SIDD) sites in superhelical DNA. Bioinformatics. 2004;20:1477–1479. doi: 10.1093/bioinformatics/bth304. [DOI] [PubMed] [Google Scholar]
  • 64.Benham C.J., Bi C. The analysis of stress-induced duplex destabilization in long genomic DNA sequences. J. Comput. Biol. 2004;11:519–543. doi: 10.1089/cmb.2004.11.519. [DOI] [PubMed] [Google Scholar]
  • 65.Benham C., Kohwi-Shigematsu T., Bode J. Stress-induced duplex DNA destabilization in scaffold/matrix attachment regions. J. Mol. Biol. 1997;274:181–196. doi: 10.1006/jmbi.1997.1385. [DOI] [PubMed] [Google Scholar]
  • 66.Bode J., Kohwi Y., Dickinson L., Joh T., Klehr D., Mielke C., Kohwi-Shigematsu T. Biological significance of unwinding capability of nuclear matrix-associating DNAs. Science. 1992;255:195–197. doi: 10.1126/science.1553545. [DOI] [PubMed] [Google Scholar]
  • 67.Vassetzky Y.S., Bogdanova A.N., Razin S.V. Analysis of the chicken DNA fragments that contain structural sites of attachment to the nuclear matrix: DNA-matrix interactions and replication. J. Cell. Biochem. 2000;79:1–14. doi: 10.1002/1097-4644(2000)79:1<1::AID-JCB20>3.0.CO;2-Y. [DOI] [PubMed] [Google Scholar]
  • 68.Girard-Reydet C., Gregoire D., Vassetzky Y., Mechali M. DNA replication initiates at domains overlapping with nuclear matrix attachment regions in the xenopus and mouse c-myc promoter. Gene. 2004;332:129–138. doi: 10.1016/j.gene.2004.02.031. [DOI] [PubMed] [Google Scholar]
  • 69.Beaudouin J., Gerlich D., Daigle N., Eils R., Ellenberg J. Nuclear envelope breakdown proceeds by microtubule-induced tearing of the lamina. Cell. 2002;108:83–96. doi: 10.1016/S0092-8674(01)00627-4. [DOI] [PubMed] [Google Scholar]
  • 70.Benham, C.J. Stress-induced DNA duplex destabilization in transcriptional initiation. Pac. Symp. Biocomput. (2001) 103–114. [PubMed]
  • 71.Benham C.J. Torsional stress and local denaturation in supercoiled DNA. Proc. Natl. Acad. Sci. U.S.A. 1979;76:3870–3874. doi: 10.1073/pnas.76.8.3870. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 72.Fye R.M., Benham C.J. Exact method for numerically analyzing a model of local denaturation in superhelically stressed DNA. Phys. Rev. E. 1999;59:3408–3426. doi: 10.1103/PhysRevE.59.3408. [DOI] [Google Scholar]
  • 73.Chengpeng Bi, C.J.B. The approximate algorithm for analysis of the strand separation transition in super helical DNA using nearest neighbor energetics. Proceedings of the IEEE Computer Society Conference on Bioinformatics (2003) 460.
  • 74.Rogozin I.B., Glazko G.V., Glazkov M.V. Computer prediction of sites associated with various elements of the nuclear matrix. Brief. Bioinform. 2000;1:33–44. doi: 10.1093/bib/1.1.33. [DOI] [PubMed] [Google Scholar]
  • 75.Glazko G.V., Rogozin I.B., Glazkov M.V. Comparative study and prediction of DNA fragments associated with various elements of the nuclear matrix. Biochim. Biophys. Acta. 2001;1517:351–364. [Google Scholar]
  • 76.Baldi P., Brunak S. In: Bioinformatics: the machine learning approach: Adaptive computation and machine learning. 2nd edition. Dietterich T., editor. Cambridge, Mass.: MIT Press; 2001. pp. 1–452. [Google Scholar]
  • 77.Kramer J.A., Adams M.D., Singh G.B., Doggett N.A., Krawetz S.A. A matrix associated region localizes the human SOCS-1 gene to chromosome 16p13.13. Somat. Cell Mol. Genet. 1998;24:131–133. doi: 10.1023/B:SCAM.0000007115.58601.87. [DOI] [PubMed] [Google Scholar]
  • 78.Singh, G.B. and Krawetz, S.A., Data Mining for Discovering Matrix Association Regions (MARs). in: Data mining and knowledge discovery: theory, toolsand technology II. (Dasarathy, B.V.E., Ed.), Proceedings of Spie, (2000) 330–341.
  • 79.Purbowasito W., Suda C., Yokomine T., Zubair M., Sado T., Tsutsui K., Sasaki H. Large-scale identification and mapping of nuclear matrix-attachment regions in the distal imprinted domain of mouse chromosome 7. DNA Res. 2004;11:391–407. doi: 10.1093/dnares/11.6.391. [DOI] [PubMed] [Google Scholar]
  • 80.Ubbink J., Odijk T. Electrostatic-undulatory theory of plectonemically supercoiled DNA. Biophys. J. 1999;76:2502–2519. doi: 10.1016/S0006-3495(99)77405-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 81.Belmont A.S., Sedat J.W., Agard D.A. A three-dimensional approach to mitotic chromosome structure: evidence for a complex hierarchical organization. J. Cell Biol. 1987;105:77–92. doi: 10.1083/jcb.105.1.77. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Cellular & Molecular Biology Letters are provided here courtesy of BMC

RESOURCES