Skip to main content
Cellular & Molecular Biology Letters logoLink to Cellular & Molecular Biology Letters
. 2007 Jan 19;12(2):280–293. doi: 10.2478/s11658-007-0002-5

Phenol red in the culture medium strongly affects the susceptibility of human MCF-7 cells to roscovitine

Józefa Węsierska-Gądek 1,, Tanja Schreiner 1, Margarita Maurer 1, Astrid Waringer 1, Carmen Ranftler 1
PMCID: PMC6276014  PMID: 17235438

Abstract

Estrogens play an important role in the growth and terminal differentiation of the mammary gland. Prolonged exposure to estrogens seems to predispose women to breast cancer. It recently became evident that not only the intrinsic hormonal status but also external factors such as the occurrence of pharmaceuticals and chemicals with hormone activity in the environment may put women at greater risk of developing breast cancer. We focused on the interference of endocrine disruptors in breast cancer therapy. We observed that phenol red added to the culture medium strongly promoted the cell proliferation and cell cycle progression of human cells expressing the estrogen receptor, and affected their susceptibility to chemotherapy.

Key words: Endocrine disrupters, Apoptosis, Cell cycle arrest, Cyclin-dependent inhibitors

Full Text

The Full Text of this article is available as a PDF (624.7 KB).

Abbreviations used

AIF

apoptosis inducing factor

CDK

cyclin-dependent kinase

EDC

endocrine disrupting compounds

ER

estrogen receptor

FCS

foetal calf serum

PBS

phosphate-buffered saline

ROSC

roscovitine

WCL

whole cell lysates

wt

wild-type

References

  • 1.Hulka B.S., Stark A.T. Breast cancer: cause and prevention. Lancet. 1995;346:883–887. doi: 10.1016/S0140-6736(95)92713-1. [DOI] [PubMed] [Google Scholar]
  • 2.Martin A.M., Weber B.L. Genetic and hormonal risk factors in breast cancer. J. Natl. Cancer Inst. 2000;92:1126–1135. doi: 10.1093/jnci/92.14.1126. [DOI] [PubMed] [Google Scholar]
  • 3.Green S., Walter P., Kumar V., Krust A., Bornert J.M., Argos P., Chambon P. Human oestrogen receptor cDNA: sequence, expression and homology to v-erb A. Nature. 1986;320:134–139. doi: 10.1038/320134a0. [DOI] [PubMed] [Google Scholar]
  • 4.Greene G.L., Gilna P., Waterfield M., Baker A., Hort Y., Shine J. Sequence and expression of human estrogen receptor complementary DNA. Science. 1986;231:1150–1154. doi: 10.1126/science.3753802. [DOI] [PubMed] [Google Scholar]
  • 5.Kuiper G.G., Enmark E., Pelto-Huikko M., Nilsson S., Gustafsson J.A. Cloning of a novel receptor expressed in rat prostate and ovary. Proc. Natl. Acad. Sci. USA. 1996;93:5925–5930. doi: 10.1073/pnas.93.12.5925. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6.Evans R.M. The steroid and thyroid hormone receptor superfamily. Science. 1988;240:889–895. doi: 10.1126/science.3283939. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 7.Beato M. Gene regulation by steroid hormones. Cell. 1989;56:335–344. doi: 10.1016/0092-8674(89)90237-7. [DOI] [PubMed] [Google Scholar]
  • 8.Ham J., Parker M.G. Regulation of gene expression by nuclear hormone receptors. Curr. Opin. Cell Biol. 1989;1:503–511. doi: 10.1016/0955-0674(89)90012-4. [DOI] [PubMed] [Google Scholar]
  • 9.Gronemeyer H. Transcription activation by extrogen and progesteron receptors. Annu. Rev. Gen. 1991;25:89–123. doi: 10.1146/annurev.ge.25.120191.000513. [DOI] [PubMed] [Google Scholar]
  • 10.Sukovich D.A., Mukherjee R., Benfield P.A. A novel, cell-type specific mechanism for estrogen receptor-mediated gene activation in the absence of an estrogen-responsive element. Mol. Cell. Biol. 1994;14:7134–7143. doi: 10.1128/mcb.14.11.7134. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 11.Liu J., Sidell N. Anti-estrogenic effects of conjugated linoleic acid through modulation of estrogen receptor phosphorylation. Breast Cancer Res. Treat. 2005;94:161–169. doi: 10.1007/s10549-005-6942-4. [DOI] [PubMed] [Google Scholar]
  • 12.Devarajan E., Sahin A.A., Chen J.S., Krishnamurthy R.R., Aggarwal N., Brun A.M., Saprino A., Zhang F., Sharma D., Yang X.H., Tora A.D., Mehta K. Down-regulation of caspase-3 in breast cancer: a possible mechanism for chemoresistance. Oncogene. 2002;21:8843–8851. doi: 10.1038/sj.onc.1206044. [DOI] [PubMed] [Google Scholar]
  • 13.Wesierska Gadek J., Gueorguieva M., Horky M. Dual action of cyclin-dependent kinase inhibitors: induction of cell cycle arrest and apoptosis. A comparison of the effects exerted by roscovitine and cisplatin. Polish J. Pharmacol. 2003;55:895–902. [PubMed] [Google Scholar]
  • 14.Jänicke R.U., Sprengart M.L., Wati M.R., Porter A.G. Caspase-3 is required for DNA fragmentation and morphological changes associated with apoptosis. J. Biol. Chem. 1998;273:9357–9360. doi: 10.1074/jbc.273.16.9357. [DOI] [PubMed] [Google Scholar]
  • 15.Yonish-Rouach E., Resnitzky D., Lotem J., Sachs L., Kimchi A., Oren M. Wild-type p53 induces apoptosis of myeloid leukaemic cells that is inhibited by interleukin-6. Nature. 1991;352:345–347. doi: 10.1038/352345a0. [DOI] [PubMed] [Google Scholar]
  • 16.Kovar H., Jug G., Printz D., Bartl S., Schmid G., Wesierska-Gadek J. Characterization of distinct consecutive phases in non-genotoxic p53-induced apoptosis of Ewing tumor cells and the rate-limiting role of caspase 8. Oncogene. 2000;19:4096–4107. doi: 10.1038/sj.onc.1203780. [DOI] [PubMed] [Google Scholar]
  • 17.Haupt S., Berger M., Goldberg Z., Haupt Y. Apoptosis — the p53 network. J. Cell Sci. 2003;116:4077–4085. doi: 10.1242/jcs.00739. [DOI] [PubMed] [Google Scholar]
  • 18.Oda K., Arakawa H., Tanaka T., Matsuda K., Tanikawa C., Mori T., Nishimori H., Tamai K., Tokino T., Nakamura Y., Taya Y. p53AIP1, a potent mediator of p53-dependent apoptosis, and its regulation bySer-46-phosphorylated p53. Cell. 2000;102:849–862. doi: 10.1016/S0092-8674(00)00073-8. [DOI] [PubMed] [Google Scholar]
  • 19.Matsuda K., Yoshida K., Taya Y., Nakamura K., Nakamura Y., Arakawa H. p53AIP1 regulates the mitochondrial apoptotic pathway. Cancer Res. 2002;62:2883–2889. [PubMed] [Google Scholar]
  • 20.Wojciechowski J., Horky M., Gueorguieva M., Wesierska-Gadek J. Rapid onset of nucleolar disintegration preceding cell cycle arrest in roscovitine-induced apoptosis of human MCF-7 breast cancer cells. Int. J. Cancer. 2003;106:486–495. doi: 10.1002/ijc.11290. [DOI] [PubMed] [Google Scholar]
  • 21.Wesierska Gadek J., Gueorguieva M., Horky M. Roscovitine-induced up-regulation of p53AIP1 protein precedes the onset of apoptosis in human MCF-7 breast cancer cells. Mol. Cancer Ther. 2005;4:113–124. doi: 10.4161/cbt.4.1.1446. [DOI] [PubMed] [Google Scholar]
  • 22.Wesierska-Gadek J., Schreiner T., Gueorguieva M., Ranftler C. Phenol red reduces ROSC mediated cell cycle arrest and apoptosis in human MCF-7 cells. J. Cell. Biochem. 2006;98:1367–1379. doi: 10.1002/jcb.20960. [DOI] [PubMed] [Google Scholar]
  • 23.Wesierska-Gadek J., Schloffer D., Gueorguieva M., Uhl M., Skladanowski A. Increased susceptibility of poly(ADP-ribose) polymerase-1 knockout cells to antitumor triazoloacridone C-1305 is associated with permanent G2 cell cycle arrest. Cancer Res. 2004;64:4487–4497. doi: 10.1158/0008-5472.CAN-03-3410. [DOI] [PubMed] [Google Scholar]
  • 24.Wesierska-Gadek J., Gueorguieva M., Ranftler C., Zerza-Schnitzhofer G. A new multiplex assay allowing simultaneous detection of the inhibition of cell proliferation and induction of cell death. J. Cell. Biochem. 2005;96:1–7. doi: 10.1002/jcb.20531. [DOI] [PubMed] [Google Scholar]
  • 25.Wesierska-Gadek J., Schmid G. Overexpressed poly(ADP-ribose) polymerase delays the release of rat cells from p53-mediated G1 checkpoint. J. Cell. Biochem. 2000;80:85–103. doi: 10.1002/1097-4644(20010101)80:1<85::AID-JCB80>3.0.CO;2-1. [DOI] [PubMed] [Google Scholar]
  • 26.Vindelov L.L., Christensen I.J., Nissen N.J. A detergent-trypsin method for the preparation of nuclei for flow cytometric DNA analysis. Cytometry. 1983;3:323–327. doi: 10.1002/cyto.990030503. [DOI] [PubMed] [Google Scholar]
  • 27.Schiff R., Fuqua S. The importance of the estrogen receptor in breast cancer. In: Pasqualini L., editor. Breast cancer: prognosis, treatment and prevention. New York: Marcel Dekker Inc.; 2002. pp. 149–186. [Google Scholar]
  • 28.Speirs V. Oestrogen receptor beta in breast cancer: good, bad or still to early to tell? J. Pathol. 2002;19:143–147. doi: 10.1002/path.1072. [DOI] [PubMed] [Google Scholar]
  • 29.Parl F.F. Estrogens, estrogen receptors and breast cancer. Ohmsha, Amsterdam: IOS Press; 2000. [Google Scholar]
  • 30.Hall J.M., Couse J.F., Korrach K.S. The multifaceted mechanisms of estradiol and estrogen receptor signaling. J. Biol. Chem. 2001;276:36869–36872. doi: 10.1074/jbc.R100029200. [DOI] [PubMed] [Google Scholar]
  • 31.Hilakivi-Clarke L. Estrogens, BRCA1, and breast cancer. Cancer Res. 2000;60:4993–5001. [PubMed] [Google Scholar]
  • 32.Marquis S.T., Rajan J.V., Wynshaw-Boris A., Xu J., Yin G.-Y., Abel K.J., Weber B., Chodosh L.A. The developmental pattern of Brca1 expression implies a role in differentiation of the breast and other tissues. Nature Genet. 1995;11:17–26. doi: 10.1038/ng0995-17. [DOI] [PubMed] [Google Scholar]
  • 33.Gudas J.M., Nguyen H., Li T., Cowan K.H. Hormone-dependent regulation of BRCA1 in human breast cancer cells. Cancer Res. 1995;55:4561–4565. [PubMed] [Google Scholar]
  • 34.Spillman M.A., Bowcock A.M. BRCA1 and BRCA2 mRNA levels are coordinately elevated in human breast cancer cells in response to estrogen. Oncogene. 1996;13:1639–1645. [PubMed] [Google Scholar]
  • 35.Hurd C., Khattree N., Dinda S., Alban A., Moudgil V.K. Regulation of tumor suppressor proteins, p53 and retinoblastoma, by estrogen and antiestrogens in breast cancer cells. Oncogene. 1997;15:991–995. doi: 10.1038/sj.onc.1201233. [DOI] [PubMed] [Google Scholar]
  • 36.Berthois Y., Katzenellenbogen J.A., Katzenellenbogen B.S. Phenol red in tissue culture media is a weak estrogen: Implications concerning the study of estrogen-responsive cells in culture. Proc. Natl. Acad. Sci. USA. 1986;83:2496–2500. doi: 10.1073/pnas.83.8.2496. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 37.Zwijsen R.M., Wientjens E., Klompmaker R., van der Sman J., Bernards E., Michalides R.J. CDK-independent activation of estrogen receptor by cyclin D1. Cell. 1997;88:405–415. doi: 10.1016/S0092-8674(00)81879-6. [DOI] [PubMed] [Google Scholar]
  • 38.Neuman E., Ladha M.H., Lin N., Upton T.M., Miller S.J., DiRenzo J., Pestell R.G., Hinds P.W., Dowdy S.F., Brown M., Ewen M.E. Cyclin D1 stimulation of estrogen receptor transcriptional activity independent of cdk4. Mol. Cell. Biol. 1997;17:5338–5347. doi: 10.1128/mcb.17.9.5338. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 39.Martin L.A., Farmer I., Johnston S.R., Ali S., Marshall C., Dowsett M. Enhanced estrogen receptor (ER)α, ERBB2, and MAPK signal transduction pathways during the adaptation of MCF-7 cells to long term estrogen deprivation. J. Biol. Chem. 2003;278:30458–30468. doi: 10.1074/jbc.M305226200. [DOI] [PubMed] [Google Scholar]
  • 40.Santen R.J., Lobenhofer E.K., Afshari C.A., Bao Y., Song R.X. Adaptation of estrogen-regulated genes in long-term estradiol deprived MCF-7 breast cancer cells. Breast Cancer Res. Treat. 2005;94:213–223. doi: 10.1007/s10549-005-5776-4. [DOI] [PubMed] [Google Scholar]

Articles from Cellular & Molecular Biology Letters are provided here courtesy of BMC

RESOURCES