Skip to main content
Cellular & Molecular Biology Letters logoLink to Cellular & Molecular Biology Letters
. 2008 Feb 29;13(3):375–390. doi: 10.2478/s11658-008-0009-6

High intracellular Zn2+ ions modulate the VHR, ZAP-70 and ERK activities of LNCaP prostate cancer cells

Pooi-Fong Wong 1, Sazaly Abubakar 1,
PMCID: PMC6276015  PMID: 18311544

Abstract

Malignant prostate tissues have markedly reduced zinc (Zn2+) contents in comparison to non-malignant tissues. In this study, we restored a high intracellular Zn2+ level to LNCaP prostate cancer cells by culturing the cells in a growth medium supplemented with a supraphysiological concentration of Zn2+ (10 μg/ml) over 5 weeks. The intracellular Zn2+ level increased in the Zn2+-treated cells, and there was a marked increase in the presence of zincosomes, a Zn2+-specific intracellular organelle. The proliferation rate of the Zn2+-treated cells was markedly reduced. There was also a significant increase (36.6% ± 6.4%) in the total tyrosine phosphorylated proteins. Vaccinia H1-related (VHR) phosphatase, zeta chain-associated protein-70 (ZAP-70) kinase and phosphorylated extracellular signal-regulated protein kinase 1 and 2 (p-ERK 1 and 2) were also present in higher abundance. Treatment with TPEN, which chelates Zn2+, reduced the abundance of VHR phosphatase and ZAP-70 kinase, but increased the abundance of p-ERK 1. However, the TPEN treatment restored the Zn2+-treated LNCaP cell proliferation to a rate comparable to that of the non Zn2+-treated cells. These results highlight the importance of a high intracellular Zn2+ content and the VHR/ZAP-70-associated pathways in the modulation of LNCaP prostate cancer cell growth.

Keywords: Cancer, ERK, Prostate, VHR, ZAP-70, Zn2+

Full Text

The Full Text of this article is available as a PDF (729.3 KB).

Abbreviations used

ERK

extracellular signal-regulated protein kinase

KAP

kinase-associated phosphatase

PTK

protein tyrosine kinase

PTP

protein tyrosine phosphatase

PTP1B

protein tyrosine phosphatase 1B

PTP1C/SHP-1

protein tyrosine phosphatase 1C

TPEN

N,N,N′,N′-tetrakis(2-pyridylmethyl)ethylenediamine

VHR

vaccinia H1-related

ZAP-70

zeta chain-associated protein-70

References

  • 1.Jemal A., Siegel R., Ward E., Murray T., Xu J., Thun M.J. Cancer statistics, 2007. CA. Cancer J. Clin. 2007;57:43–66. doi: 10.3322/canjclin.57.1.43. [DOI] [PubMed] [Google Scholar]
  • 2.Deutsch E., Maggiorella L., Eschwege P., Bourhis J., Soria J.C., Abdulkarim B. Environmental, genetic, and molecular features of prostate cancer. Lancet Oncol. 2004;5:303–313. doi: 10.1016/S1470-2045(04)01468-8. [DOI] [PubMed] [Google Scholar]
  • 3.Zaichick VYe., Sviridova T.V., Zaichick S.V. Zinc in the human prostate gland: normal, hyperplastic and cancerous. Int. Urol. Nephrol. 1997;29:565–574. doi: 10.1007/BF02552202. [DOI] [PubMed] [Google Scholar]
  • 4.Feng P., Li T.L., Guan Z.X., Franklin R.B., Costello L.C. Direct effect of zinc on mitochondrial apoptogenesis in prostate cells. Prostate. 2002;52:311–318. doi: 10.1002/pros.10128. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 5.Feng P., Liang J.Y., Li T.L., Guan Z.X., Zou J., Franklin R., Costello L.C. Zinc induces mitochondria apoptogenesis in prostate cells. Mol. Urol. 2000;4:31–36. [PubMed] [Google Scholar]
  • 6.Uzzo R.G., Crispen P.L., Golovine K., Makhov P., Horwitz E.M., Kolenko V.M. Diverse effects of zinc on NF-κB and AP-1 transcription factors: implications for prostate cancer progression. Carcinogenesis. 2006;27:1980–1990. doi: 10.1093/carcin/bgl034. [DOI] [PubMed] [Google Scholar]
  • 7.Ishii K., Usui S., Sugimura Y., Yamamoto H., Yoshikawa K., Hirano K. Inhibition of aminopeptidase N (AP-N) and urokinase-type plasminogen activator (uPA) by zinc suppresses the invasion activity in human urological cancer cells. Biol. Pharm. Bull. 2001;24:226–230. doi: 10.1248/bpb.24.226. [DOI] [PubMed] [Google Scholar]
  • 8.Nemoto K., Kondo Y., Himeno S., Suzuki Y., Hara S., Akimoto M., Imura N. Modulation of telomerase activity by zinc in human prostatic and renal cancer cells. Biochem. Pharmacol. 2000;59:401–405. doi: 10.1016/S0006-2952(99)00334-2. [DOI] [PubMed] [Google Scholar]
  • 9.Boissier S., Ferreras M., Peyruchaud O., Magnetto S., Ebetino F.H., Colombel M., Delmas P., Delaisse J.M., Clezardin P. Bisphosphonates inhibit breast and prostate carcinoma cell invasion, an early event in the formation of bone metastases. Cancer Res. 2000;60:2949–2954. [PubMed] [Google Scholar]
  • 10.Beyersmann D., Haase H. Functions of zinc in signaling, proliferation and differentiation of mammalian cells. BioMetals. 2001;14:331–341. doi: 10.1023/A:1012905406548. [DOI] [PubMed] [Google Scholar]
  • 11.Samet J.M., Silbajoris R., Wu W., Graves L.M. Tyrosine phosphatases as targets in metal-induced signaling in human airway epithelial cells. Am. J. Respir. Cell. Mol. Biol. 1999;21:357–364. doi: 10.1165/ajrcmb.21.3.3656. [DOI] [PubMed] [Google Scholar]
  • 12.Haase H., Maret W. Intracellular zinc fluctuations modulate protein tyrosine phosphatase activity in insulin/insulin-like growth factor-1 signaling. Exp. Cell Res. 2003;291:289–298. doi: 10.1016/S0014-4827(03)00406-3. [DOI] [PubMed] [Google Scholar]
  • 13.Kim J.H., Cho H., Ryu S.E., Choi M.U. Effects of metal ions on the activity of protein tyrosine phosphatase VHR: highly potent and reversible oxidative inactivation by Cu2+ ion. Arch. Biochem. Biophys. 2000;382:72–80. doi: 10.1006/abbi.2000.1996. [DOI] [PubMed] [Google Scholar]
  • 14.Brautigan D.L., Bornstein P., Gallis B. Phosphotyrosyl-protein phosphatase. Specific inhibition by Zn. J. Biol. Chem. 1981;256:6519–6522. [PubMed] [Google Scholar]
  • 15.Hansson A. Extracellular zinc ions induces mitogen-activated protein kinase activity and protein tyrosine phosphorylation in bombesin-sensitive Swiss 3T3 fibroblasts. Arch. Biochem. Biophys. 1996;328:233–238. doi: 10.1006/abbi.1996.0168. [DOI] [PubMed] [Google Scholar]
  • 16.Huang S., Maher V.M., McCormick J. Involvement of intermediary metabolites in the pathway of extracellular Ca2+-induced mitogen-activated protein kinase activation in human fibroblasts. Cell Signal. 1999;11:263–274. doi: 10.1016/S0898-6568(98)00051-5. [DOI] [PubMed] [Google Scholar]
  • 17.Wu W., Graves L.M., Jaspers I., Devlin R.B., Reed W., Samet J.M. Activation of the EGF receptor signaling pathway in human airway epithelial cells exposed to metals. Am. J. Physiol. 1999;277:L924–L931. doi: 10.1152/ajplung.1999.277.5.L924. [DOI] [PubMed] [Google Scholar]
  • 18.Samet J.M., Graves L.M., Quay J., Dailey L.A., Devlin R.B., Ghio A.J., Wu W., Bromberg P.A., Reed W. Activation of MAPKs in human bronchial epithelial cells exposed to metals. Am. J. Physiol. 1998;275:L551–L558. doi: 10.1152/ajplung.1998.275.3.L551. [DOI] [PubMed] [Google Scholar]
  • 19.Park J.A., Koh J.Y. Induction of an immediate early gene egr-1 by zinc though extracellular signal-regulated kinase activation in cortical culture: its role in zinc-induced neuronal death. J. Neurochem. 1999;73:450–456. doi: 10.1046/j.1471-4159.1999.0730450.x. [DOI] [PubMed] [Google Scholar]
  • 20.Makino T., Saito M., Horiguchi D., Kina K. A highly sensitive colorimetric determination of serum zinc using water-soluble pyridylazo dye. Clin. Chim. Acta. 1982;120:127–135. doi: 10.1016/0009-8981(82)90083-3. [DOI] [PubMed] [Google Scholar]
  • 21.Huang L., Kirschke C.P., Zhang Y. Decreased intracellular zinc in human tumorigenic prostate epithelial cells: a possible role in prostate cancer progression. Cancer Cell Int. 2006;6:10. doi: 10.1186/1475-2867-6-10. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 22.Costello L.C., Liu Y., Zou J., Franklin R.B. Evidence for a zinc uptake transporter in human prostate cancer cells which is regulated by prolactin and testosterone. J. Biol. Chem. 1999;274:17499–17504. doi: 10.1074/jbc.274.25.17499. [DOI] [PubMed] [Google Scholar]
  • 23.Franklin R.B., Ma J., Zou J., Guan Z., Kukoyi B.I., Feng P., Costello L.C. Human ZIP1 is a major zinc uptake transporter for the accumulation of zinc in prostate cells. J. Inorg. Biochem. 2003;96:435–442. doi: 10.1016/S0162-0134(03)00249-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 24.Feng P., Li T.L., Guan Z.X., Franklin R.B., Costello L.C. Effect of zinc on prostatic tumorigenicity in nude mice. Ann. N.Y. Acad. Sci. 2003;1010:316–320. doi: 10.1196/annals.1299.056. [DOI] [PubMed] [Google Scholar]
  • 25.Gioeli D., Mandell J.W., Petroni G.R., Frierson H.F., Jr., Weber M.J. Activation of mitogen-activated protein kinase associated with prostate cancer progression. Cancer Res. 1999;59:279–284. [PubMed] [Google Scholar]
  • 26.Ross J.S., Kallakury B.V., Sheehan C.E., Fisher H.A., Kaufman R.P., Jr., Kaur P., Gray K., Stringer B. Expression of nuclear factor-κB and IκBa proteins in prostatic adenocarcinomas: correlation of nuclear factor-κB immunoreactivity with disease recurrence. Clin. Cancer Res. 2004;10:2466–2472. doi: 10.1158/1078-0432.CCR-0543-3. [DOI] [PubMed] [Google Scholar]
  • 27.Mulholland D.J., Dedhar S., Wu H., Nelson C.C. PTEN and GSK3β: key regulators of progression to androgen-independent prostate cancer. Oncogene. 2006;25:329–337. doi: 10.1038/sj.onc.1209020. [DOI] [PubMed] [Google Scholar]
  • 28.Park K.S., Lee N.G., Lee K.H., Seo J.T., Choi K.Y. The ERK pathway involves positive and negative regulations of HT-29 colorectal cancer cell growth by extracellular zinc. Am. J. Physiol. Gastrointest. Liver Physiol. 2003;285:G1181–G1188. doi: 10.1152/ajpgi.00047.2003. [DOI] [PubMed] [Google Scholar]
  • 29.Klein C., Creach K., Irintcheva V., Hughes K.J., Blackwell P.L., Corbett J.A., Baldassare J.J. Zinc induces ERK-dependent cell death through a specific Ras isoform. Apoptosis. 2006;11:1933–1944. doi: 10.1007/s10495-006-0089-6. [DOI] [PubMed] [Google Scholar]
  • 30.Alonso A., Rahmouni S., Williams S., van Stipdonk M., Jaroszewski L., Godzik A., Abraham R.T., Schoenberger S.P., Mustelin T. Tyrosine phosphorylation of VHR phosphatase by ZAP-70. Nat. Immunol. 2003;4:44–48. doi: 10.1038/ni856. [DOI] [PubMed] [Google Scholar]
  • 31.Todd J.L., Tanner K.G., Denu J.M. Extracellular regulated kinases (ERK) 1 and ERK2 are authentic substrates for the dual-specificity proteintyrosine phosphatase VHR, a novel role in down-regulating the ERK pathway. J. Biol. Chem. 1999;274:13271–13280. doi: 10.1074/jbc.274.19.13271. [DOI] [PubMed] [Google Scholar]
  • 32.Rahmouni S., Cerignoli F., Alonso A., Tsutji T., Henkens R., Zhu C., Louis-dit-Sully C., Moutschen M., Jiang W., Mustelin T. Loss of the VHR dual-specific phosphatase causes cell-cycle arrest and senescence. Nat. Cell Biol. 2006;8:524–531. doi: 10.1038/ncb1398. [DOI] [PubMed] [Google Scholar]
  • 33.Griffith C.E., Zhang W., Wange R.L. ZAP-70-dependent and-independent activation of Erk in Jurkat T cells. Differences in signaling induced by H2O2 and Cd3 cross-linking. J. Biol. Chem. 1998;273:10771–10776. doi: 10.1074/jbc.273.17.10771. [DOI] [PubMed] [Google Scholar]
  • 34.Pumiglia K.M., Decker S.J. Cell cycle arrest mediated by the MEK/mitogen-activated protein kinase pathway. Proc. Natl. Acad. Sci. USA. 1997;94:448–452. doi: 10.1073/pnas.94.2.448. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 35.Stanciu M., Wang Y., Kentor R., Burke N., Watkins S., Kress G., Reynolds I., Klann E., Angiolieri M.R., Johnson J.W., DeFranco D.B. Persistent activation of ERK contributes to glutamate-induced oxidative toxicity in a neuronal cell line and primary cortical neuron cultures. J. Biol. Chem. 2000;275:12200–12206. doi: 10.1074/jbc.275.16.12200. [DOI] [PubMed] [Google Scholar]
  • 36.Goulet A.C., Chigbrow M., Frisk P., Nelson M.A. Selenomethionine induces sustained ERK phosphorylation leading to cell-cycle arrest in human colon cancer cells. Carcinogenesis. 2005;26:109–117. doi: 10.1093/carcin/bgh306. [DOI] [PubMed] [Google Scholar]

Articles from Cellular & Molecular Biology Letters are provided here courtesy of BMC

RESOURCES