Skip to main content
Cellular & Molecular Biology Letters logoLink to Cellular & Molecular Biology Letters
. 2009 Oct 22;15(1):70. doi: 10.2478/s11658-009-0035-z

The immunogenicity of the liposome-associated outer membrane proteins (OMPs) of Moraxella catarrhalis

Daria Augustyniak 1,, Józef Mleczko 1, Jan Gutowicz 2
PMCID: PMC6276019  PMID: 19851720

Abstract

The outer membrane proteins (OMPs) are the most immunogenic and attractive of the Moraxella catarrhalis vaccine antigens that may induce the protective immune response. The aim of this study was to determine the effectiveness of two types of OMP-associated phosphatidylcholine (PC) liposomal formulations (OMPs-PC, PC-OMPs) and of Zwittergent-based proteomicelles (OMPs-Z) in potentiating an anti-OMP systemic immune response in mice. The immunogenicities of the above preparations were evaluated by assessing serum anti-OMP IgG and IgA reactivity in the post-immunized mouse antisera using ELISA and Western blotting. Additionally, the cross-reactivity of the most effective anti-OMP response was determined using heterologous sera from both humans and mice. Both the proteoliposomes and the proteomicelles showed high immunogenic properties and did not elicit any distinct quantitative differences in the antibody titer or qualitative differences in the pattern of the mouse antisera. The post-immunized mouse antisera predominantly recognized a ∼60-kDa OMP of M. catarrhalis. That protein was also found to be a highly cross-reactive antigen interacting with a panel of pooled mouse antisera produced by immunization either with whole cells or the purified OMPs of heterologous M. catarrhalis strains. Furthermore, normal sera collected from healthy children were found to be preferentially reactive with the 60-kDa OMP. The serum-specific IgG, IgA and IgM were respectively detected via immunoblotting in 90%, 85% and 30% of heterologous human sera. This similar immunogenic effectiveness of both OMP-associated liposomal formulations could contribute to the practical use of such formulations in the future in human vaccination. Moreover, the highly cross-reactive 60-kDa OMP seems to be an important antigenic marker of M. catarrhalis, and, as it is responsible for the induction of an antibody-mediated and long-lasting immune response, studying it may partially aid us in understanding the relatively low degree of pathogenicity of the bacterium in immunocompetent individuals.

Key words: Moraxella catarrhalis, Outer membrane proteins, Proteoliposomes, Proteomicelles, Anti-OMP antibodies, Cross-reactivity, Zwittergent

Full Text

The Full Text of this article is available as a PDF (3.5 MB).

Abbreviations used

AFM

atomic force microscopy

BSA

bovine serum albumin

EDTA

ethylenediaminetetracetic acid

ELISA

enzyme-linked immunosorbent assay

HRP

horseradish peroxidase

LOS

lipooligosaccharide

OMPs

outer membrane proteins

OMPs-PC and PC-OMPs

the studied proteoliposomes

OMPs-Z

Zwittergent-based micelles of OMPs

OPD

o-phenylenediamine

PBS

phosphate buffered saline

PC

phosphatidylcholine

TPBS

PBS supplemented with Tween 20

References

  • 1.Karaulus R., Campagnari A. Moraxella catarrhalis: a review of an important human mucosal pathogen. Microb. Infect. 2000;2:547–559. doi: 10.1016/S1286-4579(00)00314-2. [DOI] [PubMed] [Google Scholar]
  • 2.Murphy T.F., Brauer A.L., Aebi Ch., Sethi S. Identification of surface antigens of Moraxella catarrhalis as targets of human serum antibody responses in chronic obstructive pulmonary disease. Infect. Immun. 2005;73:3471–3478. doi: 10.1128/IAI.73.6.3471-3478.2005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 3.Murphy T.F., Brauer A.L., Grant B.J., Sethi S. Moraxella catarrhalis in chronic obstructive pulmonary disease: burden of disease and immune response. Am. J. Respir. Crit. Care. Med. 2005;172:195–199. doi: 10.1164/rccm.200412-1747OC. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 4.Sethi S., Sethi R., Eschberger K., Lobbins P., Cai X., Grant B.J., Murphy T.F. Airway bacterial concentrations and exacerbations of chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 2007;176:356–361. doi: 10.1164/rccm.200703-417OC. [DOI] [PubMed] [Google Scholar]
  • 5.Verduin C.M., Hol C., Fleer A., van Dijk H., van Belkum A. Moraxella catarrhalis: from emerging to established pathogen. Clin. Microb. Rev. 2002;15:125–144. doi: 10.1128/CMR.15.1.125-144.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6.Bandak S.M., Turnak M.R., Allen B.S., Bolzon L.D., Preston D.A., Bouchillon S.K., Hoban D.J. Antibiotic susceptibility among recent clinical isolates of Haemophilus influenza and Moraxella catarrhalis from fifteen countries. Eur. J. Clin. Microbiol. Infect. Dis. 2001;20:55–60. doi: 10.1007/s100960000427. [DOI] [PubMed] [Google Scholar]
  • 7.Klingman K.L., Pye A., Murphy T.F., Hill S.L. Dynamics of respiratory tract colonization by Branhamella catarrhalis in bronchiectasis. Am. J. Respir. Crit. Care. Med. 1995;152:1072–1078. doi: 10.1164/ajrccm.152.3.7663786. [DOI] [PubMed] [Google Scholar]
  • 8.Faden H., Duffy L., Wasielewski R., Wolf J., Krystofik D., Tung Y. Relationship between nasopharyngeal colonization and the development of otitis media in children. J. Infect. Dis. 1997;175:1440–1445. doi: 10.1086/516477. [DOI] [PubMed] [Google Scholar]
  • 9.Yokota S., Harimaya A., Sato K., Somekawa Y., Himi T., Fujii N. Colonization and turnover of Streptococcus pneumonia, Haemophilus influenzae, and Moraxella catarrhalis in otitis-prone children. Microbiol. Immunol. 2007;51:223–230. doi: 10.1111/j.1348-0421.2007.tb03904.x. [DOI] [PubMed] [Google Scholar]
  • 10.Heiniger N., Spaniol V., Troller R., Vischer M., Aebi C. A reservoir of Moraxella catarrhalis in human pharyngeal lymphoid tissue. J. Infect. Dis. 2007;196:1080–1087. doi: 10.1086/521194. [DOI] [PubMed] [Google Scholar]
  • 11.Peng D., Hong W., Choudhury B., Carlson R.W., Gu X.X. Moraxella catarrhalis bacterium without endotoxin, a potential vaccine candidate. Infect. Immun. 2005;73:7569–7577. doi: 10.1128/IAI.73.11.7569-7577.2005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12.Troncoso G., Sánchez S., Criado M.T., Ferreirós C. Analysis of Moraxella catarrhalis outer membrane antigens cross-reactive with Neisseria meningitidis and Neisseria lactamica. FEMS Immunol. Med. Microbiol. 2004;40:89–94. doi: 10.1016/S0928-8244(03)00298-0. [DOI] [PubMed] [Google Scholar]
  • 13.Mleczko J., Augustyniak D., Jankowski A. Efficiency of oral immunization of mice with Candida albicans and Moraxella catarrhalis heat-killed cells and cross reactivity of induced antibodies. Centr. Eur. J. Immunol. 2007;32:185–188. [Google Scholar]
  • 14.Steeghs L., Kuipers B., Hamstra H.J., Kersten G., Van Alphen L., Van der Ley P. Immunogenicity of outer membrane proteins in a lipopolysaccharide —deficient mutant of Neisseria meningitidis: influence of adjuvants on the immune response. Infect. Immun. 1999;67:4988–4993. doi: 10.1128/iai.67.10.4988-4993.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 15.Schweizer M., Hindennach I., Garten W., Henning U. Major proteins of the Escherichia coli outer cell envelope membrane. Interaction of protein II* with lipopolysaccharide. Eur. J. Biochem. 1978;82:211–217. doi: 10.1111/j.1432-1033.1978.tb12013.x. [DOI] [PubMed] [Google Scholar]
  • 16.Bogdanov M., Dowhan W. Lipid-assisted protein folding. J. Biol. Chem. 1999;274:36827–36830. doi: 10.1074/jbc.274.52.36827. [DOI] [PubMed] [Google Scholar]
  • 17.Qi H.L., Tai J.Y., Blake M.S. Expression of large amounts of neisserial porin proteins in Escherichia coli and refolding of the proteins into native trimers. Infect. Immun. 1994;62:2432–2439. doi: 10.1128/iai.62.6.2432-2439.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 18.Wetzler L.M., Blake M.S., Gotschlich E.C. Characterization and specificity of antibodies to protein I of Neisseria gonorrhoeae produced by injection with various protein I-adjuvant preparation. J. Exp. Med. 1988;168:1883–1897. doi: 10.1084/jem.168.5.1883. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 19.Jolley K.A., Appleby L., Wright J.C., Christodoulides M., Heckels J. Immunization with recombinant Opc outer membrane protein from Neisseria meningitidis: Influence of sequence variation and levels of expression on the bactericidal immune response against meningococci. Infect. Immun. 2001;69:3809–3916. doi: 10.1128/IAI.69.6.3809-3816.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 20.Frézard F. Liposomes: from biophysics to the design of peptide vaccines. Braz. J. Med. Biol. Res. 1999;32:181–189. doi: 10.1590/S0100-879X1999000200006. [DOI] [PubMed] [Google Scholar]
  • 21.Altin J.G., Parish Ch.R. Liposomal vaccines-targeting the delivery of antigen. Methods. 2006;40:39–52. doi: 10.1016/j.ymeth.2006.05.027. [DOI] [PubMed] [Google Scholar]
  • 22.Uchida T., Taneichi M. Clinical application of surface-linked liposomal antigens. Mini Rev. Med. Chem. 2008;8:184–192. doi: 10.2174/138955708783498140. [DOI] [PubMed] [Google Scholar]
  • 23.Parmar M.M., Edwards K., Madden T.D. Incorporation of bacterial membrane proteins into liposomes: factors influencing protein reconstitution. Biochim. Biophys. Acta. 1999;1421:77–90. doi: 10.1016/S0005-2736(99)00118-2. [DOI] [PubMed] [Google Scholar]
  • 24.Stebelska K., Wyrozumska P., Gubernator J., Sikorski A.F. Highly fusogenic cationic liposomes transiently permeabilize the plasma membrane of HeLa cells. Cell. Mol. Biol. Lett. 2007;12:35–39. doi: 10.2478/s11658-006-0049-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 25.Gutowicz J., Terlecki G. The association of glycolytic enzymes with cellular and model membranes. Cell. Mol. Biol. Lett. 2003;8:667–680. [PubMed] [Google Scholar]
  • 26.Murphy T.F., Bartos L.C. Surface-exposed and antigenically conserved determinants of outer membrane proteins of Branhamella catarrhalis. Infect. Immun. 1989;57:2938–2941. doi: 10.1128/iai.57.10.2938-2941.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 27.Rigaud J.-L., Lévy D. Reconstitution of membrane proteins into liposomes. Methods in Enzymol. Liposomes, Part B. 2003;372:65–86. doi: 10.1016/S0076-6879(03)72004-7. [DOI] [PubMed] [Google Scholar]
  • 28.Rigaud J.L., Paternoster M.T., Bluza A. Mechanisms of membrane protein insertion into liposomes during reconstitution procedures involving the use of detergents.2. Incorporation of the light-driven proton pump bacteriorhodopsin. Biochemistry. 1988;27:2677–2688. doi: 10.1021/bi00408a007. [DOI] [PubMed] [Google Scholar]
  • 29.Sarwar J., Campagnari A.A., Kirkham C., Murphy T. Characterization of an antigenically conserved heat-modifiable major outer membrane protein of Branhamella catarrhalis. Infect. Immun. 1992;60:804–809. doi: 10.1128/iai.60.3.804-809.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 30.Mandrell R.E., Zollinger W.D. Use of a zwitterionic detergent for the restoration of the antibody-binding capacity of electroblotted meningococcal outer membrane proteins. J. Immunol. Met. 1984;67:1–11. doi: 10.1016/0022-1759(84)90080-2. [DOI] [PubMed] [Google Scholar]
  • 31.Idänpään-Heikkilä I., Wahlström E., Muttilainen S., Nurminen M., Käyhty H., Sarvas M., Mäkelä P.H. Immunization with meningococcal class 1 outer membrane protein produced in Bacillus subtilis and reconstituted in the presence of Zwittergent or Triton X-100. Vaccine. 1996;14:886–891. doi: 10.1016/0264-410X(95)00263-Z. [DOI] [PubMed] [Google Scholar]
  • 32.Shahum E., Thérien H.M. Effect of liposomal antigens on the priming and activation of the immune system by dendritic cells. Int. Immunopharmacol. 2002;2:591–601. doi: 10.1016/S1567-5769(02)00004-8. [DOI] [PubMed] [Google Scholar]
  • 33.Ignatius R., Mahnke K., Rivera M., Hong K., Isdell F., Steinman R.M., Pope M., Stamatatos L. Presentation of proteins encapsulated in sterically stabilized lioposomes by dendritic cells initiates CD8(+) T-cell response in vivo. Blood. 2000;96:3505–3513. [PubMed] [Google Scholar]
  • 34.Alving C.R. Immunologic aspects of liposomes: presentation and processing of liposomal protein and phospholipid antigens. Biochim. Biophys. Acta. 1992;1113:307–322. doi: 10.1016/0304-4157(92)90004-t. [DOI] [PubMed] [Google Scholar]
  • 35.Wright J.C., Wiliams J.N., Christodoulides M., Haeckels J.E. Immunization with the recombinant PorB membrane prorein induces bactericidal immune response against Neisseria meningitidis. Infect. Immune. 2002;70:4028–4034. doi: 10.1128/IAI.70.8.4028-4034.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 36.Sprott G.D., Dicaire C.J., Gurnani K., Deschatelets L.A., Krishnan L. Liposome adjuvants prepared from the total polar lipids of Haloferax volcanii, Planococcus spp. and Bacillus firmus differ in ability to elicit and sustain immune responses. Vaccine. 2004;22:2154–2162. doi: 10.1016/j.vaccine.2003.11.054. [DOI] [PubMed] [Google Scholar]
  • 37.Witkowska D., Masłowska E., Staniszewska M., Szosto B., Jankowski A., Gamian A. Enterobacterial 38-kDa outer membrane protein is an age-dependent molecular marker of innate immunity and immunoglobulin deficiency as results from its reactivity with IgG and IgA antibody. FEMS Immunol. Med. Microbiol. 2006;48:205–214. doi: 10.1111/j.1574-695X.2006.00137.x. [DOI] [PubMed] [Google Scholar]
  • 38.Christiensen J.J. Moraxella (Branhamella) catarrhalis: clinical, microbiological and immunological features in lower respiratory tract infections. APMIS. 1999;107S:1–36. [PubMed] [Google Scholar]
  • 39.Mathers K., Leinonen M., Goldblatt D. Anibody response to outer membrane proteins of Moraxella catarrhalis in children with otitis media. Pediatr. Infect. Dis. J. 1999;18:982–988. doi: 10.1097/00006454-199911000-00010. [DOI] [PubMed] [Google Scholar]
  • 40.Murphy T.F., Kirkham C., Liu D.F., Sethi S. Human immune response to outer membrane protein CD of Moraxella catarrhalis in adults with chronic obstructive pulmonary disease. Infect. Immun. 2003;71:1288–1294. doi: 10.1128/IAI.71.3.1288-1294.2003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 41.Murphy T.F., Kirkham C., Lesse A.J. The major heat modifiable outer membrane protein CD is highly conserved among strains of Branhamella catarrhalis. Mol. Microbiol. 1993;10:87–97. doi: 10.1111/j.1365-2958.1993.tb00906.x. [DOI] [PubMed] [Google Scholar]
  • 42.Hsiao C.B., Sethi S., Murphy T.F. Outer membrane protein CD of Branhamella catarrhalis: sequence conservation in strains recovered from the human respiratory tract. Microb. Pathog. 1995;19:215–225. doi: 10.1016/S0882-4010(95)90272-4. [DOI] [PubMed] [Google Scholar]
  • 43.McMichael J. Vaccines for Moraxella catarrhalis. Vaccine. 2001;19:101–107. doi: 10.1016/S0264-410X(00)00287-5. [DOI] [PubMed] [Google Scholar]
  • 44.Yang-Ping Y., Myers L.E., McGuinnes U., Chong P., Kwok Y., Klein M.H., Harkness R.E. The major outer membrane protein, CD, extracted from Moraxella (Branhamella) catarrhalis is a potential vaccine antigen that induces bactericidal antibodies. FEMS Immunol. Med. Microbiol. 1997;17:187–199. doi: 10.1111/j.1574-695X.1997.tb01012.x. [DOI] [PubMed] [Google Scholar]
  • 45.Meier P.S., Freiburghaus S., Martin A., Heiniger N., Troller R., Aebi C. Mucosal immune response to specific outer membrane proteins of Moraxella catarrhalis in young children. Pediatr. Infect. Dis. J. 2003;22:256–262. doi: 10.1097/00006454-200303000-00011. [DOI] [PubMed] [Google Scholar]
  • 46.Meier P.S., Heiniger N., Troller R., Aebi C. Salivary antibodies directed against outer membrane proteins of Moraxella catarrhalis in healthy adults. Infect. Immun. 2003;71:6793–6798. doi: 10.1128/IAI.71.12.6793-6798.2003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 47.Holm M.M., Vanlerberg S.L., Foley I.M., Sledjeski D.D., Lafontaine E.R. The Moraxella catarrhalis porin-like outer membrane protein CD is an adhesion for human lung cells. Infect. Immun. 2004;72:1906–1913. doi: 10.1128/IAI.72.4.1906-1913.2004. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 48.Liu D.F., McMichael J.C., Baker S.M. Moraxella catarrhalis outer membrane protein CD elicits antibodies that inhibit CD binding to human mucin and enhance pulmonary clearance of M.catarrhalis in a mouse model. Infect. Immun. 2007;75:2818–2825. doi: 10.1128/IAI.00074-07. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 49.Hu W.G., Berry J., Chen J., Gum X.-X. Exploration of Moraxella catarrhalis outer membrane proteins, CD and UspA, as new carriers for lipooligosaccharide-based conjugates. FEMS Immunol. Med. Microbiol. 2004;41:109–115. doi: 10.1016/j.femsim.2004.02.001. [DOI] [PubMed] [Google Scholar]

Articles from Cellular & Molecular Biology Letters are provided here courtesy of BMC

RESOURCES