Skip to main content
Cellular & Molecular Biology Letters logoLink to Cellular & Molecular Biology Letters
. 2011 Jul 18;16(3):431–451. doi: 10.2478/s11658-011-0016-x

Quantitative and dynamic expression profile of premature and active forms of the regional ADAM proteins during chicken brain development

Annett Markus 1, Xin Yan 1, Arndt Rolfs 1, Jiankai Luo 1,
PMCID: PMC6276021  PMID: 21786032

Abstract

The ADAM (A Disintegrin and Metalloprotease) family of transmembrane proteins plays important roles in embryogenesis and tissue formation based on their multiple functional domains. In the present study, for the first time, the expression patterns of the premature and the active forms of six members of the ADAM proteins — ADAM9, ADAM10, ADAM12, ADAM17, ADAM22 and ADAM23 — in distinct parts of the developing chicken brain were investigated by quantitative Western blot analysis from embryonic incubation day (E) 10 to E20. The results show that the premature and the active forms of various ADAM proteins are spatiotemporally regulated in different parts of the brain during development, suggesting that the ADAMs play a very important role during embryonic development.

Key words: ADAM, Gene expression, Protein, Brain development, Chicken

Full Text

The Full Text of this article is available as a PDF (2.3 MB).

Abbreviations used

ADAM

A Disintegrin and Metalloprotease

APP

amyloid precursor protein

BCA

bicinchoninic acid

CNS

central nervous system

ECM

extracellular matrix

EGF

epidermal growth factor

EGFR

epidermal growth factor receptor

ELISA

enzyme-linked immunosorbent assay

HE-EGF

heparin-binding EGFlike growth factor

kDa

kilodalton

GAPDH

glyceraldehyde-3-phosphate dehydrogenase

LGI1

leucine-rich glioma inactivated 1

RT-PCR

reverse transcriptionpolymerase chain reaction

SDS

sodium dodecyl sulfate

TACE

tumor necrosis factor alpha converting enzyme

TBST

tris-buffered saline-Tween

TGF-α

transforming growth factor-α

TNF-α

tumor necrosis factor-α

References

  • 1.Wolfsberg T.G., Straight P.D., Gerena R.L., Huovila A.P., Primakoff P., Myles D.G., White J.M. ADAM, a widely distributed and developmentally regulated gene family encoding membrane proteins with a disintegrin and metalloprotease domain. Dev. Biol. 1995;169:378–383. doi: 10.1006/dbio.1995.1152. [DOI] [PubMed] [Google Scholar]
  • 2.Black R.A., White J.M. ADAMs: focus on the protease domain. Curr. Opin. Cell Biol. 1998;10:654–659. doi: 10.1016/S0955-0674(98)80042-2. [DOI] [PubMed] [Google Scholar]
  • 3.Schlöndorff J., Blobel C.P. Metalloprotease-disintegrins: modular proteins capable of promoting cell-cell interactions and triggering signals by protein-ectodomain shedding. J. Cell Sci. 1999;112:3603–3617. doi: 10.1242/jcs.112.21.3603. [DOI] [PubMed] [Google Scholar]
  • 4.Edwards D.R., Handsley M.M., Pennington C.J. The ADAM metalloproteinases. Mol. Aspects. Med. 2008;29:258–289. doi: 10.1016/j.mam.2008.08.001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 5.Seals D.F., Courtneidge S.A. The ADAMs family of metalloproteases: multidomain proteins with multiple functions. Genes Dev. 2003;17:7–30. doi: 10.1101/gad.1039703. [DOI] [PubMed] [Google Scholar]
  • 6.White J.M. ADAMs: modulators of cell-cell and cell-matrix interactions. Curr. Opin. Cell Biol. 2003;15:598–606. doi: 10.1016/j.ceb.2003.08.001. [DOI] [PubMed] [Google Scholar]
  • 7.Duffy M.J., Lynn D.J., Lloyd A.T., O’shea C.M. The ADAMs family of proteins: from basic studies to potential clinical applications. Thromb. Haemost. 2003;89:622–631. [PubMed] [Google Scholar]
  • 8.Blobel C.P. ADAMs: key components in EGFR signalling and development. Nat. Rev. Mol. Cell Biol. 2005;6:32–43. doi: 10.1038/nrm1548. [DOI] [PubMed] [Google Scholar]
  • 9.Yang P., Baker K.A., Hagg T. The ADAMs family: coordinators of nervous system development, plasticity and repair. Prog. Neurobiol. 2006;79:73–94. doi: 10.1016/j.pneurobio.2006.05.001. [DOI] [PubMed] [Google Scholar]
  • 10.Alfandari D., McCusker C., Cousin H. ADAM function in embryogenesis. Semin Cell Dev. Biol. 2009;20:153–163. doi: 10.1016/j.semcdb.2008.09.006. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 11.Neuner R., Cousin H., McCusker C., Coyne M., Alfandari D. Xenopus ADAM19 is involved in neural, neural crest and muscle development. Mech. Dev. 2009;126:240–255. doi: 10.1016/j.mod.2008.10.010. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12.Hartmann D., de Strooper B., Serneels L., Craessaerts K., Herreman A., Annaert W., Umans L., Lübke T., Illert A.L., von Figura K., Saftig P. The disintegrin/metalloprotease ADAM 10 is essential for Notch signalling but not for a-secretase activity in fibroblasts. Hum. Mol. Gen. 2002;11:2615–2624. doi: 10.1093/hmg/11.21.2615. [DOI] [PubMed] [Google Scholar]
  • 13.Horiuchi K., Zhou H.-M., Kelly K., Manova K., Blobel C.P. Evaluation of the contributions of ADAMs 9, 12, 15, 17, and 19 to heart development and ectodomain shedding of neuregulins β1 and β2. Dev. Biol. 2005;283:459–471. doi: 10.1016/j.ydbio.2005.05.004. [DOI] [PubMed] [Google Scholar]
  • 14.Leighton P.A., Mitchell K.J., Goodrich L.V., Lu X., Pinson K., Scherz P., Skarnes W.C., Tessier-Lavigne M. Defining brain wiring patterns and mechanisms through gene trapping in mice. Nature. 2001;410:174–179. doi: 10.1038/35065539. [DOI] [PubMed] [Google Scholar]
  • 15.Sagane K., Hayakawa K., Kai J., Hirohashi T., Takahashi E., Miyamoto N., Ino M., Oki T., Yamazaki K., Nagasu T. Ataxia and peripheral nerve hypomyelination in ADAM22-deficient mice. BMC Neurosci. 2005;6:33. doi: 10.1186/1471-2202-6-33. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16.Lin J., Luo J., Redies C. Differential expression of five members of the ADAM family in the developing chicken brain. Neuroscience. 2008;157:360–375. doi: 10.1016/j.neuroscience.2008.08.053. [DOI] [PubMed] [Google Scholar]
  • 17.Lin J., Yan X., Markus A., Redies C., Rolfs A., Luo J. Expression of seven members of the ADAM family in developing chicken spinal cord. Dev. Dyn. 2010;239:1246–1254. doi: 10.1002/dvdy.22272. [DOI] [PubMed] [Google Scholar]
  • 18.Muraguchi T., Takegami Y., Ohtsuka T., Kitajima S., Chandana E.P., Omura A., Miki T., Takahashi R., Matsumoto N., Ludwig A., Noda M., Takahashi C. RECK modulates Notch signaling during cortical neurogenesis by regulating ADAM10 activity. Nat. Neurosci. 2007;10:838–845. doi: 10.1038/nn1922. [DOI] [PubMed] [Google Scholar]
  • 19.Murase S., Cho C., White J.M., Horwitz A.F. ADAM2 promotes migration of neuroblasts in the rostral migratory stream to the olfactory bulb. Eur. J Neurosci. 2008;27:1585–1595. doi: 10.1111/j.1460-9568.2008.06119.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 20.Chen Y.Y., Hehr C.L., Atkinson-Leadbeater K., Hocking J.C., MCFarlane S. Targeting of retinal axons requires the metalloprotease ADAM10. J. Neurosci. 2007;27:8448–8456. doi: 10.1523/JNEUROSCI.1841-07.2007. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 21.Hoffrogge R., Mikkat S., Scharf C., Beyer S., Christoph H., Pahnke J., Mix E., Berth M., Uhrmacher A., Zubrzycki I., Miljan E., Völker U., Rolfs A. 2-DE proteome analysis of a proliferating and differentiating human neuronal stem cell line (ReNcell VM) Proteomics. 2006;6:1833–1847. doi: 10.1002/pmic.200500556. [DOI] [PubMed] [Google Scholar]
  • 22.Peters S., Mix E., Bauer P., Weinelt S., Schubert B., Knoblich R., Böttcher T., Strauss U., Pahnke J., Cattaneo E., Wree A., Rolfs A. Wnt-5a expression in the rat neuronal progenitor cell line ST14A. Exp. Brain Res. 2004;158:189–195. doi: 10.1007/s00221-004-1887-0. [DOI] [PubMed] [Google Scholar]
  • 23.Hotoda N., Koike H., Sasagawa N., Ishiuraa S. A secreted form of human ADAM9 has an α-secretase activity for APP. Biochem. Biophys. Res. Commun. 2002;293:800–805. doi: 10.1016/S0006-291X(02)00302-9. [DOI] [PubMed] [Google Scholar]
  • 24.Hall R.J., Erickson C. ADAM10: an active metalloprotease expressed during avian epithelial morphogenesis. Dev. Biol. 2003;256:146–159. doi: 10.1016/S0012-1606(02)00133-1. [DOI] [PubMed] [Google Scholar]
  • 25.Yagami-Hiromasa T., Sato T., Kurisaki T., Kamijo K., Nabeshima Y., Fujisawa-Sehara A. A metalloprotease-disintegrin participating in myoblast fusion. Nature. 1995;377:652–656. doi: 10.1038/377652a0. [DOI] [PubMed] [Google Scholar]
  • 26.Moss M.L., Sklair-Tavron L., Nudelman R. Drug insight: tumor necrosis factor-converting enzyme as a pharmaceutical target for rheumatoid arthritis. Nat. Clin. Pract. Rheumatol. 2008;4:300–309. doi: 10.1038/ncprheum0797. [DOI] [PubMed] [Google Scholar]
  • 27.Gonzales P.E., Galli J.D., Milla M.E. Identification of key sequence determinants for the inhibitory function of the prodomain of TACE. Biochemistry. 2008;47:9911–9919. doi: 10.1021/bi801049v. [DOI] [PubMed] [Google Scholar]
  • 28.Milla M.E., Leesnitzer M.A., Moss M.L., Clay W.C., Carter H.L., Miller A.B., Su J.L., Lambert M.H., Willard D.H., Sheeley D.M., Kost T.A., Burkhart W., Moyer M., Blackburn R.K., Pahel G.L., Mitchell J.L., Hoffman C.R., Becherer J.D. Specific sequence elements are required for the expression of functional tumor necrosis factor-alpha-converting enzyme (TACE) J. Biol. Chem. 1999;274:30563–30570. doi: 10.1074/jbc.274.43.30563. [DOI] [PubMed] [Google Scholar]
  • 29.Hougaard S., Loechel F., Xu X., Tajima R., Albrechtsen R., Wewer U.M. Trafficking of human ADAM 12-L: retention in the trans-Golgi network. Biochem. Biophys. Res. Commun. 2000;275:261–267. doi: 10.1006/bbrc.2000.3295. [DOI] [PubMed] [Google Scholar]
  • 30.Li X., Yan Y., Huang W., Yang Y., Wang H., Chang L. The regulation of TACE catalytic function by its prodomain. Mol. Biol. Rep. 2009;36:641–651. doi: 10.1007/s11033-008-9224-5. [DOI] [PubMed] [Google Scholar]
  • 31.Asai M., Hattori C., Szabó B., Sasagawa N., Maruyama K., Tanuma S., Ishiura S. Putative function of ADAM9, ADAM10, and ADAM17 as APP alpha-secretase. Biochem. Biophys. Res. Commun. 2003;301:231–235. doi: 10.1016/S0006-291X(02)02999-6. [DOI] [PubMed] [Google Scholar]
  • 32.Roghani M., Becherer J.D., Moss M.L., Atherton R.E., Erdjument-Bromage H., Arribas J., Blackburn R.K., Weskamp G., Tempst P., Blobel C.P. Metalloprotease-disintegrin MDC9: intracellular maturation and catalytic activity. J. Biol. Chem. 1999;274:3531–3540. doi: 10.1074/jbc.274.6.3531. [DOI] [PubMed] [Google Scholar]
  • 33.Schwettmann L., Tschesche H. Cloning and expression in Pichia pastoris of metalloprotease domain of ADAM 9 catalytically active against fibronectin. Protein Expr. Purif. 2001;21:65–70. doi: 10.1006/prep.2000.1374. [DOI] [PubMed] [Google Scholar]
  • 34.Izumi Y., Hirata M., Hasuwa H., Iwamoto R., Umata T., Miyado K., Tamai Y., Kurisaki T., Sehara-Fujisawa A., Ohno S., Mekada E. A metalloprotease-disintegrin, MDC9/meltrin-gamma/ADAM9 and PKCdelta are involved in TPA-induced ectodomain shedding of membraneanchored heparin-binding EGF-like growth factor. EMBO J. 1998;17:7260–7272. doi: 10.1093/emboj/17.24.7260. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 35.Weskamp G., Cai H., Brodie T.A., Higashyama S., Manova K., Ludwig T., Blobel C.P. Mice lacking the metalloprotease-disintegrin MDC9 (ADAM9) have no evident major abnormalities during development or adult life. Mol. Cell Biol. 2002;22:1537–1544. doi: 10.1128/MCB.22.5.1537-1544.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 36.Nath D., Slocombe P.M., Webster A., Stephens P.E., Docherty A.J., Murphy G. Meltrin gamma (ADAM-9) mediates cellular adhesion through alpha(6)beta(1)integrin, leading to a marked induction of fibroblast cell motility. J. Cell Sci. 2000;113:2319–2328. doi: 10.1242/jcs.113.12.2319. [DOI] [PubMed] [Google Scholar]
  • 37.Zamenhof S. Stimulation of brain development in chick embryo by elevated temperature. Roux Arch. Dev. Biol. 1976;180:1–8. doi: 10.1007/BF00848881. [DOI] [PubMed] [Google Scholar]
  • 38.Hatta K., Takagi S., Fujisawa H., Takeichi M. Spatial and temporal expression pattern of N-cadherin cell adhesion molecules correlated with morphogenetic processes of chicken embryos. Dev. Biol. 1987;120:215–227. doi: 10.1016/0012-1606(87)90119-9. [DOI] [PubMed] [Google Scholar]
  • 39.Pan D., Rubin G.M. Kuzbanian controls proteolytic processing of Notch and mediated lateral inhibition during Drosophila and vertebrate neurogenesis. Cell. 1997;90:271–280. doi: 10.1016/S0092-8674(00)80335-9. [DOI] [PubMed] [Google Scholar]
  • 40.Fambrough D., Pan D., Rubin G.M., Goodman C. The cell surface metalloprotease/disintegrin Kuzbanian is required for axonal extension in Drosophila. Proc. Natl. Acad. Sci. USA. 1996;93:13233–13238. doi: 10.1073/pnas.93.23.13233. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 41.Rooke J., Pan D., Xu T., Rubin G.M. KUZ, a conserved metalloprotease-disintegrin protein with two roles in Drosophila neurogenesis. Science. 1996;273:1227–1231. doi: 10.1126/science.273.5279.1227. [DOI] [PubMed] [Google Scholar]
  • 42.Yan Y., Shirakabe K., Werb Z. The metalloprotease Kuzbanian (ADAM10) mediates the transactivation of EGF receptor by G proteincoupled receptors. J. Cell Biol. 2002;158:221–226. doi: 10.1083/jcb.200112026. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 43.Sahin U., Blobel C.P. Ectodomian shedding of the EGF-receptor ligand epigen is mediated by ADAM17. FEBS Lett. 2007;581:41–44. doi: 10.1016/j.febslet.2006.11.074. [DOI] [PubMed] [Google Scholar]
  • 44.Maretzky T., Reiss K., Ludwig A., Buchholz J., Scholz F., Proksch E., de Strooper B., Hartmann D., Saftig P. ADAM10 mediates Ecadherin shedding and regulates epithelial cell-cell adhesion, migration, and betacatenin translocation. Proc. Natl. Acad. Sci. USA. 2005;102:9182–9187. doi: 10.1073/pnas.0500918102. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 45.Maretzky T., Scholz F., Köten B., Proksch E., Saftig P., Reiss K. ADAM10-mediated E-cadherin release is regulated by proinflammatory cytokines and modulates keratinocyte cohesion in eczematous dermatitis. J. Invest. Dermatol. 2008;128:1737–1746. doi: 10.1038/sj.jid.5701242. [DOI] [PubMed] [Google Scholar]
  • 46.Reiss K., Maretzky T., Ludwig A., Tousseyn T., de Strooper B., Hartmann D., Saftig P. ADAM10 cleavage of N-cadherin and regulation of cell-cell adhesion and β-catenin nuclear signalling. EMBO J. 2005;24:742–752. doi: 10.1038/sj.emboj.7600548. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 47.Reiss K., Maretzky T., Haas I.-G., Schulte M., Ludwig A., Frank M., Saftig P. Regulated ADAM10-dependent ectodomain shedding of gamma-protocadherin C3 modulated cell-cell adhesion. J. Biol. Chem. 2006;281:21735–21744. doi: 10.1074/jbc.M602663200. [DOI] [PubMed] [Google Scholar]
  • 48.Schulz B., Pruessmeyer J., Maretzky T., Ludwig A., Blobel C.P., Saftig P., Reiss K. ADAM10 regulates endothelial permeability and T-cell transmigration by proteolysis of vascular endothelial cadherin. Circ. Res. 2008;102:1192–1201. doi: 10.1161/CIRCRESAHA.107.169805. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 49.Bernstein H.G., Keilhoff G., Bukowska A., Ziegeler A., Funke S., Dobrowolny H., Kanakis D., Bogerts B., Lendeckel U. ADAM (a disintegrin and metallo-protease) 12 is expressed in rat and human brain and localized to oligodendrocytes. J. Neurosci. Res. 2004;75:353–360. doi: 10.1002/jnr.10858. [DOI] [PubMed] [Google Scholar]
  • 50.Gilpin B.J., Loechel F., Mattei M.G., Engvall E., Albrechtsen R., Wewer U.M. A novel, secreted form of human ADAM 12 (meltrin alpha) provokes myogenesis in vivo. J. Biol. Chem. 1998;273:157–166. doi: 10.1074/jbc.273.1.157. [DOI] [PubMed] [Google Scholar]
  • 51.Galliano M.F., Huet C., Frygelius J., Polgren A., Wewer U.M., Engvall E. Binding of ADAM12, a marker of skeletal muscle regeneration, to the muscle-specific actin-binding protein, alpha-actinin-2, is required for myoblast fusion. J. Biol. Chem. 2000;275:13933–13939. doi: 10.1074/jbc.275.18.13933. [DOI] [PubMed] [Google Scholar]
  • 52.Black R.A. Tumor necrosis factor-alpha converting enzyme. Int. J. Biochem. Cell Biol. 2002;34:1–5. doi: 10.1016/S1357-2725(01)00097-8. [DOI] [PubMed] [Google Scholar]
  • 53.Zheng Y., Saftig P., Hartmann D., Blobel C.P. Evaluation of the contribution of different ADAMs to TNFα shedding and of the function of the TNFα ectodomain in ensuring selective stimulated shedding by the TNFα convertase (TACE/ADAM17) J. Biol. Chem. 2004;279:42898–42906. doi: 10.1074/jbc.M403193200. [DOI] [PubMed] [Google Scholar]
  • 54.Kenny P.A., Bissel M.J. Targeting TACE-dependent EGFR-ligand shedding in breast cancer. J. Clinic. Invest. 2007;117:337–345. doi: 10.1172/JCI29518. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 55.Le Gall S.M., Bobe P., Reiss K., Horiuchi K., Niu X.-D., Lundell D., Gibb D.R., Conrad D., Saftig P., Blobel C.P. ADAMs 10 and 17 represent differentially regulated components of a general shedding machinery for membrane proteins as transforming growth factor α, L-selectin, and tumor necrosis factor. Mol. Biol. Cell. 2009;20:1785–1794. doi: 10.1091/mbc.E08-11-1135. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 56.Shah B.H., Catt K.J. TACE-dependent EGF receptor activation in angiotensin-II-induced kidney disease. Trends Pharm. Sci. 2006;27:235–237. doi: 10.1016/j.tips.2006.03.010. [DOI] [PubMed] [Google Scholar]
  • 57.Lautrette A., Li S., Alili R., Sunnarborg S.W., Burtin M., Lee D.C., Friedlander G., Terzi F. Angiotensin II and EGF receptor cross-talk in chronic kidney diseases: a new therapeutic approach. Nat. Med. 2005;11:867–874. doi: 10.1038/nm1275. [DOI] [PubMed] [Google Scholar]
  • 58.Sternlicht M.D., Sunnarborg S.W. The ADAM17-amphiregulin-EGFR axis in mammary development and cancer. J. Mam. Gland. Bio. Neopla. 2008;13:181–194. doi: 10.1007/s10911-008-9084-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 59.Sagane K., Ohya Y., Hasegawa Y., Tanaka I. Metalloproteinaselike, disintegrin-like, cysteine-rich proteins MDC2 and MDC3: novel human cellular disintegrins highly expressed in the brain. Biochem. J. 1998;334:93–98. doi: 10.1042/bj3340093. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 60.Fukata Y., Adesnik H., Iwanaga T., Bredt D.S., Nicoll R.A., Fukata M. Epilepsy-related ligand/receptor complex LGI1 and ADAM22 regulate synaptic transmission. Science. 2006;313:1792–1795. doi: 10.1126/science.1129947. [DOI] [PubMed] [Google Scholar]
  • 61.Zhu P., Sang Y., Xu H., Zhao J., Xu R., Sun Y., Xu T., Wang X., Chen L., Feng H., Li C., Zhao S. ADAM22 plays an important role in cell adhesion and spreading with the assistance of 14-3-3. Biochem. Biophys. Res. Commun. 2005;331:938–946. doi: 10.1016/j.bbrc.2005.03.229. [DOI] [PubMed] [Google Scholar]
  • 62.Sun Y.P., Wang Y., Zhang J., Tao J., Wang C., Jing N., Wu C., Deng K.J., Qiao S. ADAM23 plays multiple roles in neuronal differentiation of P19 embryonal carcinoma cells. Neurochem. Res. 2007;32:1217–1223. doi: 10.1007/s11064-007-9293-1. [DOI] [PubMed] [Google Scholar]
  • 63.Sun Y.P., Deng K.J., Wang F., Zhang J., Huang X., Qiao S., Zhao S. Two novel isoforms of Adam23 expressed in the developmental process of mouse and human brains. Gene. 2004;325:171–178. doi: 10.1016/j.gene.2003.10.012. [DOI] [PubMed] [Google Scholar]

Articles from Cellular & Molecular Biology Letters are provided here courtesy of BMC

RESOURCES