Skip to main content
Oncoimmunology logoLink to Oncoimmunology
. 2018 Sep 6;7(12):e1511506. doi: 10.1080/2162402X.2018.1511506

Trial watch: Peptide-based vaccines in anticancer therapy

Lucillia Bezu a,b,c,d,e,f, Oliver Kepp b,c,d,e,f, Giulia Cerrato b,c,d,e,f, Jonathan Pol b,c,d,e,f, Jitka Fucikova g,h, Radek Spisek g,h, Laurence Zitvogel a,i,j, Guido Kroemer b,c,d,e,f,k,l, Lorenzo Galluzzi e,m,n,
PMCID: PMC6279318  PMID: 30524907

ABSTRACT

Peptide-based anticancer vaccination aims at stimulating an immune response against one or multiple tumor-associated antigens (TAAs) following immunization with purified, recombinant or synthetically engineered epitopes. Despite high expectations, the peptide-based vaccines that have been explored in the clinic so far had limited therapeutic activity, largely due to cancer cell-intrinsic alterations that minimize antigenicity and/or changes in the tumor microenvironment that foster immunosuppression. Several strategies have been developed to overcome such limitations, including the use of immunostimulatory adjuvants, the co-treatment with cytotoxic anticancer therapies that enable the coordinated release of damage-associated molecular patterns, and the concomitant blockade of immune checkpoints. Personalized peptide-based vaccines are also being explored for therapeutic activity in the clinic. Here, we review recent preclinical and clinical progress in the use of peptide-based vaccines as anticancer therapeutics.Abbreviations: CMP: carbohydrate-mimetic peptide; CMV: cytomegalovirus; DC: dendritic cell; FDA: Food and Drug Administration; HPV: human papillomavirus; MDS: myelodysplastic syndrome; MHP: melanoma helper vaccine; NSCLC: non-small cell lung carcinoma; ODD: orphan drug designation; PPV: personalized peptide vaccination; SLP: synthetic long peptide; TAA: tumor-associated antigen; TNA: tumor neoantigen

Keywords: CAR T cells, immune checkpoint blockers, MAGEA3, mutational load, NY-ESO-1, synthetic long peptides, tumor neoantigens

Introduction

Immunotherapy constitutes an efficient way to treat cancer based on the (re)activation of the natural capacity of the host immune system to recognize malignant cells as “non-self” and hence eliminate them.1-7 Over the past years, a panoply of different approaches has been developed or repurposed to (re)initiate anticancer immunity,8-12 including immune checkpoint blockers targeting cytotoxic T lymphocyte-associated protein 4 (CTLA4), programmed cell death 1 (PDCD1, best known as PD-1) and its main ligand CD274 (best known as PD-L1);13-19 chemotherapy with immunogenic cell death (ICD) inducers,20-25 recombinant cytokines,26,27 monoclonal antibodies (mAbs) that activate co-activatory receptors,28,29 adoptively transferred T cells engineered to express a tumor-specific chimeric antigen receptor (CAR),30-36 as well as multiple small molecules targeting distinct immunosuppressive pathways operating within the tumor microenvironment.37-40 Although some of these strategies have demonstrated unprecedented activity in patients with advanced tumors refractory to several lines of conventional treatment,41 the fraction of individuals responding to single-agent immunotherapy is generally low,42-45 arguably with the sole exception of CAR-expressing T cells, which have been associated with >70% overall response rate in pediatric patients with B-cell acute lymphocytic leukemia (ALL).46-48 Thus, immunotherapy is most often implemented as part of combinatorial regimens involving other treatment modalities such as surgery, chemotherapy and/or radiation therapy (RT).49-54

Importantly, all tumors express proteins that differ in quality or quantity from their germline-encoded counterparts, owing to genetic and/or epigenetic alterations that accumulate as the disease progress.55-57 Once processed by the proteasome, these proteins can give rise to antigens that are not covered by central or peripheral tolerance and hence can be productively presented by dendritic cells (DCs) to T lymphocytes to drive an adaptive immune response.55,58-64 Such antigens are commonly known as “tumor-associated antigens” (TAAs).55,65 A large list of TAAs with sequences that bind human MHC Class I or II molecules and the TCR can be found at http://cvc.dfci.harvard.edu/tadb (the Tantigen database). One specific class of TAAs is constituted by so-called “tumor neoantigens” (TNAs).66-71 At odds with other variants of TAAs including oncofetal antigens and cancer-testis antigens, which can be expressed by healthy tissues (at least at some stage of development),37,72-75 TNAs are produced as a consequence of genetic alterations that are highly specific for the tumor, or even portions thereof.76-78 Similarly, TNAs that are fully tumor-specific occur upon the rearrangement of immunoglobulin-coding genes in clonal B-cell malignancies.79 Finally, tumor-specific TAAs can be generated as a consequence of viral transformation,80 as in the case of human papillomavirus type 16 (HPV-16)-driven oral and cervical tumors.81,82

TAAs in all their forms have been harnessed for the development of tumor-specific vaccines for therapeutic applications,83-86 including formulations based on recombinant or purified polypeptides generally administered together with an immunological adjuvant in suitable vehicles.87-103 However, TAAs often display limited antigenicity (reflecting the fact that they generally resemble self-antigens that are covered by tolerance).104-106 Moreover, tumors emerge and evolve as they become able to escape natural immunosurveillance,107-110 either because the lose expression of potentially antigenic proteins, and/or because they establish an immunosuppressive milieu that enforces local tolerance.111-116 Thus, besides a few exceptions and despite promising preclinical findings,117 multiple studies demonstrate that peptide-based vaccines employed as standalone adjuvanted interventions have limited clinical activity (although they generally cause some signs of tumor-targeting immunity).118-121 In line with this notion, no peptide-based vaccines are currently approved by the US Food and Drug Administration (FDA) or equivalent agencies worldwide for use in cancer patients are therapeutic measures (source http://www.fda.gov). However, on 2017, July 10th, the FDA has granted Orphan Drug Designation (ODD), which is designed to encourage the preparation of new molecules for indications affecting fewer than 200,000 people in the US, to DSP-7888, a new peptide-based vaccine targeting Wilms tumor 1 (WT1).122 Of note, Gardasil®, Gardasil 9® and Cervarix® are licensed for use in healthy women as prophylactic vaccines against multiple variants of HPV which are associated with the development of cervical carcinomas and anal cancers.123-128 That said, these agents technically represent antiviral vaccines and have limited activity against established HPV-driven tumors.99,129-131

Recent attempts to improve the efficacy of peptide-based vaccines converged on the development of combinatorial immunotherapeutic regimens that simultaneously drive TAA-specific immunity as they inhibit local immunosuppression.132 Considerable attention in this sense has been attracted by immune checkpoint blockers,86,133-136 despite initial setbacks linked to the lack of added therapeutic value when ipilimumab (an FDA-approved mAb targeting CTLA) was combined with a peptide vaccine targeting premelanosome protein (PMEL, also known as gp100) in melanoma patients.137 Along the lines of previous Trial Watches from our series,138,139 here we summarize recent clinical advances in the development of peptide-based therapeutic vaccines for cancer therapy.

Literature update

Clinical literature

Since the publication of the last Trial Watch dealing with this topic (April 2015),118 the results of no less than 20 clinical trials testing peptide-based vaccination as a therapeutic approach in cancer patients have reported in the peer-reviewed literature (source https://www.ncbi.nlm.nih.gov/pubmed and http://meetinglibrary.asco.org/abstracts). Most of these trials were Phase I or II studies designed for testing the safety and immunogenicity (as opposed to the therapeutic efficacy) of TAA-derived peptides. Peptide-based vaccination was employed as a standalone adjuvanted intervention,140-146 or combined with chemotherapy147-149 radiation therapy147,150 or other forms of treatment including other immunotherapies.148,149,151-158 These studies enrolled patients with hematological malignancies,151,159 brain tumors,152,153 non-small cell lung carcinoma (NSCLC),140,147,160 breast cancer,141,148,161, prostate carcinoma, 142,154 melanoma,144-146,155-158,162. ovarian cancer.149, cervical cancer,163 hepatocellular carcinoma164 and biliary tract cancer 165. The TAAs harnessed for the construction of peptide-based vaccines in these studies included the cancer/testis antigen 1B (CTAG1B; best known as NY-ESO-1),144 MAGE family member A3 (MAGEA3),140,146,147 TTK protein kinase (TTK),158 WT1,151,166 baculoviral IAP repeat containing 5 (BIRC5; best known as survivin),149 mutant epidermal growth factor receptor (EGFRvIII),153 erb-b2 receptor tyrosine kinase 2 (ERBB2; best known as HER2),148 indoleamine 2,3 dioxygenase 1 (IDO1),157 TCR gamma alternative reading frame protein (TARP),154 and multiple glioma-associated antigens.152 Most often, peptide-based vaccines were well tolerated and no severe side effects were reported. Mild side effects were sporadic and included flu-like symptoms, fatigue and minor reactions at the injection site. Immunes responses driven by vaccination were documented in a variety of studies based on (1) interferon gamma (IFNG) production by T cells with enzyme-linked immunospot (ELISPOT) assays,142,151,152,154,155 (2) tumor infiltration by CD4+ and CD8+ lymphocyte infiltration,144,145,147,157,158 or (3) presence of peptide-specific antibodies in the serum.158 Sporadic clinical responses were also documented (see below).

Ott and colleagues (from the Dana-Farber Cancer Institute, Boston, MA, USA) tested a personalized peptide vaccination (PPV)167 consisting of 20 patient-specific TNAs predicted from whole-exon DNA sequencing of malignant versus healthy cells, in 6 melanoma patients. This vaccine, which was named NeoVax, induced polyfunctional CD4+ and CD8+ T cells targeting 58 (60%) and 15 (16%) of the 97 unique TNAs used across patients, respectively. Four of 6 vaccinated patients had no recurrence at reporting (25 months follow-up). Two patients with recurrent disease received immune checkpoint inhibitors targeting PD-1 and experienced complete tumor regression.168

Pujol and collaborators (from the Arnaud de Villeneuve Hospital, Montpellier, France) investigated the safety and immunogenicity of a MAGEA3-targeting peptide-based vaccine in 67 patients with stage IB-III MAGEA3+ NSCLC who were or were not undergoing standard cisplatin/vinorelbine chemotherapy. In this setting, 16 out of 19 (84%) patients who underwent vaccination concurrent with adjuvant chemotherapy experienced chemotherapy-related Grade 3/4 adverse effects, which was not the case of patients who underwent vaccination after adjuvant chemotherapy.147 Vansteenkiste and co-authors (from the University Hospital KU Leuven, Leuven, Belgium) tested a MAGEA3-targeting vaccine in 2312 patients with completely resected stage IB, II, and IIIA MAGEA3+ NSCLC who did or did not receive adjuvant chemotherapy. In the context of this large, randomized, double-blind, placebo-controlled, vaccination failed to increase the disease-free survival of surgically resected NSCLC patients (as compared to placebo).140 On the contrary, in the prospective Phase II study reported by Saiag et al. (from the Ambroise-Paré Hospital, Boulogne, France), vaccination with a MAGEA3-specific vaccine resulted in a 1-year overall survival (OS) rate of 83.5% amongst unresectable stage IIIB-C melanoma.146 Thus, vaccination strategies targeting MAGEA3 appear to be best suited for the treatment of advanced unresectable (rather than resectable) or chemotherapy-ineligible NSCLCs.

Weller et al. (from University Hospital of Zurich, Zurich, Switzerland) designed a randomized double-blind Phase III clinical trial to investigate the efficacy of rindopepimut, a peptide-based vaccine targeting EGFRvIII, in patients with newly diagnosed glioblastoma receiving or not conventional temozolomide-based chemotherapy. No difference in OS was documented between group, calling for a re-evaluation of the therapeutic approach.153

Taken together, these clinical findings corroborate the notion that TAA-targeting peptide-based vaccines are well tolerated by cancer patients and initiate tumor-targeting immune responses (at least to some degree), but mediate limited therapeutic effects when employed as standalone adjuvanted interventions. The promising results obtained in melanoma patients by Ott and collaborators with a TNA-targeting approach168 will have to be validated in larger controlled, randomized Phase II studies. Moreover, the efficacy of TNA-based PPV (employed alone or combined with immune checkpoint blockers) against tumors with a relatively low mutational burden77,169,170 remains to be established.

Preclinical literature

Among recent preclinical studies dealing with peptide-based anticancer vaccines, we found of particular interest the works of: (1) Zhu and colleagues (from the National Institutes of Health, Bethesda, MD, USA), who developed self-assembling albumin-vaccine nanocomplexes that reportedly enable superior delivery and mediated robust therapeutic effect against transplantable tumors growing in immunocompetent mice, especially when combined with immune checkpoint blockers and chemotherapy;94 (2) Gall et al. (from the MD Anderson Cancer Center, Houston, TX, USA), who unveiled a Fc receptor-mediated mechanism whereby the FDA-approved HER2-targeting mAB trastuzumab favors the uptake of a HER2-targeting vaccine by DCs, resulting in efficient cross-presentation of its immunodominant epitope in vivo and robust therapeutic effects against breast carcinoma;171 (3) Tsuruta et al. (from Kumamoto University, Kumamoto, Japan), who developed DEP domain containing 1 (DEPDC1)- and M-phase phosphoprotein 1 (MPHOSPH1)-derived synthetic long peptides (SLPs) that efficiently induce both helper T (TH) cells and CTLs in vitro and in vivo;172 (4) Petrizzu and collaborators (from the Istituto Nazionale per lo Studio e la Cura dei Tumori, Naples, Italy), who showed that metronomic chemotherapy plus a PD-1-targeting immune checkpoint blocker are highly efficient in potentiating the antitumor effects of a multi-peptide vaccine in a mouse model of melanoma;173 and (5) Tanaka and co-workers (from the Yamaguchi University, Ube, Japan), who demonstrated that miR-125b-1 and miR-378a expression levels may be harnessed to predict the efficacy of peptide-based vaccination against colorectal carcinoma.174

Alongside these promising findings, Hailemichael et al. and Huang et al. (both from the MD Anderson Cancer Center, Houston, TX, USA) highlighted pitfalls related to formulation99 that potentially compromise therapeutic efficacy when peptide-based vaccines and immune checkpoint blockers134 or chemotherapy175 are combined. These data suggest that additional work is required to fully decode the pharmacological and immunological interactions between peptide-based anticancer vaccines and other treatment modalities.

Ongoing clinical trials

Since the last Trial Watch dealing with peptide-based vaccines for oncological indications has been published (April 2015),118 no less than 66 clinical trials have been initiated to test this immunotherapeutic modality in cancer patients (source www.clinicaltrials.gov) (Table 1). A large majority of these studies involve either short TAA-derived peptides that can directly bind to MHC Class I or II molecules expressed by antigen-presenting cells 176 (42 studies), or SLPs that are processed intracellularly and then loaded on MHC Class I or II molecules172,177,178 (22 studies), most often in combination with immunological adjuvants 179-182 like montanide ISA-51 (water-in-oil emulsion)181,183 Hiltonol® (poly-L-lysine in carboxymethylcellulose, a TLR3 ligand)184 and GM-CSF.183,185-187 In several instances, vaccination is further combined with standard treatment regimens including conventional chemotherapy,117,188-191 radiation therapy,52,192-195 and targeted anticancer agents,196-199 or with various immunotherapeutic interventions.200-205 The latter include (1) immune checkpoint blockers such as the anti-PD-1 mAbs pembrolizumab and nivolumab,206-208 the anti-PD-L1 mAbs durvalumab and atezolizumab,209-211 and the anti-CTLA4 mAb ipilimumab; 137,186,212-215 (2) immunostimulatory antibodies such as utomilumab, which stimulates TNF receptor superfamily member 9 (TNFRSF9; best known as 4-1BB or CD137) signaling,28,216-218 or the CD27 agonist varlilumab;28,216,219,220 and immunomodulatory agents such as lenalidomide.221-224 In line with preclinical and clinical data demonstrating that multi-epitope vaccines are generally more powerful than their single-epitope counterparts,117,225 the most common vaccination strategy employed by these studies consists in targeting simultaneously multiple TAAs (20 studies). Alongside, 15 studies are investigating the safety and efficacy of PPV, often consisting of MHC-matched peptides chosen from the immune repertoire of the patient before treatment.226 Finally, several studies aim at testing the safety and therapeutic potential of peptide-based vaccines targeting one single TAA including not only viral antigens like HPV p16, E6 and E7,227-229 but also shared TAAs like HER2, NY-ESO-1, survivin and telomerase reverse transcriptase (TERT),161,230-252 as well as TAAs involved in the establishment of immunosuppression, such as PD-L1 and indoleamine 2,3-dioxygenase 1 (IDO1).253-256

Table 1.

Ongoing clinical trials testing TAAs or peptides as therapeutic interventions in patients affected by cancer.

Indications Phase Status TAAs Notes Ref.
Short TAA-derived peptides
Anal cancer IV Recruiting Multiple Single adjuvanted agent NCT03051516
Bladder carcinoma I Not yet recruiting PPV Hiltonol®-adjuvanted intervention combined with atezolizumab NCT03359239
Brain tumors I Recruiting Multiple Hiltonol®-adjuvanted intervention combined with varlilumab NCT02924038
Breast carcinoma I/II Active FOLR1 GM-CSF -adjuvanted intervention plus cyclophosphamide NCT02593227
II Recruiting FOLR1 GM-CSF-adjuvanted intervention plus cyclophosphamide NCT03012100
II Recruiting HER2 Adjuvanted with GM-CSF NCT02636582
I Recruiting Multiple Montanide ISA-51- and Hiltonol®-adjuvanted intervention combined with durvalumab NCT02826434
I Recruiting Multiple Combined with pembrolizumab NCT03362060
Breast carcinoma
Gastric carcinoma
I Unknown HER2 GM-CSF- and imiquimod-adjuvanted intervention combined with cyclophosphamide NCT02276300
CRC I Recruiting Multiple Montanide ISA-51-adjuvanted intervention plus chemotherapy NCT03391232
Glioblastoma I/II Active WT1 Single adjuvanted agent NCT02750891
II Recruiting WT1 Combined with bevacizumab NCT03149003
Glioma I Active IDH1 Adjuvanted with Montanide ISA-51 NCT02454634
I Recruiting H3 Adjuvanted with Hiltonol® and Montanide ISA-51 NCT02960230
II Recruiting n.a. Adjuvanted with Hiltonol® NCT02358187
HCC I/II Recruiting Multiple CV8102-adjuvanted intervention plus cyclophosphamide NCT03203005
HPV+ tumors I Completed p16
(from HPV)
Adjuvanted with Montanide ISA-51 NCT02526316
Kidney cancer I Recruiting PPV Hiltonol®-adjuvanted intervention combined with ipilimumab NCT02950766
I/II Active Multiple Adjuvanted with GM-CSF and Montanide ISA-51 NCT02429440
Leukemia I Not yet recruiting PPV Hiltonol®-adjuvanted intervention plus cyclophosphamide NCT03219450
I Unknown Multiple Adjuvanted with GM-CSF- and Montanide ISA-51 NCT02240537
II Recruiting PPV Adjuvanted with lenalidomide and imiquimod NCT02802943
Lung cancer I Recruiting PPV Hiltonol®-adjuvanted intervention combined with pembrolizumab,
carboplatin and pemetrexed
NCT03380871
MDS I/II Active WT1 Single adjuvanted agent NCT02436252
Melanoma n.a. Active MART-1 Adjuvanted with GLA-SE NCT02320305
I Active Multiple Adjuvanted with GM-CSF NCT02696356
I/II Recruiting Multiple Combined with dabrafenib and trametinib NCT02382549
I/II Recruiting Multiple Montanide ISA-51-adjuvanted intervention plus ipilimumab NCT02385669
I/II Recruiting Multiple Montanide ISA-51- and Hiltonol®-adjuvanted intervention combined with cyclophosphamide NCT02425306
I/II Recruiting Multiple Combined with pembrolizumab NCT02515227
I/II Recruiting IDO1
PD-L1
Montanide ISA-51-adjuvanted intervention plus nivolumab NCT03047928
II Recruiting NY-ESO-1
MART-1
Montanide ISA-51- and Hiltonol®-adjuvanted intervention combined with DC vaccination NCT02334735
Myeloma I Recruiting PD-L1 Adjuvanted with Montanide ISA-51 NCT03042793
I Active Multiple Hiltonol®-adjuvanted intervention combined with durvalumab and lenalidomide NCT02886065
NSCLC I/II Recruiting UCP2
UCP4
Adjuvanted with Montanide ISA-51 NCT02818426
Ovarian cancer II Active FOLR1 Combined with durvalumab NCT02764333
II Recruiting FOLR1 Adjuvanted with GM-CSF NCT02978222
Prostate cancer I Not yet recruiting BCL-XL Adjuvanted with Montanide CAF09b NCT03412786
I/II Active PSA Montanide ISA-51- or GM-CSF-adjuvanted intervention combined with hyperthermia,
imiquimod or
RNA-based vaccine
NCT02452307
I/II Active RHOC Adjuvanted with Montanide ISA-51 NCT03199872
II Active TERT Adjuvanted with Montanide ISA-51 and imiquimod NCT02293707
Solid tumors I Recruiting PPV Hiltonol®-adjuvanted intervention combined with nivolumab NCT02897765
Synthetic long peptides
Brain tumors I Not yet open Multiple GM-CSF- and Montanide ISA-51-adjuvanted intervention combined with temozolomide NCT03299309
I Not yet recruiting PPV Adjuvanted with Hiltonol® NCT03068832
Gastroesophageal cancer I/II Recruiting HER2 Combined with cisplatin and 5-fluorouracil or capecitabine NCT02795988
Glioblastoma I Active PPV Combined with radiation NCT02287428
I Not yet recruiting PPV Hiltonol®-adjuvanted intervention plus nivolumab and ipilimumab NCT03422094
I Recruiting Multiple GM-CSF- and Montanide ISA-51-adjuvanted intervention combined with tetanus booster and temozolomide NCT02864368
I Recruiting PPV Hiltonol®-adjuvanted intervention combined with electric fields NCT03223103
II Active Multiple Hiltonol®-adjuvanted intervention combined with bevacizumab NCT02754362
II Active Survivin GM-CSF- and Montanide ISA-51-adjuvanted intervention combined
with temozolomide
and radiation
NCT02455557
HPV+ tumors I Recruiting E6
(from HPV)
Adjuvanted with Amplivant® NCT02821494
II Recruiting E6/E7
(from HPV)
Combined with utomilumab NCT03258008
Leukemia
Lymphoma
II Active pp65
(from CMV)
Single adjuvanted agent NCT02396134
Leukemia
MDS
I Recruiting Multiple Combined with azacytidine NCT02750995
Lymphoma I Not yet recruiting PPV Hiltonol®-adjuvanted intervention plus nivolumab and rituximab NCT03121677
I Not yet recruiting PPV Hiltonol®-adjuvanted intervention combined with rituximab NCT03361852
I Recruiting PD-L1
PD-L2
Adjuvanted with Montanide ISA-51 NCT03381768
Myeloma I Recruiting Survivin Adjuvanted with GM-CSF, lenalidomide and Montanide ISA-51 NCT02334865
Others
Brain tumors I Recruiting PPV Combined with radiation NCT02722512
NSCLC II Recruiting Multiple Adjuvanted with Montanide ISA-51 NCT02264236

Abbreviations. CMV, cytomegalovirus; CRC, colorectal carcinoma; DC, dendritic cell; HCC, hepatocellular carcinoma; HPV, human papillomavirus; MDS, myelodysplastic syndrome; n.a., not available; NSCLC, non-small cell lung carcinoma; PPV, personalized peptide vaccination, SLP, synthetic long peptide; TAA, tumor-associated antigen.

Taken together, these clinical trials enroll patients with a wide panel of neoplasms, including (but not limited to) glioblastoma, glioma and other brain tumors (NCT02722512; NCT02924038; NCT03068832; NCT03299309; NCT02750891; NCT03149003; NCT02287428; NCT02455557; NCT02754362; NCT02864368; NCT03223103; NCT03422094; NCT02358187; NCT02454634; NCT02960230), breast carcinoma (NCT02276300; NCT02593227; NCT02636582; NCT03012100; NCT02826434; NCT03362060), hematological malignancies (NCT02240537; NCT02802943; NCT03219450; NCT02396134; NCT02750995; NCT03121677; NCT03361852; NCT03381768; NCT02436252), melanoma (NCT02320305; NCT02334735; NCT02382549; NCT02385669; NCT02425306; NCT02515227; NCT02696356; NCT03047928), ovarian carcinoma (NCT02764333; NCT02978222; NCT02737787; NCT02933073) and prostate cancer (NCT03412786; NCT02293707; NCT02452307; NCT03199872).

Although final statistical assessments are still awaited, preliminary results from 8 clinical trials that have been completed or terminated since the publication of our last Trial Watch dealing with peptide-based anticancer vaccines (April 2015)118 have become available (source www.clinicaltrials.gov). NCT01423760, an open-label, common safety follow-up trial testing a MUC1-targeting vaccine (tecemotide) in patients with myeloma and NSCLC has been terminated prematurely as per decision of the sponsor. Out of 27 patients enrolled in the study, 20 were evaluable for toxicity, which was more severe in the NSCLC arm. NCT00409188, a Phase III study testing tecemotide in combination with single low-dose cyclophosphamide in subjects with NSCLC has been completed. Primary endpoint was not met, but notable survival benefits were achieved in patients treated with concurrent chemoradiotherapy,257 NCT01507103, a Phase II study testing the therapeutic profile of tecemotide combined with cyclophosphamide or cyclophosphamide plus chemoradiation in subjects with rectal cancer, has been completed. No difference in incidence and severity of adverse events were noted. NCT01380145, an open-label, single-arm, pilot study of recombinant MAGEA3 adjuvanted with AS15258 as consolidation for multiple myeloma patients undergoing autologous stem cell transplantation, has been completed. Treatment was immunologically active, but grade 3–4 adverse events were experienced by 12 of the 13 participants in the study. One year after treatment there were 4 patients in stringent complete response (CR), 1 in CR, 4 in very good partial response (PR) and 4 with progressive disease. NCT00849875, a Phase II study testing MUC1-targeting vaccination plus dacarbazine in melanoma patients, has been terminated due to lack of scientific justification to continue collect data. Of 48 participants analyzed, 10 had serious adverse events. Seroconversion occurred in all patients, but clinical activity was limited to 1 CRs and 3 PRs. NCT00706992, a Phase 2 trial testing a peptide-based vaccine specific for melan-A (MLANA; also known as MART-1) together with MART-1-targeting lymphocytes in high-risk melanoma patients, has been terminated owing to low accrual. No robust immunological responses were documented among 40 evaluable patients. Adverse events were common, but never serious. NCT01322815, a Phase II study assessing the therapeutic profile of a peptide-based vaccine targeting mutant KRAS combined with standard chemotherapy or a mAb specific for vascular endothelial growth factor A (VEGFA)259 in patients with colorectal carcinoma, has been terminated owing to poor accrual rate. Four months after the initiation of treatment, 50% of patients were alive and free of progression, but 2 patients receiving GI-4000 plus chemotherapy suffered from serious adverse effects. NCT00643097, a Phase I-II trial investigating the safety and preliminary therapeutic profile of an EGFRvIII-directed vaccine adjuvanted with GM-CSF in patients with glioblastoma, has been completed. Of 30 participants evaluable for the immunogenicity of the vaccine, 10 presented robust immune responses, median progression-free survival was between 11.6 and 14.2 months. NCT01307618, a Phase II study testing a multi-epitope peptide-based vaccine in combination with a CD25-specific antibody (daclizumab) ± recombinant metastatic interleukin 12 (IL12) in patients with metastatic melanoma, was terminated due to lack of efficacy.

Concluding remarks

In the past few years, tremendous progress has been made towards understanding the molecular and cellular pathways whereby the immune system can recognize and eradicate pre-malignant and malignant cells naturally as well as in response to some treatment regimens.9,20,21,260 Such knowledge has been instrumental for the development of a wide panel of therapeutic interventions that specifically aim at (re)establishing anticancer immunosurveillance (rather than merely causing the death of malignant cells), including peptide-based vaccination.8,105,176,261-264 Unfortunately, it has soon become clear that the majority of immunotherapies developed so far is poorly active when employed as standalone therapeutic intervention, largely reflecting (1) natural and treatment-driven immunoediting, resulting in the selection of poorly immunogenic cancer cell populations;115,265,266 and (2) the robust immunosuppression established by malignant cells, both locally and systemically.267-269 In line with this notion, the vast majority of peptide-based vaccines tested in the clinic so far mediated limited, if any, therapeutic activity, despite being able to elicit tumor-targeting immune responses, at least to some degree.118 The field is therefore moving along three non-mutually exclusive directions: (1) combining peptide-based vaccination with additional forms of (immuno)therapy, with the specific aim of reverting immunosuppression and enabling therapeutically relevant immune responses,270-272 (2) targeting private antigenic epitopes that originate from mutations affecting only malignant cells (or sub-populations thereof), with PPV,167,272-275 and (3) identifying specific patient populations that may obtain clinical benefit from the use of peptide-based vaccination.174,254 Although the feasibility of PPV on a large scale remains unclear, we surmise combining some variants of peptide-based vaccination with potent immunostimulatory agents including immune checkpoint blockers and oncolytic viruses may be the key to unlock the true potential of this hitherto unrealized therapeutic modality.

Acknowledgments

LB is supported by Bristol-Myers Squibb Foundation for Research in Immuno-Oncology (BMS). GK is supported by the Ligue contre le Cancer (équipe labelisée); Agence National de la Recherche (ANR) – Projets blancs; ANR under the frame of E-Rare-2, the ERA-Net for Research on Rare Diseases; Association pour la recherche sur le cancer (ARC); Fondation pour la Recherche Médicale (FRM); Cancéropôle Ile-de-France; Institut National du Cancer (INCa); Institut Universitaire de France; the European Commission (ArtForce); the European Research Council (ERC); the LeDucq Foundation; the LabEx Immuno-Oncology; the RHU Torino Lumière, the SIRIC Stratified Oncology Cell DNA Repair and Tumor Immune Elimination (SOCRATE); the SIRIC Cancer Research and Personalized Medicine (CARPEM); and the Paris Alliance of Cancer Research Institutes (PACRI). LG is supported by a startup grant from the Department of Radiation Oncology at Weill Cornell Medicine (New York, US) and by donations from Phosplatin Therapeutics (New York, US), Sotio a.s. (Prague, Czech Republic) and the Luke Heller TECPR2 Foundation (Boston, US).

Disclosure statement

LG provides remunerated consulting to OmniSEQ (Buffalo, NY, USA).

References

  • 1.Hoos A. Development of immuno-oncology drugs - from CTLA4 to PD1 to the next generations. Nat Rev Drug Discov. 2016;15:235–247. doi: 10.1038/nrd.2015.35. [DOI] [PubMed] [Google Scholar]
  • 2.June CH, O’Connor RS, Kawalekar OU, Ghassemi S, Milone MC. CAR T cell immunotherapy for human cancer. Science. 2018;359:1361–1365. doi: 10.1126/science.aar6711. [DOI] [PubMed] [Google Scholar]
  • 3.Palucka AK, Coussens LM. The basis of oncoimmunology. Cell. 2016;164:1233–1247. doi: 10.1016/j.cell.2016.01.049. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 4.Smyth MJ, Dunn GP, Schreiber RD. Cancer immunosurveillance and immunoediting: the roles of immunity in suppressing tumor development and shaping tumor immunogenicity. Adv Immunol. 2006;90:1–50. doi: 10.1016/S0065-2776(06)90001-7. [DOI] [PubMed] [Google Scholar]
  • 5.Berraondo P, Labiano S, Minute L, Etxeberria I, Vasquez M, Sanchez-Arraez A, Teijeira A, Melero I. Cellular immunotherapies for cancer. Oncoimmunology. 2017;6:e1306619. doi: 10.1080/2162402X.2017.1306619. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6.Ngwa W, Irabor OC, Schoenfeld JD, Hesser J, Demaria S, Formenti SC. Using immunotherapy to boost the abscopal effect. Nat Rev Cancer. 2018;18:313–322. doi: 10.1038/nrc.2018.6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 7.Thomas S, Prendergast GC. Cancer vaccines: a brief overview. Methods Mol Biol. 2016;1403:755–761. doi: 10.1007/978-1-4939-3387-7_43. [DOI] [PubMed] [Google Scholar]
  • 8.Galluzzi L, Vacchelli E, Bravo-San Pedro JM, Buque A, Senovilla L, Baracco EE, Bloy N, Castoldi F, Abastado JP, Agostinis P, et al. Classification of current anticancer immunotherapies. Oncotarget. 2014;5:12472–12508. doi: 10.18632/oncotarget.2998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 9.Chen DS, Mellman I. Elements of cancer immunity and the cancer-immune set point. Nature. 2017;541:321–330. doi: 10.1038/nature21349. [DOI] [PubMed] [Google Scholar]
  • 10.Hanoteau A, Moser M. Chemotherapy and immunotherapy: A close interplay to fight cancer? Oncoimmunology. 2016;5:e1190061. doi: 10.1080/2162402X.2016.1190061. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 11.Yamazaki T, Galluzzi L. Blinatumomab bridges the gap between leukemia and immunity. Oncoimmunology. 2017;6:e1358335. doi: 10.1080/2162402X.2017.1358335. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12.Mahoney KM, Rennert PD, Freeman GJ. Combination cancer immunotherapy and new immunomodulatory targets. Nat Rev Drug Discov. 2015;14:561–584. doi: 10.1038/nrd4591. [DOI] [PubMed] [Google Scholar]
  • 13.Vanpouille-Box C, Lhuillier C, Bezu L, Aranda F, Yamazaki T, Kepp O, Fucikova J, Spisek R, Demaria S, Formenti SC, et al. Trial watch: immune checkpoint blockers for cancer therapy. Oncoimmunology. 2017;6:e1373237. doi: 10.1080/2162402X.2017.1373237. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 14.Sharma P, Allison JP. The future of immune checkpoint therapy. Science. 2015;348:56–61. doi: 10.1126/science.aaa8172. [DOI] [PubMed] [Google Scholar]
  • 15.Derosa L, Routy B, Kroemer G, Zitvogel L. The intestinal microbiota determines the clinical efficacy of immune checkpoint blockers targeting PD-1/PD-L1. Oncoimmunology. 2018;7:e1434468. doi: 10.1080/2162402X.2018.1434468. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16.Pardoll DM. The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer. 2012;12:252–264. doi: 10.1038/nrc3239. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 17.Vanella V, Festino L, Strudel M, Simeone E, Grimaldi AM, Ascierto PA. PD-L1 inhibitors in the pipeline: promise and progress. Oncoimmunology. 2017;7:e1365209. doi: 10.1080/2162402X.2017.1365209. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 18.Simon S, Labarriere N. PD-1 expression on tumor-specific T cells: friend or foe for immunotherapy? Oncoimmunology. 2017;7:e1364828. doi: 10.1080/2162402X.2017.1364828. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 19.Riaz N, Havel JJ, Makarov V, Desrichard A, Urba WJ, Sims JS, Hodi FS, Martin-Algarra S, Mandal R, Sharfman WH, et al. Tumor and microenvironment evolution during immunotherapy with Nivolumab. Cell. 2017;171:934–949 e915. doi: 10.1016/j.cell.2017.09.028. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 20.Galluzzi L, Buque A, Kepp O, Zitvogel L, Kroemer G. Immunogenic cell death in cancer and infectious disease. Nat Rev Immunol. 2017;17:97–111. doi: 10.1038/nri.2016.107. [DOI] [PubMed] [Google Scholar]
  • 21.Kroemer G, Galluzzi L, Kepp O, Zitvogel L. Immunogenic cell death in cancer therapy. Annu Rev Immunol. 2013;31:51–72. doi: 10.1146/annurev-immunol-032712-100008. [DOI] [PubMed] [Google Scholar]
  • 22.Garg AD, More S, Rufo N, Mece O, Sassano ML, Agostinis P, Zitvogel L, Kroemer G, Galluzzi L. Trial watch: immunogenic cell death induction by anticancer chemotherapeutics. Oncoimmunology. 2017;6:e1386829. doi: 10.1080/2162402X.2017.1386829. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 23.Yang M, Li C, Zhu S, Cao L, Kroemer G, Zeh H, Tang D, Kang R. TFAM is a novel mediator of immunogenic cancer cell death. Oncoimmunology. 2018;7:e1431086. doi: 10.1080/2162402X.2018.1431086. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 24.Montico B, Nigro A, Casolaro V, Dal Col J. Immunogenic apoptosis as a novel tool for anticancer vaccine development. Int J Mol Sci. 2018;19. doi: 10.3390/ijms19020594. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 25.Bezu L, Sauvat A, Humeau J, Leduc M, Kepp O, Kroemer G. eIF2alpha phosphorylation: A hallmark of immunogenic cell death. Oncoimmunology. 2018;7:e1431089. doi: 10.1080/2162402X.2018.1431089. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 26.Zitvogel L, Galluzzi L, Kepp O, Smyth MJ, Kroemer G. Type I interferons in anticancer immunity. Nat Rev Immunol. 2015;15:405–414. doi: 10.1038/nri3845. [DOI] [PubMed] [Google Scholar]
  • 27.Eggermont AM, Spatz A, Robert C. Cutaneous melanoma. Lancet. 2014;383:816–827. doi: 10.1016/S0140-6736(13)60802-8. [DOI] [PubMed] [Google Scholar]
  • 28.Cabo M, Offringa R, Zitvogel L, Kroemer G, Muntasell A, Galluzzi L. Trial Watch: immunostimulatory monoclonal antibodies for oncological indications. Oncoimmunology. 2017;6:e1371896. doi: 10.1080/2162402X.2017.1371896. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 29.Sanmamed MF, Pastor F, Rodriguez A, Perez-Gracia JL, Rodriguez-Ruiz ME, Jure-Kunkel M, Melero I. Agonists of co-stimulation in cancer immunotherapy directed against CD137, OX40, GITR, CD27, CD28, and ICOS. Semin Oncol. 2015;42:640–655. doi: 10.1053/j.seminoncol.2015.05.014. [DOI] [PubMed] [Google Scholar]
  • 30.Neelapu SS, Tummala S, Kebriaei P, Wierda W, Gutierrez C, Locke FL, Komanduri KV, Lin Y, Jain N, Daver N, et al. Chimeric antigen receptor T-cell therapy - assessment and management of toxicities. Nat Rev Clin Oncol. 2018;15:47–62. doi: 10.1038/nrclinonc.2017.148. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 31.Brudno JN, Kochenderfer JN. Chimeric antigen receptor T-cell therapies for lymphoma. Nat Rev Clin Oncol. 2018;15:31–46. doi: 10.1038/nrclinonc.2017.128. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 32.Rosenberg SA, Restifo NP. Adoptive cell transfer as personalized immunotherapy for human cancer. Science. 2015;348:62–68. doi: 10.1126/science.aaa4967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 33.Fesnak AD, June CH, Levine BL. Engineered T cells: the promise and challenges of cancer immunotherapy. Nat Rev Cancer. 2016;16:566–581. doi: 10.1038/nrc.2016.97. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 34.Zhang Q, Zhang Z, Peng M, Fu S, Xue Z, Zhang R. CAR-T cell therapy in gastrointestinal tumors and hepatic carcinoma: from bench to bedside. Oncoimmunology. 2016;5:e1251539. doi: 10.1080/2162402X.2016.1251539. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 35.Khalil DN, Smith EL, Brentjens RJ, Wolchok JD. The future of cancer treatment: immunomodulation, CARs and combination immunotherapy. Nat Rev Clin Oncol. 2016;13:273–290. doi: 10.1038/nrclinonc.2016.25. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 36.Atanackovic D, Steinbach M, Radhakrishnan SV, Luetkens T. Immunotherapies targeting CD38 in multiple myeloma. Oncoimmunology. 2016;5:e1217374. doi: 10.1080/2162402X.2016.1217374. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 37.Adams JL, Smothers J, Srinivasan R, Hoos A. Big opportunities for small molecules in immuno-oncology. Nat Rev Drug Discov. 2015;14:603–622. doi: 10.1038/nrd4596. [DOI] [PubMed] [Google Scholar]
  • 38.Buque A, Bloy N, Aranda F, Cremer I, Eggermont A, Fridman WH, Fucikova J, Galon J, Spisek R, Tartour E, et al. Trial watch-small molecules targeting the immunological tumor microenvironment for cancer therapy. Oncoimmunology. 2016;5:e1149674. doi: 10.1080/2162402X.2016.1149674. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 39.Iyer VV. Small molecules for immunomodulation in cancer: a review. Anticancer Agents Med Chem. 2015;15:433–452. [DOI] [PubMed] [Google Scholar]
  • 40.Teulings HE, Tjin EPM, Willemsen KJ, Van Der Kleij S, Ter Meulen S, Kemp EH, Krebbers G, Van Noesel CJM, Franken C, Drijfhout JW, et al. Anti-Melanoma immunity and local regression of cutaneous metastases in melanoma patients treated with monobenzone and imiquimod; a phase 2 a trial. Oncoimmunology. 2018;7:e1419113. doi: 10.1080/2162402X.2017.1419113. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 41.Snyder A, Makarov V, Merghoub T, Yuan J, Zaretsky JM, Desrichard A, Walsh LA, Postow MA, Wong P, Ho TS, et al. Genetic basis for clinical response to CTLA-4 blockade in melanoma. N Engl J Med. 2014;371:2189–2199. doi: 10.1056/NEJMoa1406498. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 42.Topalian SL, Hodi FS, Brahmer JR, Gettinger SN, Smith DC, McDermott DF, Powderly JD, Carvajal RD, Sosman JA, Atkins MB, et al. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N Engl J Med. 2012;366:2443–2454. doi: 10.1056/NEJMoa1200690. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 43.Garon EB, Rizvi NA, Hui R, Leighl N, Balmanoukian AS, Eder JP, Patnaik A, Aggarwal C, Gubens M, Horn L, et al. Pembrolizumab for the treatment of non-small-cell lung cancer. N Engl J Med. 2015;372:2018–2028. doi: 10.1056/NEJMoa1501824. [DOI] [PubMed] [Google Scholar]
  • 44.Rosenberg JE, Hoffman-Censits J, Powles T, Van Der Heijden MS, Balar AV, Necchi A, Dawson N, O’Donnell PH, Balmanoukian A, Loriot Y, et al. Atezolizumab in patients with locally advanced and metastatic urothelial carcinoma who have progressed following treatment with platinum-based chemotherapy: a single-arm, multicentre, phase 2 trial. Lancet. 2016;387:1909–1920. doi: 10.1016/S0140-6736(16)00561-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 45.Fuca G, De Braud F, Di Nicola M. Immunotherapy-based combinations: an update. Curr Opin Oncol. 2018. doi: 10.1097/CCO.0000000000000466. [DOI] [PubMed] [Google Scholar]
  • 46.Maude SL, Laetsch TW, Buechner J, Rives S, Boyer M, Bittencourt H, Bader P, Verneris MR, Stefanski HE, Myers GD, et al. Tisagenlecleucel in children and young adults with B-cell lymphoblastic leukemia. N Engl J Med. 2018;378:439–448. doi: 10.1056/NEJMoa1709866. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 47.Batlevi CL, Matsuki E, Brentjens RJ, Younes A. Novel immunotherapies in lymphoid malignancies. Nat Rev Clin Oncol. 2016;13:25–40. doi: 10.1038/nrclinonc.2015.187. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 48.Suryadevara CM, Desai R, Abel ML, Riccione KA, Batich KA, Shen SH, Chongsathidkiet P, Gedeon PC, Elsamadicy AA, Snyder DJ, et al. Temozolomide lymphodepletion enhances CAR abundance and correlates with antitumor efficacy against established glioblastoma. Oncoimmunology. 2018;7:e1434464. doi: 10.1080/2162402X.2018.1434464. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 49.Sharma P, Allison JP. Immune checkpoint targeting in cancer therapy: toward combination strategies with curative potential. Cell. 2015;161:205–214. doi: 10.1016/j.cell.2015.03.030. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 50.Migden MR, Rischin D, Schmults CD, Guminski A, Hauschild A, Lewis KD, Chung CH, Hernandez-Aya L, Lim AM, Chang ALS, et al. PD-1 blockade with cemiplimab in advanced cutaneous squamous-cell carcinoma. N Engl J Med. 2018. doi: 10.1056/NEJMoa1805131. [DOI] [PubMed] [Google Scholar]
  • 51.Vacchelli E, Bloy N, Aranda F, Buque A, Cremer I, Demaria S, Eggermont A, Formenti SC, Fridman WH, Fucikova J, et al. Trial watch: immunotherapy plus radiation therapy for oncological indications. Oncoimmunology. 2016;5:e1214790. doi: 10.1080/2162402X.2016.1214790. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 52.Butts C, Socinski MA, Mitchell PL, Thatcher N, Havel L, Krzakowski M, Nawrocki S, Ciuleanu TE, Bosquee L, Trigo JM, et al. Tecemotide (L-BLP25) versus placebo after chemoradiotherapy for stage III non-small-cell lung cancer (START): a randomised, double-blind, phase 3 trial. Lancet Oncol. 2014;15:59–68. doi: 10.1016/S1470-2045(13)70510-2. [DOI] [PubMed] [Google Scholar]
  • 53.Ruckert M, Deloch L, Fietkau R, Frey B, Hecht M, Gaipl US. Immune modulatory effects of radiotherapy as basis for well-reasoned radioimmunotherapies. Strahlenther Onkol. 2018;194:509–519. doi: 10.1007/s00066-018-1287-1. [DOI] [PubMed] [Google Scholar]
  • 54.Fumet JD, Isambert N, Hervieu A, Zanetta S, Guion JF, Hennequin A, Rederstorff E, Bertaut A, Ghiringhelli F. Phase Ib/II trial evaluating the safety, tolerability and immunological activity of durvalumab (MEDI4736) (anti-PD-L1) plus tremelimumab (anti-CTLA-4) combined with FOLFOX in patients with metastatic colorectal cancer. ESMO Open. 2018;3:e000375. doi: 10.1136/esmoopen-2018-000375. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 55.Coulie PG, Van Den Eynde BJ, Van Der Bruggen P, Boon T. Tumour antigens recognized by T lymphocytes: at the core of cancer immunotherapy. Nat Rev Cancer. 2014;14:135–146. doi: 10.1038/nrc3670. [DOI] [PubMed] [Google Scholar]
  • 56.Ilyas S, Yang JC. Landscape of tumor antigens in T cell immunotherapy. J Immunol. 2015;195:5117–5122. doi: 10.4049/jimmunol.1501657. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 57.Rizvi NA, Hellmann MD, Snyder A, Kvistborg P, Makarov V, Havel JJ, Lee W, Yuan J, Wong P, Ho TS, et al. Cancer immunology. Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer. Science. 2015;348:124–128. doi: 10.1126/science.aaa1348. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 58.Boon T, Cerottini JC, Van Den Eynde B, Van Der Bruggen P, Van Pel A. Tumor antigens recognized by T lymphocytes. Annu Rev Immunol. 1994;12:337–365. doi: 10.1146/annurev.iy.12.040194.002005. [DOI] [PubMed] [Google Scholar]
  • 59.Boon T. van der Bruggen P. Human tumor antigens recognized by T lymphocytes. J Exp Med. 1996;183:725–729. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 60.Van Pel A, Van Der Bruggen P, Coulie PG, Brichard VG, Lethe B, Van Den Eynde B, Uyttenhove C, Renauld JC, Boon T. Genes coding for tumor antigens recognized by cytolytic T lymphocytes. Immunol Rev. 1995;145:229–250. [DOI] [PubMed] [Google Scholar]
  • 61.Blander JM. Regulation of the cell biology of antigen cross-presentation. Annu Rev Immunol. 2018;36:717–753. doi: 10.1146/annurev-immunol-041015-055523. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 62.Kloetzel PM, Ossendorp F. Proteasome and peptidase function in MHC-class-I-mediated antigen presentation. Curr Opin Immunol. 2004;16:76–81. [DOI] [PubMed] [Google Scholar]
  • 63.Gerner MY, Casey KA, Kastenmuller W, Germain RN. Dendritic cell and antigen dispersal landscapes regulate T cell immunity. J Exp Med. 2017;214:3105–3122. doi: 10.1084/jem.20170335. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 64.Gentles AJ, Newman AM, Liu CL, Bratman SV, Feng W, Kim D, Nair VS, Xu Y, Khuong A, Hoang CD, et al. The prognostic landscape of genes and infiltrating immune cells across human cancers. Nat Med. 2015;21:938–945. doi: 10.1038/nm.3909. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 65.Van Den Eynde BJ, Boon T. Tumor antigens recognized by T lymphocytes. Int J Clin Lab Res. 1997;27:81–86. [DOI] [PubMed] [Google Scholar]
  • 66.Menez-Jamet J, Gallou C, Rougeot A, Kosmatopoulos K. Optimized tumor cryptic peptides: the basis for universal neo-antigen-like tumor vaccines. Ann Transl Med. 2016;4:266. doi: 10.21037/atm.2016.05.15. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 67.Gubin MM, Artyomov MN, Mardis ER, Schreiber RD. Tumor neoantigens: building a framework for personalized cancer immunotherapy. J Clin Invest. 2015;125:3413–3421. doi: 10.1172/JCI80008. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 68.Wang RF, Wang HY. Immune targets and neoantigens for cancer immunotherapy and precision medicine. Cell Res. 2017;27:11–37. doi: 10.1038/cr.2016.155. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 69.Kahles A, Lehmann KV, Toussaint NC, Huser M, Stark SG, Sachsenberg T, Stegle O, Kohlbacher O, Sander C, Cancer Genome Atlas Research N et al. Comprehensive analysis of alternative splicing across tumors from 8,705 patients. Cancer Cell. 2018. doi: 10.1016/j.ccell.2018.07.001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 70.Hamada T, Soong TR, Masugi Y, Kosumi K, Nowak JA, Da Silva A, Mu XJ, Twombly TS, Koh H, Yang J, et al. TIME (Tumor Immunity in the MicroEnvironment) classification based on tumor CD274 (PD-L1) expression status and tumor-infiltrating lymphocytes in colorectal carcinomas. Oncoimmunology. 2018;7:e1442999. doi: 10.1080/2162402X.2018.1442999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 71.Martin SD, Wick DA, Nielsen JS, Little N, Holt RA, Nelson BH. A library-based screening method identifies neoantigen-reactive T cells in peripheral blood prior to relapse of ovarian cancer. Oncoimmunology. 2017;7:e1371895. doi: 10.1080/2162402X.2017.1371895. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 72.Dang E, Yang S, Song C, Jiang D, Li Z, Fan W, Sun Y, Tao L, Wang J, Liu T, et al. BAP31, a newly defined cancer/testis antigen, regulates proliferation, migration, and invasion to promote cervical cancer progression. Cell Death Dis. 2018;9:791. doi: 10.1038/s41419-018-0824-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 73.Mufson RA. Tumor antigen targets and tumor immunotherapy. Front Biosci. 2006;11:337–343. [DOI] [PubMed] [Google Scholar]
  • 74.Schietinger A, Philip M, Schreiber H. Specificity in cancer immunotherapy. Semin Immunol. 2008;20:276–285. doi: 10.1016/j.smim.2008.07.001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 75.Chang AY, Dao T, Gejman RS, Jarvis CA, Scott A, Dubrovsky L, Mathias MD, Korontsvit T, Zakhaleva V, Curcio M, et al. A therapeutic T cell receptor mimic antibody targets tumor-associated PRAME peptide/HLA-I antigens. J Clin Invest. 2017;127:2705–2718. doi: 10.1172/JCI92335. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 76.Schumacher TN, Hacohen N. Neoantigens encoded in the cancer genome. Curr Opin Immunol. 2016;41:98–103. doi: 10.1016/j.coi.2016.07.005. [DOI] [PubMed] [Google Scholar]
  • 77.Schumacher TN, Schreiber RD. Neoantigens in cancer immunotherapy. Science. 2015;348:69–74. doi: 10.1126/science.aaa4971. [DOI] [PubMed] [Google Scholar]
  • 78.Verdegaal EM, De Miranda NF, Visser M, Harryvan T, Van Buuren MM, Andersen RS, Hadrup SR, Van Der Minne CE, Schotte R, Spits H, et al. Neoantigen landscape dynamics during human melanoma-T cell interactions. Nature. 2016;536:91–95. doi: 10.1038/nature18945. [DOI] [PubMed] [Google Scholar]
  • 79.Cha SC, Qin H, Sakamaki I, Kwak L. Cloning variable region genes of clonal lymphoma immunoglobulin for generating patient-specific idiotype DNA vaccine. Methods Mol Biol. 2014;1139:289–303. doi: 10.1007/978-1-4939-0345-0_24. [DOI] [PubMed] [Google Scholar]
  • 80.Kurth R, Fenyo EM, Klein E, Essex M. Cell-surface antigens induced by RNA tumour viruses. Nature. 1979;279:197–201. [DOI] [PubMed] [Google Scholar]
  • 81.Wang C, Dickie J, Sutavani RV, Pointer C, Thomas GJ, Savelyeva N. Targeting head and neck cancer by vaccination. Front Immunol. 2018;9:830. doi: 10.3389/fimmu.2018.00830. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 82.Qin Y, Ekmekcioglu S, Forget MA, Szekvolgyi L, Hwu P, Grimm EA, Jazaeri AA, Roszik J. Cervical cancer neoantigen landscape and immune activity is associated with human papillomavirus master regulators. Front Immunol. 2017;8:689. doi: 10.3389/fimmu.2017.00689. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 83.Berzofsky JA, Ahlers JD, Belyakov IM. Strategies for designing and optimizing new generation vaccines. Nat Rev Immunol. 2001;1:209–219. doi: 10.1038/35105075. [DOI] [PubMed] [Google Scholar]
  • 84.Rosenberg SA, Yang JC, Restifo NP. Cancer immunotherapy: moving beyond current vaccines. Nat Med. 2004;10:909–915. doi: 10.1038/nm1100. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 85.Schumacher T, Bunse L, Pusch S, Sahm F, Wiestler B, Quandt J, Menn O, Osswald M, Oezen I, Ott M, et al. A vaccine targeting mutant IDH1 induces antitumour immunity. Nature. 2014;512:324–327. doi: 10.1038/nature13387. [DOI] [PubMed] [Google Scholar]
  • 86.McGranahan N, Furness AJ, Rosenthal R, Ramskov S, Lyngaa R, Saini SK, Jamal-Hanjani M, Wilson GA, Birkbak NJ, Hiley CT, et al. Clonal neoantigens elicit T cell immunoreactivity and sensitivity to immune checkpoint blockade. Science. 2016;351:1463–1469. doi: 10.1126/science.aaf1490. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 87.Jager E, Jager D, Knuth A. Clinical cancer vaccine trials. Curr Opin Immunol. 2002;14:178–182. [DOI] [PubMed] [Google Scholar]
  • 88.Bachmann MF, Jennings GT. Vaccine delivery: a matter of size, geometry, kinetics and molecular patterns. Nat Rev Immunol. 2010;10:787–796. doi: 10.1038/nri2868. [DOI] [PubMed] [Google Scholar]
  • 89.Melief CJ, Van Hall T, Arens R, Ossendorp F, van der Burg SH. Therapeutic cancer vaccines. J Clin Invest. 2015;125:3401–3412. doi: 10.1172/JCI80009. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 90.Sawada Y, Yoshikawa T, Ofuji K, Yoshimura M, Tsuchiya N, Takahashi M, Nobuoka D, Gotohda N, Takahashi S, Kato Y, et al. Phase II study of the GPC3-derived peptide vaccine as an adjuvant therapy for hepatocellular carcinoma patients. Oncoimmunology. 2016;5:e1129483. doi: 10.1080/2162402X.2015.1129483. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 91.Melero I, Gaudernack G, Gerritsen W, Huber C, Parmiani G, Scholl S, Thatcher N, Wagstaff J, Zielinski C, Faulkner I, et al. Therapeutic vaccines for cancer: an overview of clinical trials. Nat Rev Clin Oncol. 2014;11:509–524. doi: 10.1038/nrclinonc.2014.111. [DOI] [PubMed] [Google Scholar]
  • 92.Bobisse S, Foukas PG, Coukos G, Harari A. Neoantigen-based cancer immunotherapy. Ann Transl Med. 2016;4:262. doi: 10.21037/atm.2016.06.17. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 93.Chiang CL, Coukos G, Kandalaft LE. Whole tumor antigen vaccines: where are we? Vaccines (Basel). 2015;3:344–372. doi: 10.3390/vaccines3020344. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 94.Zhu G, Lynn GM, Jacobson O, Chen K, Liu Y, Zhang H, Ma Y, Zhang F, Tian R, Ni Q, et al. Albumin/vaccine nanocomplexes that assemble in vivo for combination cancer immunotherapy. Nat Commun. 2017;8:1954. doi: 10.1038/s41467-017-02191-y. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 95.Butterfield LH, Zhao F, Lee S, Tarhini AA, Margolin KA, White RL, Atkins MB, Cohen GI, Whiteside TL, Kirkwood JM, et al. Immune correlates of GM-CSF and melanoma peptide vaccination in a randomized trial for the adjuvant therapy of resected high-risk melanoma (E4697). Clin Cancer Res. 2017;23:5034–5043. doi: 10.1158/1078-0432.CCR-16-3016. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 96.Li F, Chen C, Ju T, Gao J, Yan J, Wang P, Xu Q, Hwu P, Du X, Lizee G. Rapid tumor regression in an Asian lung cancer patient following personalized neo-epitope peptide vaccination. Oncoimmunology. 2016;5:e1238539. doi: 10.1080/2162402X.2016.1238539. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 97.Bijker MS, Melief CJ, Offringa R, van der Burg SH. Design and development of synthetic peptide vaccines: past, present and future. Expert Rev Vaccines. 2007;6:591–603. doi: 10.1586/14760584.6.4.591. [DOI] [PubMed] [Google Scholar]
  • 98.Schwartzentruber DJ, Lawson DH, Richards JM, Conry RM, Miller DM, Treisman J, Gailani F, Riley L, Conlon K, Pockaj B, et al. gp100 peptide vaccine and interleukin-2 in patients with advanced melanoma. N Engl J Med. 2011;364:2119–2127. doi: 10.1056/NEJMoa1012863. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 99.Gouttefangeas C, Rammensee HG. Personalized cancer vaccines: adjuvants are important, too. Cancer Immunol Immunother. 2018. doi: 10.1007/s00262-018-2158-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 100.Silva AL, Rosalia RA, Sazak A, Carstens MG, Ossendorp F, Oostendorp J, Jiskoot W. Optimization of encapsulation of a synthetic long peptide in PLGA nanoparticles: low-burst release is crucial for efficient CD8(+) T cell activation. Eur J Pharm Biopharm. 2013;83:338–345. doi: 10.1016/j.ejpb.2012.11.006. [DOI] [PubMed] [Google Scholar]
  • 101.Silva JM, Videira M, Gaspar R, Preat V, Florindo HF. Immune system targeting by biodegradable nanoparticles for cancer vaccines. J Control Release. 2013;168:179–199. doi: 10.1016/j.jconrel.2013.03.010. [DOI] [PubMed] [Google Scholar]
  • 102.Varypataki EM, Silva AL, Barnier-Quer C, Collin N, Ossendorp F, Jiskoot W. Synthetic long peptide-based vaccine formulations for induction of cell mediated immunity: A comparative study of cationic liposomes and PLGA nanoparticles. J Control Release. 2016;226:98–106. doi: 10.1016/j.jconrel.2016.02.018. [DOI] [PubMed] [Google Scholar]
  • 103.Avigan D, Rosenblatt J. Vaccine therapy in hematologic malignancies. Blood. 2018;131:2640–2650. doi: 10.1182/blood-2017-11-785873. [DOI] [PubMed] [Google Scholar]
  • 104.Bloy N, Garcia P, Laumont CM, Pitt JM, Sistigu A, Stoll G, Yamazaki T, Bonneil E, Buque A, Humeau J, et al. Immunogenic stress and death of cancer cells: contribution of antigenicity vs adjuvanticity to immunosurveillance. Immunol Rev. 2017;280:165–174. doi: 10.1111/imr.12582. [DOI] [PubMed] [Google Scholar]
  • 105.Galluzzi L, Zitvogel L, Kroemer G. Immunological mechanisms underneath the efficacy of cancer therapy. Cancer Immunol Res. 2016;4:895–902. doi: 10.1158/2326-6066.CIR-16-0197. [DOI] [PubMed] [Google Scholar]
  • 106.Klein L, Hinterberger M, Wirnsberger G, Kyewski B. Antigen presentation in the thymus for positive selection and central tolerance induction. Nat Rev Immunol. 2009;9:833–844. doi: 10.1038/nri2669. [DOI] [PubMed] [Google Scholar]
  • 107.Kroemer G, Senovilla L, Galluzzi L, Andre F, Zitvogel L. Natural and therapy-induced immunosurveillance in breast cancer. Nat Med. 2015;21:1128–1138. doi: 10.1038/nm.3944. [DOI] [PubMed] [Google Scholar]
  • 108.Arrieta VA, Cacho-Diaz B, Zhao J, Rabadan R, Chen L, Sonabend AM. The possibility of cancer immune editing in gliomas. A Critical Review. Oncoimmunology. 2018;7:e1445458. doi: 10.1080/2162402X.2018.1445458. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 109.Terry S, Buart S, Tan TZ, Gros G, Noman MZ, Lorens JB, Mami-Chouaib F, Thiery JP, Chouaib S. Acquisition of tumor cell phenotypic diversity along the EMT spectrum under hypoxic pressure: consequences on susceptibility to cell-mediated cytotoxicity. Oncoimmunology. 2017;6:e1271858. doi: 10.1080/2162402X.2016.1271858. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 110.Blankenstein T, Coulie PG, Gilboa E, Jaffee EM. The determinants of tumour immunogenicity. Nat Rev Cancer. 2012;12:307–313. doi: 10.1038/nrc3246. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 111.Pietrocola F, Bravo-San Pedro JM, Galluzzi L, Kroemer G. Autophagy in natural and therapy-driven anticancer immunosurveillance. Autophagy. 2017;13:2163–2170. doi: 10.1080/15548627.2017.1310356. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 112.Bui JD, Schreiber RD. Cancer immunosurveillance, immunoediting and inflammation: independent or interdependent processes? Curr Opin Immunol. 2007;19:203–208. doi: 10.1016/j.coi.2007.02.001. [DOI] [PubMed] [Google Scholar]
  • 113.Shime H, Maruyama A, Yoshida S, Takeda Y, Matsumoto M, Seya T. Toll-like receptor 2 ligand and interferon-gamma suppress anti-tumor T cell responses by enhancing the immunosuppressive activity of monocytic myeloid-derived suppressor cells. Oncoimmunology. 2017;7:e1373231. doi: 10.1080/2162402X.2017.1373231. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 114.Chaoul N, Tang A, Desrues B, Oberkampf M, Fayolle C, Ladant D, Sainz-Perez A, Leclerc C. Lack of MHC class II molecules favors CD8(+) T-cell infiltration into tumors associated with an increased control of tumor growth. Oncoimmunology. 2018;7:e1404213. doi: 10.1080/2162402X.2017.1404213. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 115.Dunn GP, Koebel CM, Schreiber RD. Interferons, immunity and cancer immunoediting. Nat Rev Immunol. 2006;6:836–848. doi: 10.1038/nri1961. [DOI] [PubMed] [Google Scholar]
  • 116.Dunn GP, Bruce AT, Ikeda H, Old LJ, Schreiber RD. Cancer immunoediting: from immunosurveillance to tumor escape. Nat Immunol. 2002;3:991–998. doi: 10.1038/ni1102-991. [DOI] [PubMed] [Google Scholar]
  • 117.Walter S, Weinschenk T, Stenzl A, Zdrojowy R, Pluzanska A, Szczylik C, Staehler M, Brugger W, Dietrich PY, Mendrzyk R, et al. Multipeptide immune response to cancer vaccine IMA901 after single-dose cyclophosphamide associates with longer patient survival. Nat Med. 2012;18:1254–1261. doi: 10.1038/nm.2883. [DOI] [PubMed] [Google Scholar]
  • 118.Pol J, Bloy N, Buque A, Eggermont A, Cremer I, Sautes-Fridman C, Galon J, Tartour E, Zitvogel L, Kroemer G, et al. Trial watch: peptide-based anticancer vaccines. Oncoimmunology. 2015;4:e974411. doi: 10.4161/2162402X.2014.974411. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 119.Romero P, Banchereau J, Bhardwaj N, Cockett M, Disis ML, Dranoff G, Gilboa E, Hammond SA, Hershberg R, Korman AJ, et al. The human vaccines project: a roadmap for cancer vaccine development. Sci Transl Med. 2016;8:334–339. doi: 10.1126/scitranslmed.aaf0685. [DOI] [PubMed] [Google Scholar]
  • 120.Hos BJ, Tondini E, Van Kasteren SI, Ossendorp F. Approaches to improve chemically defined synthetic peptide vaccines. Front Immunol. 2018;9:884. doi: 10.3389/fimmu.2018.00884. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 121.Arens R, Van Hall T, Van Der Burg SH, Ossendorp F, Melief CJ. Prospects of combinatorial synthetic peptide vaccine-based immunotherapy against cancer. Semin Immunol. 2013;25:182–190. doi: 10.1016/j.smim.2013.04.008. [DOI] [PubMed] [Google Scholar]
  • 122.Drug and Device News P T. 2017;42:554–593. [PMC free article] [PubMed] [Google Scholar]
  • 123.Agosti JM, Goldie SJ. Introducing HPV vaccine in developing countries–key challenges and issues. N Engl J Med. 2007;356:1908–1910. doi: 10.1056/NEJMp078053. [DOI] [PubMed] [Google Scholar]
  • 124.Paavonen J, Naud P, Salmeron J, Wheeler CM, Chow SN, Apter D, Kitchener H, Castellsague X, Teixeira JC, Skinner SR, et al. Efficacy of human papillomavirus (HPV)-16/18 AS04-adjuvanted vaccine against cervical infection and precancer caused by oncogenic HPV types (PATRICIA): final analysis of a double-blind, randomised study in young women. Lancet. 2009;374:301–314. doi: 10.1016/S0140-6736(09)61248-4. [DOI] [PubMed] [Google Scholar]
  • 125.Group FIS Quadrivalent vaccine against human papillomavirus to prevent high-grade cervical lesions. N Engl J Med. 2007;356:1915–1927. doi: 10.1056/NEJMoa061741. [DOI] [PubMed] [Google Scholar]
  • 126.Zhai L, Tumban E. Gardasil-9: A global survey of projected efficacy. Antiviral Res. 2016;130:101–109. doi: 10.1016/j.antiviral.2016.03.016. [DOI] [PubMed] [Google Scholar]
  • 127.Cuzick J. Gardasil 9 joins the fight against cervix cancer. Expert Rev Vaccines. 2015;14:1047–1049. doi: 10.1586/14760584.2015.1051470. [DOI] [PubMed] [Google Scholar]
  • 128.Van Poelgeest MI, Welters MJ, Van Esch EM, Stynenbosch LF, Kerpershoek G, Van Persijn Van Meerten EL, Van Den Hende M, Lowik MJ, Berends-Van Der Meer DM, Fathers LM, et al. HPV16 synthetic long peptide (HPV16-SLP) vaccination therapy of patients with advanced or recurrent HPV16-induced gynecological carcinoma, a phase II trial. J Transl Med. 2013;11:88. doi: 10.1186/1479-5876-11-88. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 129.Van Poelgeest MI, Welters MJ, Vermeij R, Stynenbosch LF, Loof NM, Berends-Van Der Meer DM, Lowik MJ, Hamming IL, Van Esch EM, Hellebrekers BW, et al. Vaccination against oncoproteins of HPV16 for noninvasive vulvar/vaginal lesions: lesion clearance is related to the strength of the T-cell response. Clin Cancer Res. 2016;22:2342–2350. doi: 10.1158/1078-0432.CCR-15-2594. [DOI] [PubMed] [Google Scholar]
  • 130.Kenter GG, Welters MJ, Valentijn AR, Lowik MJ, Berends-Van Der Meer DM, Vloon AP, Essahsah F, Fathers LM, Offringa R, Drijfhout JW, et al. Vaccination against HPV-16 oncoproteins for vulvar intraepithelial neoplasia. N Engl J Med. 2009;361:1838–1847. doi: 10.1056/NEJMoa0810097. [DOI] [PubMed] [Google Scholar]
  • 131.Obeid J, Hu Y, Slingluff CL Jr.. Vaccines, adjuvants, and dendritic cell activators–current status and future challenges. Semin Oncol. 2015;42:549–561. doi: 10.1053/j.seminoncol.2015.05.006. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 132.Moynihan KD, Opel CF, Szeto GL, Tzeng A, Zhu EF, Engreitz JM, Williams RT, Rakhra K, Zhang MH, Rothschilds AM, et al. Eradication of large established tumors in mice by combination immunotherapy that engages innate and adaptive immune responses. Nat Med. 2016;22:1402–1410. doi: 10.1038/nm.4200. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 133.Gubin MM, Zhang X, Schuster H, Caron E, Ward JP, Noguchi T, Ivanova Y, Hundal J, Arthur CD, Krebber WJ, et al. Checkpoint blockade cancer immunotherapy targets tumour-specific mutant antigens. Nature. 2014;515:577–581. doi: 10.1038/nature13988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 134.Hailemichael Y, Woods A, Fu T, He Q, Nielsen MC, Hasan F, Roszik J, Xiao Z, Vianden C, Khong H, et al. Cancer vaccine formulation dictates synergy with CTLA-4 and PD-L1 checkpoint blockade therapy. J Clin Invest. 2018;128:1338–1354. doi: 10.1172/JCI93303. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 135.Popovic A, Jaffee EM, Zaidi N. Emerging strategies for combination checkpoint modulators in cancer immunotherapy. J Clin Invest. 2018;128:3209–3218. doi: 10.1172/JCI120775. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 136.Nagaoka K, Hosoi A, Iino T, Morishita Y, Matsushita H, Kakimi K. Dendritic cell vaccine induces antigen-specific CD8(+) T cells that are metabolically distinct from those of peptide vaccine and is well-combined with PD-1 checkpoint blockade. Oncoimmunology. 2018;7:e1395124. doi: 10.1080/2162402X.2017.1395124. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 137.Hodi FS, O’Day SJ, McDermott DF, Weber RW, Sosman JA, Haanen JB, Gonzalez R, Robert C, Schadendorf D, Hassel JC, et al. Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med. 2010;363:711–723. doi: 10.1056/NEJMoa1003466. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 138.Fournier C, Martin F, Zitvogel L, Kroemer G, Galluzzi L, Apetoh L. Trial watch: adoptively transferred cells for anticancer immunotherapy. Oncoimmunology. 2017;6:e1363139. doi: 10.1080/2162402X.2017.1363139. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 139.Pierini S, Perales-Linares R, Uribe-Herranz M, Pol JG, Zitvogel L, Kroemer G, Facciabene A, Galluzzi L. Trial watch: DNA-based vaccines for oncological indications. Oncoimmunology. 2017;6:e1398878. doi: 10.1080/2162402X.2017.1398878. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 140.Vansteenkiste JF, Cho BC, Vanakesa T, De Pas T, Zielinski M, Kim MS, Jassem J, Yoshimura M, Dahabreh J, Nakayama H, et al. Efficacy of the MAGE-A3 cancer immunotherapeutic as adjuvant therapy in patients with resected MAGE-A3-positive non-small-cell lung cancer (MAGRIT): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Oncol. 2016;17:822–835. doi: 10.1016/S1470-2045(16)00099-1. [DOI] [PubMed] [Google Scholar]
  • 141.Higgins M, Curigliano G, Dieras V, Kuemmel S, Kunz G, Fasching PA, Campone M, Bachelot T, Krivorotko P, Chan S, et al. Safety and immunogenicity of neoadjuvant treatment using WT1-immunotherapeutic in combination with standard therapy in patients with WT1-positive Stage II/III breast cancer: a randomized Phase I study. Breast Cancer Res Treat. 2017;162:479–488. doi: 10.1007/s10549-017-4130-y. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 142.Obara W, Eto M, Mimata H, Kohri K, Mitsuhata N, Miura I, Shuin T, Miki T, Koie T, Fujimoto H, et al. A phase I/II study of cancer peptide vaccine S-288310 in patients with advanced urothelial carcinoma of the bladder. Ann Oncol. 2017;28:798–803. doi: 10.1093/annonc/mdw675. [DOI] [PubMed] [Google Scholar]
  • 143.Obara W, Sato F, Takeda K, Kato R, Kato Y, Kanehira M, Takata R, Mimata H, Sugai T, Nakamura Y, et al. Phase I clinical trial of cell division associated 1 (CDCA1) peptide vaccination for castration resistant prostate cancer. Cancer Sci. 2017;108:1452–1457. doi: 10.1111/cas.13278. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 144.Slingluff CL Jr., Petroni GR, Olson WC, Smolkin ME, Chianese-Bullock KA, Mauldin IS, Smith KT, Deacon DH, Varhegyi NE, Donnelly SB, et al. A randomized pilot trial testing the safety and immunologic effects of a MAGE-A3 protein plus AS15 immunostimulant administered into muscle or into dermal/subcutaneous sites. Cancer Immunol Immunother. 2016;65:25–36. doi: 10.1007/s00262-015-1770-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 145.Gutzmer R, Rivoltini L, Levchenko E, Testori A, Utikal J, Ascierto PA, Demidov L, Grob JJ, Ridolfi R, Schadendorf D, et al. Safety and immunogenicity of the PRAME cancer immunotherapeutic in metastatic melanoma: results of a phase I dose escalation study. ESMO Open. 2016;1:e000068. doi: 10.1136/esmoopen-2016-000068. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 146.Saiag P, Gutzmer R, Ascierto PA, Maio M, Grob JJ, Murawa P, Dreno B, Ross M, Weber J, Hauschild A, et al. Prospective assessment of a gene signature potentially predictive of clinical benefit in metastatic melanoma patients following MAGE-A3 immunotherapeutic (PREDICT). Ann Oncol. 2016;27:1947–1953. doi: 10.1093/annonc/mdw291. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 147.Pujol JL, Vansteenkiste JF, De Pas TM, Atanackovic D, Reck M, Thomeer M, Douillard JY, Fasola G, Potter V, Taylor P, et al. Safety and Immunogenicity of MAGE-A3 cancer immunotherapeutic with or without adjuvant chemotherapy in patients with resected stage IB to III MAGE-A3-positive non-small-cell lung cancer. J Thorac Oncol. 2015;10:1458–1467. doi: 10.1097/JTO.0000000000000653. [DOI] [PubMed] [Google Scholar]
  • 148.Stanton SE, Eary JF, Marzbani EA, Mankoff D, Salazar LG, Higgins D, Childs J, Reichow J, Dang Y, Disis ML. Concurrent SPECT/PET-CT imaging as a method for tracking adoptively transferred T-cells in vivo. J Immunother Cancer. 2016;4:27. doi: 10.1186/s40425-016-0131-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 149.Berinstein NL, Karkada M, Oza AM, Odunsi K, Villella JA, Nemunaitis JJ, Morse MA, Pejovic T, Bentley J, Buyse M, et al. Survivin-targeted immunotherapy drives robust polyfunctional T cell generation and differentiation in advanced ovarian cancer patients. Oncoimmunology. 2015;4:e1026529. doi: 10.1080/2162402X.2015.1026529. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 150.Eckert F, Gaipl US, Niedermann G, Hettich M, Schilbach K, Huber SM, Zips D. Beyond checkpoint inhibition - Immunotherapeutical strategies in combination with radiation. Clin Transl Radiat Oncol. 2017;2:29–35. doi: 10.1016/j.ctro.2016.12.006. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 151.Brayer J, Lancet JE, Powers J, List A, Balducci L, Komrokji R, Pinilla-Ibarz J. WT1 vaccination in AML and MDS: A pilot trial with synthetic analog peptides. Am J Hematol. 2015;90:602–607. doi: 10.1002/ajh.24014. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 152.Okada H, Butterfield LH, Hamilton RL, Hoji A, Sakaki M, Ahn BJ, Kohanbash G, Drappatz J, Engh J, Amankulor N, et al. Induction of robust type-I CD8+ T-cell responses in WHO grade 2 low-grade glioma patients receiving peptide-based vaccines in combination with poly-ICLC. Clin Cancer Res. 2015;21:286–294. doi: 10.1158/1078-0432.CCR-14-1790. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 153.Weller M, Butowski N, Tran DD, Recht LD, Lim M, Hirte H, Ashby L, Mechtler L, Goldlust SA, Iwamoto F, et al. Rindopepimut with temozolomide for patients with newly diagnosed, EGFRvIII-expressing glioblastoma (ACT IV): a randomised, double-blind, international phase 3 trial. Lancet Oncol. 2017;18:1373–1385. doi: 10.1016/S1470-2045(17)30517-X. [DOI] [PubMed] [Google Scholar]
  • 154.Wood LV, Fojo A, Roberson BD, Hughes MS, Dahut W, Gulley JL, Madan RA, Arlen PM, Sabatino M, Stroncek DF, et al. TARP vaccination is associated with slowing in PSA velocity and decreasing tumor growth rates in patients with stage D0 prostate cancer. Oncoimmunology. 2016;5:e1197459. doi: 10.1080/2162402X.2016.1197459. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 155.Mauldin IS, Wages NA, Stowman AM, Wang E, Olson WC, Deacon DH, Smith KT, Galeassi N, Teague JE, Smolkin ME, et al. Topical treatment of melanoma metastases with imiquimod, plus administration of a cancer vaccine, promotes immune signatures in the metastases. Cancer Immunol Immunother. 2016;65:1201–1212. doi: 10.1007/s00262-016-1880-z. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 156.Mauldin IS, Wages NA, Stowman AM, Wang E, Smolkin ME, Olson WC, Deacon DH, Smith KT, Galeassi NV, Chianese-Bullock KA, et al. Intratumoral interferon-gamma increases chemokine production but fails to increase T cell infiltration of human melanoma metastases. Cancer Immunol Immunother. 2016;65:1189–1199. doi: 10.1007/s00262-016-1881-y. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 157.Nitschke NJ, Bjoern J, Iversen TZ, Andersen MH, Svane IM. Indoleamine 2,3-dioxygenase and survivin peptide vaccine combined with temozolomide in metastatic melanoma. Stem Cell Investig. 2017;4:77. doi: 10.21037/sci.2017.08.06. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 158.Sabado RL, Pavlick A, Gnjatic S, Cruz CM, Vengco I, Hasan F, Spadaccia M, Darvishian F, Chiriboga L, Holman RM, et al. Resiquimod as an immunologic adjuvant for NY-ESO-1 protein vaccination in patients with high-risk melanoma. Cancer Immunol Res. 2015;3:278–287. doi: 10.1158/2326-6066.CIR-14-0202. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 159.Kobayashi Y, Sakura T, Miyawaki S, Toga K, Sogo S, Heike Y. A new peptide vaccine OCV-501: in vitro pharmacology and phase 1 study in patients with acute myeloid leukemia. Cancer Immunol Immunother. 2017;66:851–863. doi: 10.1007/s00262-017-1981-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 160.Sakamoto S, Yamada T, Terazaki Y, Yoshiyama K, Sugawara S, Takamori S, Matsueda S, Shichijo S, Yamada A, Noguchi M, et al. Feasibility study of personalized peptide vaccination for advanced small cell lung cancer. Clin Lung Cancer. 2017;18:e385–e394. doi: 10.1016/j.cllc.2017.03.011. [DOI] [PubMed] [Google Scholar]
  • 161.Mittendorf EA, Ardavanis A, Litton JK, Shumway NM, Hale DF, Murray JL, Perez SA, Ponniah S, Baxevanis CN, Papamichail M, et al. Primary analysis of a prospective, randomized, single-blinded phase II trial evaluating the HER2 peptide GP2 vaccine in breast cancer patients to prevent recurrence. Oncotarget. 2016;7:66192–66201. doi: 10.18632/oncotarget.11751. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 162.Baumgaertner P, Costa Nunes C, Cachot A, Maby-El Hajjami H, Cagnon L, Braun M, Derre L, Rivals JP, Rimoldi D, Gnjatic S, et al. Vaccination of stage III/IV melanoma patients with long NY-ESO-1 peptide and CpG-B elicits robust CD8(+) and CD4(+) T-cell responses with multiple specificities including a novel DR7-restricted epitope. Oncoimmunology. 2016;5:e1216290. doi: 10.1080/2162402X.2016.1216290. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 163.Hasegawa K, Ikeda Y, Kunugi Y, Kurosaki A, Imai Y, Kohyama S, Nagao S, Kozawa E, Yoshida K, Tsunoda T, et al. Phase I study of multiple epitope peptide vaccination in patients with recurrent or persistent cervical cancer. J Immunother. 2018;41:201–207. doi: 10.1097/CJI.0000000000000214. [DOI] [PubMed] [Google Scholar]
  • 164.Yutani S, Shirahama T, Muroya D, Matsueda S, Yamaguchi R, Morita M, Shichijo S, Yamada A, Sasada T, Itoh K. Feasibility study of personalized peptide vaccination for hepatocellular carcinoma patients refractory to locoregional therapies. Cancer Sci. 2017;108:1732–1738. doi: 10.1111/cas.13301. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 165.Shirahama T, Muroya D, Matsueda S, Yamada A, Shichijo S, Naito M, Yamashita T, Sakamoto S, Okuda K, Itoh K, et al. A randomized phase II trial of personalized peptide vaccine with low dose cyclophosphamide in biliary tract cancer. Cancer Sci. 2017;108:838–845. doi: 10.1111/cas.13193. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 166.Kohrt HE, Muller A, Baker J, Goldstein MJ, Newell E, Dutt S, Czerwinski D, Lowsky R, Strober S. Donor immunization with WT1 peptide augments antileukemic activity after MHC-matched bone marrow transplantation. Blood. 2011;118:5319–5329. doi: 10.1182/blood-2011-05-356238. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 167.Kimura T, Egawa S, Uemura H. Personalized peptide vaccines and their relation to other therapies in urological cancer. Nat Rev Urol. 2017;14:501–510. doi: 10.1038/nrurol.2017.77. [DOI] [PubMed] [Google Scholar]
  • 168.Ott PA, Hu Z, Keskin DB, Shukla SA, Sun J, Bozym DJ, Zhang W, Luoma A, Giobbie-Hurder A, Peter L, et al. An immunogenic personal neoantigen vaccine for patients with melanoma. Nature. 2017;547:217–221. doi: 10.1038/nature22991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 169.Melief CJM. Cancer: precision T-cell therapy targets tumours. Nature. 2017;547:165–167. doi: 10.1038/nature23093. [DOI] [PubMed] [Google Scholar]
  • 170.Alexandrov LB, Nik-Zainal S, Wedge DC, Aparicio SA, Behjati S, Biankin AV, Bignell GR, Bolli N, Borg A, Borresen-Dale AL, et al. Signatures of mutational processes in human cancer. Nature. 2013;500:415–421. doi: 10.1038/nature12477. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 171.Gall VA, Philips AV, Qiao N, Clise-Dwyer K, Perakis AA, Zhang M, Clifton GT, Sukhumalchandra P, Ma Q, Reddy SM, et al. Trastuzumab increases HER2 uptake and cross-presentation by dendritic cells. Cancer Res. 2017;77:5374–5383. doi: 10.1158/0008-5472.CAN-16-2774. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 172.Tsuruta M, Ueda S, Yew PY, Fukuda I, Yoshimura S, Kishi H, Hamana H, Hirayama M, Yatsuda J, Irie A, et al. Bladder cancer-associated cancer-testis antigen-derived long peptides encompassing both CTL and promiscuous HLA class II-restricted Th cell epitopes induced CD4(+) T cells expressing converged T-cell receptor genes in vitro. Oncoimmunology. 2018;7:e1415687. doi: 10.1080/2162402X.2017.1415687. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 173.Petrizzo A, Mauriello A, Luciano A, Rea D, Barbieri A, Arra C, Maiolino P, Tornesello M, Gigantino V, Botti G, et al. Inhibition of tumor growth by cancer vaccine combined with metronomic chemotherapy and anti-PD-1 in a pre-clinical setting. Oncotarget. 2018;9:3576–3589. doi: 10.18632/oncotarget.23181. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 174.Tanaka H, Hazama S, Iida M, Tsunedomi R, Takenouchi H, Nakajima M, Tokumitsu Y, Kanekiyo S, Shindo Y, Tomochika S, et al. miR-125b-1 and miR-378a are predictive biomarkers for the efficacy of vaccine treatment against colorectal cancer. Cancer Sci. 2017;108:2229–2238. doi: 10.1111/cas.13390. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 175.Huang L, Wang Z, Liu C, Xu C, Mbofung RM, McKenzie JA, Khong H, Hwu P, Peng W. CpG-based immunotherapy impairs antitumor activity of BRAF inhibitors in a B-cell-dependent manner. Oncogene. 2017;36:4081–4086. doi: 10.1038/onc.2017.35. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 176.Yarchoan M, Johnson BA 3rd, Lutz ER, Laheru DA, Jaffee EM. Targeting neoantigens to augment antitumour immunity. Nat Rev Cancer. 2017;17:209–222. doi: 10.1038/nrc.2016.154. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 177.Purcell AW, McCluskey J, Rossjohn J. More than one reason to rethink the use of peptides in vaccine design. Nat Rev Drug Discov. 2007;6:404–414. doi: 10.1038/nrd2224. [DOI] [PubMed] [Google Scholar]
  • 178.Melief CJ, van der Burg SH. Immunotherapy of established (pre)malignant disease by synthetic long peptide vaccines. Nat Rev Cancer. 2008;8:351–360. doi: 10.1038/nrc2373. [DOI] [PubMed] [Google Scholar]
  • 179.Goodridge HS, Ahmed SS, Curtis N, Kollmann TR, Levy O, Netea MG, Pollard AJ, Van Crevel R, Wilson CB. Harnessing the beneficial heterologous effects of vaccination. Nat Rev Immunol. 2016;16:392–400. doi: 10.1038/nri.2016.43. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 180.Pashine A, Valiante NM, Ulmer JB. Targeting the innate immune response with improved vaccine adjuvants. Nat Med. 2005;11:S63–68. doi: 10.1038/nm1210. [DOI] [PubMed] [Google Scholar]
  • 181.Chiang CL, Kandalaft LE, Coukos G. Adjuvants for enhancing the immunogenicity of whole tumor cell vaccines. Int Rev Immunol. 2011;30:150–182. doi: 10.3109/08830185.2011.572210. [DOI] [PubMed] [Google Scholar]
  • 182.McElrath MJ. Adjuvants: tailoring humoral immune responses. Curr Opin HIV AIDS. 2017;12:278–284. doi: 10.1097/COH.0000000000000365. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 183.Chianese-Bullock KA, Pressley J, Garbee C, Hibbitts S, Murphy C, Yamshchikov G, Petroni GR, Bissonette EA, Neese PY, Grosh WW, et al. MAGE-A1-, MAGE-A10-, and gp100-derived peptides are immunogenic when combined with granulocyte-macrophage colony-stimulating factor and montanide ISA-51 adjuvant and administered as part of a multipeptide vaccine for melanoma. J Immunol. 2005;174:3080–3086. [DOI] [PubMed] [Google Scholar]
  • 184.Verdijk RM, Mutis T, Esendam B, Kamp J, Melief CJ, Brand A, Goulmy E. Polyriboinosinic polyribocytidylic acid (poly(I:C)) induces stable maturation of functionally active human dendritic cells. J Immunol. 1999;163:57–61. [PubMed] [Google Scholar]
  • 185.Van Elsas A, Hurwitz AA, Allison JP. Combination immunotherapy of B16 melanoma using anti-cytotoxic T lymphocyte-associated antigen 4 (CTLA-4) and granulocyte/macrophage colony-stimulating factor (GM-CSF)-producing vaccines induces rejection of subcutaneous and metastatic tumors accompanied by autoimmune depigmentation. J Exp Med. 1999;190:355–366. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 186.Van Den Eertwegh AJ, Versluis J, Van Den Berg HP, Santegoets SJ, Van Moorselaar RJ, Van Der Sluis TM, Gall HE, Harding TC, Jooss K, Lowy I, et al. Combined immunotherapy with granulocyte-macrophage colony-stimulating factor-transduced allogeneic prostate cancer cells and ipilimumab in patients with metastatic castration-resistant prostate cancer: a phase 1 dose-escalation trial. Lancet Oncol. 2012;13:509–517. doi: 10.1016/S1470-2045(12)70007-4. [DOI] [PubMed] [Google Scholar]
  • 187.Lawson DH, Lee S, Zhao F, Tarhini AA, Margolin KA, Ernstoff MS, Atkins MB, Cohen GI, Whiteside TL, Butterfield LH, et al. Randomized, placebo-controlled, phase III trial of yeast-derived granulocyte-macrophage colony-stimulating factor (GM-CSF) versus peptide vaccination versus GM-CSF plus peptide vaccination versus placebo in patients with no evidence of disease after complete surgical resection of locally advanced and/or stage IV melanoma: a trial of the eastern cooperative oncology group-american college of radiology imaging network cancer research group (E4697). J Clin Oncol. 2015;33:4066–4076. doi: 10.1200/JCO.2015.62.0500. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 188.Van Der Sluis TC, Van Duikeren S, Huppelschoten S, Jordanova ES, Beyranvand Nejad E, Sloots A, Boon L, Smit VT, Welters MJ, Ossendorp F, et al. Vaccine-induced tumor necrosis factor-producing T cells synergize with cisplatin to promote tumor cell death. Clin Cancer Res. 2015;21:781–794. doi: 10.1158/1078-0432.CCR-14-2142. [DOI] [PubMed] [Google Scholar]
  • 189.Zitvogel L, Apetoh L, Ghiringhelli F, Kroemer G. Immunological aspects of cancer chemotherapy. Nat Rev Immunol. 2008;8:59–73. doi: 10.1038/nri2216. [DOI] [PubMed] [Google Scholar]
  • 190.Dranoff G. Tailor-made renal cell carcinoma vaccines. Cancer Cell. 2012;22:287–289. doi: 10.1016/j.ccr.2012.08.021. [DOI] [PubMed] [Google Scholar]
  • 191.Tagliamonte M, Petrizzo A, Napolitano M, Luciano A, Arra C, Maiolino P, Izzo F, Tornesello ML, Aurisicchio L, Ciliberto G, et al. Novel metronomic chemotherapy and cancer vaccine combinatorial strategy for hepatocellular carcinoma in a mouse model. Cancer Immunol Immunother. 2015;64:1305–1314. doi: 10.1007/s00262-015-1698-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 192.Demaria S, Ng B, Devitt ML, Babb JS, Kawashima N, Liebes L, Formenti SC. Ionizing radiation inhibition of distant untreated tumors (abscopal effect) is immune mediated. Int J Radiat Oncol Biol Phys. 2004;58:862–870. doi: 10.1016/j.ijrobp.2003.09.012. [DOI] [PubMed] [Google Scholar]
  • 193.Vanpouille-Box C, Diamond JM, Pilones KA, Zavadil J, Babb JS, Formenti SC, Barcellos-Hoff MH, Demaria S. TGFbeta is a master regulator of radiation therapy-induced antitumor immunity. Cancer Res. 2015;75:2232–2242. doi: 10.1158/0008-5472.CAN-14-3511. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 194.Wennerberg E, Lhuillier C, Vanpouille-Box C, Pilones KA, Garcia-Martinez E, Rudqvist NP, Formenti SC, Demaria S. Barriers to radiation-induced in situ tumor vaccination. Front Immunol. 2017;8:229. doi: 10.3389/fimmu.2017.00229. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 195.Cadena A, Cushman TR, Anderson C, Barsoumian HB, Welsh JW, Cortez MA. Radiation and anti-cancer vaccines: a winning combination. Vaccines (Basel). 2018;6. doi: 10.3390/vaccines6010009. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 196.Yamaue H, Tsunoda T, Tani M, Miyazawa M, Yamao K, Mizuno N, Okusaka T, Ueno H, Boku N, Fukutomi A, et al. Randomized phase II/III clinical trial of elpamotide for patients with advanced pancreatic cancer: PEGASUS-PC study. Cancer Sci. 2015;106:883–890. doi: 10.1111/cas.12674. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 197.Melssen M, Slingluff CL Jr.. Vaccines targeting helper T cells for cancer immunotherapy. Curr Opin Immunol. 2017;47:85–92. doi: 10.1016/j.coi.2017.07.004. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 198.Keefe DM, Bateman EH. Tumor control versus adverse events with targeted anticancer therapies. Nat Rev Clin Oncol. 2011;9:98–109. doi: 10.1038/nrclinonc.2011.192. [DOI] [PubMed] [Google Scholar]
  • 199.Lopez JS, Banerji U. Combine and conquer: challenges for targeted therapy combinations in early phase trials. Nat Rev Clin Oncol. 2017;14:57–66. doi: 10.1038/nrclinonc.2016.96. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 200.Schmidt C. The benefits of immunotherapy combinations. Nature. 2017;552:S67–S69. doi: 10.1038/d41586-017-08702-7. [DOI] [PubMed] [Google Scholar]
  • 201.Versteven M, Jmj VDB, Marcq E, Smits ELJ, Van Tendeloo VFI, Hobo W, Lion E. Dendritic cells and programmed death-1 blockade: a joint venture to combat cancer. Front Immunol. 2018;9:394. doi: 10.3389/fimmu.2018.00394. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 202.Jacquelot N, Roberti MP, Enot DP, Rusakiewicz S, Ternes N, Jegou S, Woods DM, Sodre AL, Hansen M, Meirow Y, et al. Predictors of responses to immune checkpoint blockade in advanced melanoma. Nat Commun. 2017;8:592. doi: 10.1038/s41467-017-00608-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 203.Smyth MJ, Ngiow SF, Ribas A, Teng MW. Combination cancer immunotherapies tailored to the tumour microenvironment. Nat Rev Clin Oncol. 2016;13:143–158. doi: 10.1038/nrclinonc.2015.209. [DOI] [PubMed] [Google Scholar]
  • 204.Wei SC, Levine JH, Cogdill AP, Zhao Y, Anang NAS, Andrews MC, Sharma P, Wang J, Wargo JA, Pe’er D, et al. Distinct cellular mechanisms underlie anti-CTLA-4 and anti-PD-1 checkpoint blockade. Cell. 2017;170:1120–1133 e1117. doi: 10.1016/j.cell.2017.07.024. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 205.Liu P, Zhao L, Loos F, Iribarren K, Kepp O, Kroemer G. Epigenetic anticancer agents cause HMGB1 release in vivo. Oncoimmunology. 2018;7:e1431090. doi: 10.1080/2162402X.2018.1431090. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 206.Pfirschke C, Engblom C, Rickelt S, Cortez-Retamozo V, Garris C, Pucci F, Yamazaki T, Poirier-Colame V, Newton A, Redouane Y, et al. Immunogenic chemotherapy sensitizes tumors to checkpoint blockade therapy. Immunity. 2016;44:343–354. doi: 10.1016/j.immuni.2015.11.024. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 207.Tumeh PC, Harview CL, Yearley JH, Shintaku IP, Taylor EJ, Robert L, Chmielowski B, Spasic M, Henry G, Ciobanu V, et al. PD-1 blockade induces responses by inhibiting adaptive immune resistance. Nature. 2014;515:568–571. doi: 10.1038/nature13954. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 208.Zitvogel L, Kroemer G. Targeting PD-1/PD-L1 interactions for cancer immunotherapy. Oncoimmunology. 2012;1:1223–1225. doi: 10.4161/onci.21335. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 209.Kang J, Galluzzi L. PD-L1 blockade for urothelial carcinoma. Oncoimmunology. 2017;6:e1334028. doi: 10.1080/2162402X.2017.1334028. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 210.Siefker-Radtke A, Curti B. Immunotherapy in metastatic urothelial carcinoma: focus on immune checkpoint inhibition. Nat Rev Urol. 2018;15:112–124. doi: 10.1038/nrurol.2017.190. [DOI] [PubMed] [Google Scholar]
  • 211.Jelinek T, Hajek R. PD-1/PD-L1 inhibitors in multiple myeloma: the present and the future. Oncoimmunology. 2016;5:e1254856. doi: 10.1080/2162402X.2016.1254856. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 212.Sharma P, Logothetis C. Prostate cancer: combination of vaccine plus ipilimumab–safety and toxicity. Nat Rev Urol. 2012;9:302–303. doi: 10.1038/nrurol.2012.103. [DOI] [PubMed] [Google Scholar]
  • 213.Vetizou M, Pitt JM, Daillere R, Lepage P, Waldschmitt N, Flament C, Rusakiewicz S, Routy B, Roberti MP, Duong CP, et al. Anticancer immunotherapy by CTLA-4 blockade relies on the gut microbiota. Science. 2015;350:1079–1084. doi: 10.1126/science.aad1329. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 214.Sidaway P. Immunotherapy: local chemotherapy synergizes with CTLA-4 inhibition. Nat Rev Clin Oncol. 2018;15:202. doi: 10.1038/nrclinonc.2018.22. [DOI] [PubMed] [Google Scholar]
  • 215.Hopkins AC, Yarchoan M, Durham JN, Yusko EC, Rytlewski JA, Robins HS, Laheru DA, Le DT, Lutz ER, Jaffee EM. T cell receptor repertoire features associated with survival in immunotherapy-treated pancreatic ductal adenocarcinoma. JCI Insight. 2018;3. doi: 10.1172/jci.insight.122092. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 216.Aranda F, Vacchelli E, Eggermont A, Galon J, Fridman WH, Zitvogel L, Kroemer G, Galluzzi L. Trial watch: immunostimulatory monoclonal antibodies in cancer therapy. Oncoimmunology. 2014;3:e27297. doi: 10.4161/onci.27297. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 217.Chester C, Sanmamed MF, Wang J, Melero I. Immunotherapy targeting 4-1BB: mechanistic rationale, clinical results, and future strategies. Blood. 2018;131:49–57. doi: 10.1182/blood-2017-06-741041. [DOI] [PubMed] [Google Scholar]
  • 218.Enhancing PD-1 Blockade in solid tumors. Cancer Discov. 2016;6:OF2. doi: 10.1158/2159-8290.CD-NB2016-086. [DOI] [PubMed] [Google Scholar]
  • 219.Turaj AH, Hussain K, Cox KL, Rose-Zerilli MJJ, Testa J, Dahal LN, Chan HTC, James S, Field VL, Carter MJ, et al. Antibody tumor targeting is enhanced by CD27 agonists through myeloid recruitment. Cancer Cell. 2017;32:777–791 e776. doi: 10.1016/j.ccell.2017.11.001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 220.Wei SM, Fei JX, Tao F, Pan HL, Shen Q, Wang L, Wu YJ, Zhou L, Zhu SX, Liao WB, et al. Anti-CD27 antibody potentiates antitumor effect of dendritic cell-based vaccine in prostate cancer-bearing mice. Int Surg. 2015;100:155–163. doi: 10.9738/INTSURG-D-14-00147.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 221.Vo MC, Jung SH, Chu TH, Lee HJ, Lakshmi TJ, Park HS, Kim HJ, Rhee JH, Lee JJ. Lenalidomide and programmed death-1 blockade synergistically enhances the effects of dendritic cell vaccination in a model of murine myeloma. Front Immunol. 2018;9:1370. doi: 10.3389/fimmu.2018.01370. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 222.Henry JY, Labarthe MC, Meyer B, Dasgupta P, Dalgleish AG, Galustian C. Enhanced cross-priming of naive CD8+ T cells by dendritic cells treated by the IMiDs(R) immunomodulatory compounds lenalidomide and pomalidomide. Immunology. 2013;139:377–385. doi: 10.1111/imm.12087. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 223.Petrylak DP, Vogelzang NJ, Budnik N, Wiechno PJ, Sternberg CN, Doner K, Bellmunt J, Burke JM, De Olza MO, Choudhury A, et al. Docetaxel and prednisone with or without lenalidomide in chemotherapy-naive patients with metastatic castration-resistant prostate cancer (MAINSAIL): a randomised, double-blind, placebo-controlled phase 3 trial. Lancet Oncol. 2015;16:417–425. doi: 10.1016/S1470-2045(15)70025-2. [DOI] [PubMed] [Google Scholar]
  • 224.Sakamaki I, Kwak LW, Cha SC, Yi Q, Lerman B, Chen J, Surapaneni S, Bateman S, Qin H. Lenalidomide enhances the protective effect of a therapeutic vaccine and reverses immune suppression in mice bearing established lymphomas. Leukemia. 2014;28:329–337. doi: 10.1038/leu.2013.177. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 225.Yamada A, Sasada T, Noguchi M, Itoh K. Next-generation peptide vaccines for advanced cancer. Cancer Sci. 2013;104:15–21. doi: 10.1111/cas.12050. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 226.Sasada T, Yamada A, Noguchi M, Itoh K. Personalized peptide vaccine for treatment of advanced cancer. Curr Med Chem. 2014;21:2332–2345. [DOI] [PubMed] [Google Scholar]
  • 227.Roden RBS, Stern PL. Opportunities and challenges for human papillomavirus vaccination in cancer. Nat Rev Cancer. 2018;18:240–254. doi: 10.1038/nrc.2018.13. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 228.Trimble CL, Morrow MP, Kraynyak KA, Shen X, Dallas M, Yan J, Edwards L, Parker RL, Denny L, Giffear M, et al. Safety, efficacy, and immunogenicity of VGX-3100, a therapeutic synthetic DNA vaccine targeting human papillomavirus 16 and 18 E6 and E7 proteins for cervical intraepithelial neoplasia 2/3: a randomised, double-blind, placebo-controlled phase 2b trial. Lancet. 2015;386:2078–2088. doi: 10.1016/S0140-6736(15)00239-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 229.Killock D. Therapeutic HPV vaccine holds promise. Nat Rev Clin Oncol. 2015;12:686. doi: 10.1038/nrclinonc.2015.180. [DOI] [PubMed] [Google Scholar]
  • 230.Doyle HA, Koski RA, Bonafe N, Bruck RA, Tagliatela SM, Gee RJ, Mamula MJ. Epidermal growth factor receptor peptide vaccination induces cross-reactive immunity to human EGFR, HER2, and HER3. Cancer Immunol Immunother. 2018. doi: 10.1007/s00262-018-2218-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 231.Palladini A, Thrane S, Janitzek CM, Pihl J, Clemmensen SB, De Jongh WA, Clausen TM, Nicoletti G, Landuzzi L, Penichet ML, et al. Virus-like particle display of HER2 induces potent anti-cancer responses. Oncoimmunology. 2018;7:e1408749. doi: 10.1080/2162402X.2017.1408749. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 232.Dillon PM, Petroni GR, Smolkin ME, Brenin DR, Chianese-Bullock KA, Smith KT, Olson WC, Fanous IS, Nail CJ, Brenin CM, et al. A pilot study of the immunogenicity of a 9-peptide breast cancer vaccine plus poly-ICLC in early stage breast cancer. J Immunother Cancer. 2017;5:92. doi: 10.1186/s40425-017-0295-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 233.Arab A, Nicastro J, Slavcev R, Razazan A, Barati N, Nikpoor AR, Brojeni AAM, Mosaffa F, Badiee A, Jaafari MR, et al. Lambda phage nanoparticles displaying HER2-derived E75 peptide induce effective E75-CD8(+) T response. Immunol Res. 2018;66:200–206. doi: 10.1007/s12026-017-8969-0. [DOI] [PubMed] [Google Scholar]
  • 234.Arab A, Behravan J, Razazan A, Gholizadeh Z, Nikpoor AR, Barati N, Mosaffa F, Badiee A, Jaafari MR. A nano-liposome vaccine carrying E75, a HER-2/neu-derived peptide, exhibits significant antitumour activity in mice. J Drug Target. 2018;26:365–372. doi: 10.1080/1061186X.2017.1387788. [DOI] [PubMed] [Google Scholar]
  • 235.Behravan J, Razazan A, Behravan G. Towards Breast Cancer Vaccines, Progress and Challenges. Curr Drug Discov Technol. 2018. doi: 10.2174/1570163815666180502164652. [DOI] [PubMed] [Google Scholar]
  • 236.Takeoka T, Nagase H, Kurose K, Ohue Y, Yamasaki M, Takiguchi S, Sato E, Isobe M, Kanazawa T, Matsumoto M, et al. NY-ESO-1 protein cancer vaccine with poly-ICLC and OK-432: rapid and Strong Induction of NY-ESO-1-specific immune responses by poly-ICLC. J Immunother. 2017. doi: 10.1097/CJI.0000000000000162. [DOI] [PubMed] [Google Scholar]
  • 237.Schneble EJ, Berry JS, Trappey FA, Clifton GT, Ponniah S, Mittendorf E, Peoples GE. The HER2 peptide nelipepimut-S (E75) vaccine (NeuVax) in breast cancer patients at risk for recurrence: correlation of immunologic data with clinical response. Immunotherapy. 2014;6:519–531. doi: 10.2217/imt.14.22. [DOI] [PubMed] [Google Scholar]
  • 238.Andersen MH. thor SP. Survivin–a universal tumor antigen. Histol Histopathol. 2002;17:669–675. doi: 10.14670/HH-17.669. [DOI] [PubMed] [Google Scholar]
  • 239.Shima H, Kutomi G, Satomi F, Imamura M, Kimura Y, Mizuguchi T, Watanabe K, Takahashi A, Murai A, Tsukahara T, et al. Case report: long-term survival of a pancreatic cancer patient immunized with an SVN-2B peptide vaccine. Cancer Immunol Immunother. 2018. doi: 10.1007/s00262-018-2217-x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 240.Chiang CY, Chen YJ, Wu CC, Liu SJ, Leng CH, Chen HW. Efficient uptake of recombinant lipidated survivin by antigen-presenting cells initiates antigen cross-presentation and antitumor immunity. Front Immunol. 2018;9:822. doi: 10.3389/fimmu.2018.00822. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 241.Berzofsky JA, Terabe M, Trepel JB, Pastan I, Stroncek DF, Morris JC, Wood LV. Cancer vaccine strategies: translation from mice to human clinical trials. Cancer Immunol Immunother. 2017. doi: 10.1007/s00262-017-2084-x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 242.Lowenfeld L, Zaheer S, Oechsle C, Fracol M, Datta J, Xu S, Fitzpatrick E, Roses RE, Fisher CS, McDonald ES, et al. Addition of anti-estrogen therapy to anti-HER2 dendritic cell vaccination improves regional nodal immune response and pathologic complete response rate in patients with ER(pos)/HER2(pos) early breast cancer. Oncoimmunology. 2017;6:e1207032. doi: 10.1080/2162402X.2016.1207032. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 243.Cui N, Shi J, Yang C. HER2-Based Immunotherapy for Breast Cancer. Cancer Biother Radiopharm. 2018;33:169–175. doi: 10.1089/cbr.2017.2327. [DOI] [PubMed] [Google Scholar]
  • 244.Thomas R, Al-Khadairi G, Roelands J, Hendrickx W, Dermime S, Bedognetti D, Decock JNY-ESO-1. Based Immunotherapy of Cancer: current Perspectives. Front Immunol. 2018;9:947. doi: 10.3389/fimmu.2018.00947. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 245.Simpson AJ, Caballero OL, Jungbluth A, Chen YT, Old LJ. Cancer/testis antigens, gametogenesis and cancer. Nat Rev Cancer. 2005;5:615–625. doi: 10.1038/nrc1669. [DOI] [PubMed] [Google Scholar]
  • 246.Zeng G, Wang X, Robbins PF, Rosenberg SA, Wang RF. CD4(+) T cell recognition of MHC class II-restricted epitopes from NY-ESO-1 presented by a prevalent HLA DP4 allele: association with NY-ESO-1 antibody production. Proc Natl Acad Sci U S A. 2001;98:3964–3969. doi: 10.1073/pnas.061507398. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 247.Wang Y, Zhang J, Wu Y, Zy D, Xm L, Liu J, Zhong WN, Deng GH, Xia XY, Deng YT, et al. Mannan-modified adenovirus targeting TERT and VEGFR-2: A universal tumour vaccine. Sci Rep. 2015;5:11275. doi: 10.1038/srep11275. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 248.Lilleby W, Gaudernack G, Brunsvig PF, Vlatkovic L, Schulz M, Mills K, Hole KH, Inderberg EM. Phase I/IIa clinical trial of a novel hTERT peptide vaccine in men with metastatic hormone-naive prostate cancer. Cancer Immunol Immunother. 2017;66:891–901. doi: 10.1007/s00262-017-1994-y. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 249.Kim H, Seo EH, Lee SH, Kim BJ. The telomerase-derived anticancer peptide vaccine GV1001 as an extracellular heat shock protein-mediated cell-penetrating peptide. Int J Mol Sci. 2016;17. doi: 10.3390/ijms17122054. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 250.Fenoglio D, Parodi A, Lavieri R, Kalli F, Ferrera F, Tagliamacco A, Guastalla A, Lamperti MG, Giacomini M, Filaci G. Immunogenicity of GX301 cancer vaccine: four (telomerase peptides) are better than one. Hum Vaccin Immunother. 2015;11:838–850. doi: 10.1080/21645515.2015.1012032. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 251.Lee YK, Nata’atmaja BS, Kim BH, Pak CS, Heo CY. Protective effect of telomerase-based 16-mer peptide vaccine (GV1001) on inferior epigastric island skin flap survivability in ischaemia-reperfusion injury rat model. J Plast Surg Hand Surg. 2017;51:210–216. doi: 10.1080/2000656X.2016.1235046. [DOI] [PubMed] [Google Scholar]
  • 252.Kailashiya C, Sharma HB, Kailashiya J. Telomerase based anticancer immunotherapy and vaccines approaches. Vaccine. 2017;35:5768–5775. doi: 10.1016/j.vaccine.2017.09.011. [DOI] [PubMed] [Google Scholar]
  • 253.Shinde R, Shimoda M, Chaudhary K, Liu H, Mohamed E, Bradley J, Kandala S, Li X, Liu K, McGaha TL, et al IDO1 Regulates Humoral Immunity to T Cell-Independent Antigens. J Immunol. 2015;195:2374–2382. doi: 10.4049/jimmunol.1402854. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 254.Muller S, Agnihotri S, Shoger KE, Myers MI, Smith N, Chaparala S, Villanueva CR, Chattopadhyay A, Lee AV, Butterfield LH, et al. Peptide vaccine immunotherapy biomarkers and response patterns in pediatric gliomas. JCI Insight. 2018:3. doi: 10.1172/jci.insight.98791. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 255.Zhai L, Spranger S, Binder DC, Gritsina G, Lauing KL, Giles FJ, Wainwright DA. Molecular pathways: targeting IDO1 and other tryptophan dioxygenases for cancer immunotherapy. Clin Cancer Res. 2015;21:5427–5433. doi: 10.1158/1078-0432.CCR-15-0420. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 256.Prendergast GC, Malachowski WP, DuHadaway JB, Muller AJ. Discovery of IDO1 inhibitors: from bench to bedside. Cancer Res. 2017;77:6795–6811. doi: 10.1158/0008-5472.CAN-17-2285. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 257.Mitchell P, Thatcher N, Socinski MA, Wasilewska-Tesluk E, Horwood K, Szczesna A, Martin C, Ragulin Y, Zukin M, Helwig C, et al. Tecemotide in unresectable stage III non-small-cell lung cancer in the phase III START study: updated overall survival and biomarker analyses. Ann Oncol. 2015;26:1134–1142. doi: 10.1093/annonc/mdv104. [DOI] [PubMed] [Google Scholar]
  • 258.Kruit WH, Suciu S, Dreno B, Mortier L, Robert C, Chiarion-Sileni V, Maio M, Testori A, Dorval T, Grob JJ, et al. Selection of immunostimulant AS15 for active immunization with MAGE-A3 protein: results of a randomized phase II study of the European organisation for research and treatment of cancer melanoma group in metastatic melanoma. J Clin Oncol. 2013;31:2413–2420. doi: 10.1200/JCO.2012.43.7111. [DOI] [PubMed] [Google Scholar]
  • 259.Galluzzi L, Vacchelli E, Fridman WH, Galon J, Sautes-Fridman C, Tartour E, Zucman-Rossi J, Zitvogel L, Kroemer G. Trial watch: monoclonal antibodies in cancer therapy. Oncoimmunology. 2012;1:28–37. doi: 10.4161/onci.1.1.17938. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 260.Seton-Rogers S. Immunotherapy: switching off immune suppression. Nat Rev Cancer. 2017;17:1. doi: 10.1038/nrc.2016.144. [DOI] [PubMed] [Google Scholar]
  • 261.Martins I, Galluzzi L, Kroemer G. Hormesis, cell death and aging. Aging (Albany NY). 2011;3:821–828. doi: 10.18632/aging.100380. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 262.Parmiani G, Russo V, Maccalli C, Parolini D, Rizzo N, Maio M. Peptide-based vaccines for cancer therapy. Hum Vaccin Immunother. 2014;10:3175–3178. doi: 10.4161/hv.29418. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 263.Garg AD, Agostinis P. Cell death and immunity in cancer: from danger signals to mimicry of pathogen defense responses. Immunol Rev. 2017;280:126–148. doi: 10.1111/imr.12574. [DOI] [PubMed] [Google Scholar]
  • 264.Garg AD, Galluzzi L, Apetoh L, Baert T, Birge RB, Bravo-San Pedro JM, Breckpot K, Brough D, Chaurio R, Cirone M, et al. Molecular and translational classifications of DAMPs in immunogenic cell death. Front Immunol. 2015;6:588. doi: 10.3389/fimmu.2015.00588. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 265.Schreiber RD, Old LJ, Smyth MJ. Cancer immunoediting: integrating immunity’s roles in cancer suppression and promotion. Science. 2011;331:1565–1570. doi: 10.1126/science.1203486. [DOI] [PubMed] [Google Scholar]
  • 266.Gross ET, Han S, Vemu P, Peinado CD, Marsala M, Ellies LG, Bui JD. Immunosurveillance and immunoediting in MMTV-PyMT-induced mammary oncogenesis. Oncoimmunology. 2017;6:e1268310. doi: 10.1080/2162402X.2016.1268310. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 267.Lu L, Barbi J, Pan F. The regulation of immune tolerance by FOXP3. Nat Rev Immunol. 2017;17:703–717. doi: 10.1038/nri.2017.75. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 268.Wherry EJ, Kurachi M. Molecular and cellular insights into T cell exhaustion. Nat Rev Immunol. 2015;15:486–499. doi: 10.1038/nri3862. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 269.Carter CA, Oronsky BT, Roswarski J, Oronsky AL, Oronsky N, Scicinski J, Lybeck H, Kim MM, Lybeck M, Reid TR. No patient left behind: the promise of immune priming with epigenetic agents. Oncoimmunology. 2017;6:e1315486. doi: 10.1080/2162402X.2017.1315486. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 270.Bommareddy PK, Shettigar M, Kaufman HL. Integrating oncolytic viruses in combination cancer immunotherapy. Nat Rev Immunol. 2018. doi: 10.1038/s41577-018-0014-6. [DOI] [PubMed] [Google Scholar]
  • 271.Van Der Burg SH, Arens R, Ossendorp F, Van Hall T, Melief CJ. Vaccines for established cancer: overcoming the challenges posed by immune evasion. Nat Rev Cancer. 2016;16:219–233. doi: 10.1038/nrc.2016.16. [DOI] [PubMed] [Google Scholar]
  • 272.Hirayama M, Nishimura Y. The present status and future prospects of peptide-based cancer vaccines. Int Immunol. 2016;28:319–328. doi: 10.1093/intimm/dxw027. [DOI] [PubMed] [Google Scholar]
  • 273.Hu Z, Ott PA, Wu CJ. Towards personalized, tumour-specific, therapeutic vaccines for cancer. Nat Rev Immunol. 2018;18:168–182. doi: 10.1038/nri.2017.131. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 274.Finn OJ. The dawn of vaccines for cancer prevention. Nat Rev Immunol. 2018;18:183–194. doi: 10.1038/nri.2017.140. [DOI] [PubMed] [Google Scholar]
  • 275.Guo Y, Lei K, Tang L. Neoantigen vaccine delivery for personalized anticancer immunotherapy. Front Immunol. 2018;9:1499. doi: 10.3389/fimmu.2018.01499. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Oncoimmunology are provided here courtesy of Taylor & Francis

RESOURCES