In the crystal, the Schiff base molecule exists in the zwitterionic form and an intramolecular N—H⋯O hydrogen bond stabilizes the molecular structure.
Keywords: crystal structure, zwitterion, 2-hydroxy-3-methoxy-benzaldehyde, 4-aminobenzoic acid (PABA), Schiff base, hydrogen bonding, vanillin
Abstract
In the crystal of the title compound, C15H13NO4·CH3OH, the Schiff base molecule exists in the zwitterionic form; an intramolecular N—H⋯O hydrogen bond stabilizes the molecular structure. The benzene rings are nearly co-planar, subtending a dihedral angle of 5.34 (2)°. In the crystal, classical O—H⋯O and weak C—H⋯O hydrogen bonds link the Schiff base molecules and methanol solvent molecules into a three-dimensional supramolecular architecture. The crystal studied was refined as an inversion twin.
Chemical context
Vanillin and o-vanillin are natural compounds that have both a phenolic OH and an aldehyde group. They are positional isomers, in which o-vanillin shows contradictory effects. There are several reports indicating that o-vanillin induces mutations and it has also been found to enhance chromosomal aberrations in in vitro systems (Barik et al., 2004 ▸; Takahashi et al., 1989 ▸). Vanillin is also the primary component of the extract of the vanilla bean. Synthetic vanillin rather than natural vanilla extract is now more often used as a flavouring agent in foods, beverages and pharmaceuticals. Schiff bases containing o-vanillin possess antifungal and antibacterial properties (Thorat et al., 2012 ▸). 4-Aminobenzoic acid (PABA) is an important biological molecule, being an essential bacterial cofactor involved in the synthesis of folic acid (Robinson, 1966 ▸). PABA shows polymorphism and so far four polymorphs of PABA are known, all of which are centrosymmetric; a non-centrosymmetric polymorph of 4-aminobenzoic acid has also been reported (Benali-Cherif et al., 2014 ▸). Schiff bases derived from 2-hydroxy-3-methoxybenzaldehyde (o-vanillin) and PABA have not been investigated so thoroughly. Our research interest focuses on the study of Schiff bases derived from salicylaldehyde. It is well known that Schiff bases of salicylaldehyde derivatives may exhibit thermochromism or photochromism, depending on the planarity or non-planarity of the molecule (Cohen & Schmidt, 1964 ▸; Amimoto & Kawato, 2005 ▸). Schiff bases often exhibit various biological activities and in many cases have been shown to possess antibacterial, anticancer, anti-inflammatory and antitoxic properties (Lozier et al., 1975 ▸). They are used as anion sensors (Dalapati et al., 2011 ▸), as non-linear optical compounds (Sun et al., 2012 ▸) and as versatile polynuclear ligands for multinuclear magnetic exchange clusters (Moroz et al., 2012 ▸). New salicylaldehyde-based Schiff bases have also been synthesized and reported (Faizi et al., 2015a
▸,b
▸; 2016b
▸; 2017a
▸,b
▸,c
▸). The present work is a part of an ongoing structural study of Schiff bases and their utilization in the synthesis of new organic, excited state proton-transfer compounds and fluorescent chemosensors (Faizi et al., 2016a
▸; Faizi et al., 2018 ▸; Kumar et al., 2018 ▸; Mukherjee et al., 2018 ▸). We report herein the crystal structure of the title compound synthesized by the condensation reaction of 2-hydroxy-3-methoxybenzaldehyde and PABA.
Structural commentary
The asymmetric unit of the title compound contains a Schiff base molecule and a methanol molecule of crystallization. In the solid state, the Schiff base molecule (Fig. 1 ▸) exists in the zwitterionic form. An intramolecular N—H⋯O hydrogen bond stabilizes the molecular structure (Table 1 ▸). The imine group, which displays a C9—C8—N1—C5 torsion angle of 177.6 (3)°, contributes to the general planarity of the molecule. The Schiff base molecule displays a trans configuration with respect to the C=N and C–N bonds. The vanillin ring (C9–C14) is inclined to the central benzene ring (C2–C7) by 5.34 (2)°. A similar value of 5.3 (2)° is observed in 4-chloro-N′-(2-hydroxy-4-methoxybenzylidene)benzohydrazide methanol monosolvate (Zhi et al., 2011 ▸). All bond lengths are in normal ranges. The O4—C15 bond length is 1.432 (2) Å and similar value of 1.432 (2) Å is observed in (E)-2-hydroxy-3-methoxy-5-[(3-methoxyphenyl)diazenyl]benzaldehyde (Karadayı et al., 2006 ▸). The methoxy group of the 2-hydroxy-3-methoxyphenyl is almost coplanar with its bound benzene ring, as seen by the Cmethyl—O—C—C torsion angle of 178.1 (2)°.
Figure 1.
The molecular structure of the title compound, showing the atom labelling and the intramolecular N—H⋯O hydrogen bond as a dashed line. Displacement ellipsoids are drawn at the 40% probability level.
Table 1. Hydrogen-bond geometry (Å, °).
D—H⋯A | D—H | H⋯A | D⋯A | D—H⋯A |
---|---|---|---|---|
N1—H1⋯O3 | 0.86 | 1.87 | 2.568 (4) | 138 |
O2—H2⋯O5i | 0.82 | 1.80 | 2.598 (4) | 164 |
O5—H5O⋯O3ii | 0.96 (5) | 1.77 (5) | 2.690 (4) | 159 (4) |
C7—H7⋯O2i | 0.93 | 2.56 | 3.233 (5) | 130 |
C8—H8⋯O1iii | 0.93 | 2.41 | 3.281 (5) | 155 |
Symmetry codes: (i) ; (ii)
; (iii)
.
Supramolecular features
In the crystal, the hydroxyl group of the methanol solvent molecule is linked to the carboxylate group of the neighboring Schiff base molecule and the deprotonated hydroxyl group of the other Schiff base molecule via classical O—H⋯O hydrogen bonds, forming supramolecular chains propagating along the b-axis direction (Fig. 2 ▸). Weak C—H⋯O hydrogen bonds further link the chains into a three-dimensional supramolecular architecture.
Figure 2.
A view of the hydrogen-bonded chain extending along the b-axis direction. Hydrogen bonds are shown as dashed lines.
Database survey
A search of the Cambridge Structural Database (CSD version 5.39, February 2018 update; Groom et al., 2016 ▸) for similar systems (benzylidene-phenyl-amine) yielded 285 hits of which ten are similar substituted benzylidene-phenyl-amines: N-salicylidene-p-chloroaniline (I) (BADDAL01; Kamwaya & Khoo, 1985 ▸), 5-{[(1E)-(2-hydroxyphenyl)methylene]amino}-2-hydroxybenzoic acid (II) (CAWJOA; Bourque et al., 2005 ▸), 2-(2-hydroxy-5-methylbenzylideneammonio)benzoate (III) (CEXNEZ; Gayathri et al., 2007 ▸), N,N′-bis(2-hydroxy-1-naphthaldimine)-o-phenylenediamine methanol solvate (IV) (GETXEJ; Eltayeb et al., 2007 ▸), o-(salicylideneaminium)phenol chloride (V) (HALGUW; Ondrácek et al., 1993 ▸), N-(2-carboxyphenyl)salicylidenimine (VI) (JUTKAK; Ligtenbarg et al., 1999 ▸), diisothiocyantotriphenyltin bis[1-(salicyclideneimino)-2-methoxybenzene] (VII) (KIDYOL; Charland et al., 1989 ▸), N-(2-oxyphenyl)-3-methoxysalicylaldimine (VIII) (NEDMUF; Kannappan et al., 2006 ▸), N-(5-chloro-2-oxidobenzylidene)-2-hydroxy-5-methylanilinium (IX) (QIKHEX; Elmali et al., 2001 ▸) and N-(5-chloro-2-hydroxybenzylidene)-4-hydroxyaniline (X) (SAQTOT; Ogawa et al., 1998 ▸), 2-[(E)-(2-[{(E)-2,3-dihydroxybenzylidene]amino}-5-methylphenyl)iminiomethyl]-6-hydroxyphenolate (XI) (HUCQEC; Eltayeb et al., 2009 ▸) (see Fig. 3 ▸). The dihedral angle between the benzene rings in the title compound [5.34 (2)°] is smaller than those in compounds (III) [5.6 (1)°] (IV [5.84 (9)°], (V) [7.3 (1)°] and (IX) [9.51 (6)°] and (XI) [17.36 (12)°]. In compound (VII), cationic protonated pairs co-crystallize with five-coordinate organotin anions. In the title compound, they form an intramolecular S6 ring motif and stabilized by N—H⋯O hydrogen bonds.
Figure 3.
Zwitterionic forms of some closely related compounds.
Synthesis and crystallization
To a hot stirred solution of 4-aminobenzoic acid (PABA) (1.00 g, 7.2 mmol) in methanol (15 ml) was added vanillin (1.11 g, 7.2 mmol)). The resulting mixture was then heated under reflux. After an hour, a precipitate formed. The reaction mixture was heated for about another 30 min until the completion of the reaction, which was monitored by TLC. The reaction mixture was cooled to room temperature, filtered and washed with hot methanol. It was then dried under vacuum to give the pure compound in 78% yield. Prismatic colourless single crystals of the title compound suitable for X-ray analysis were obtained by slow evaporation of a methanol solution.
Refinement
Crystal data, data collection and structure refinement details are summarized in Table 2 ▸. The N—H and O–H atoms were located in a difference-Fourier map. Their positional and isotropic thermal parameters were included in further stages of the refinement. All C-bound H atoms were positioned geometrically and refined using a riding model with C—H = 0.93–0.97 Å and with U iso(H) = 1.2–1.5U eq(C).
Table 2. Experimental details.
Crystal data | |
Chemical formula | C15H13NO4·CH4O |
M r | 303.30 |
Crystal system, space group | Orthorhombic, P212121 |
Temperature (K) | 296 |
a, b, c (Å) | 4.6993 (5), 10.038 (1), 30.155 (3) |
V (Å3) | 1422.5 (3) |
Z | 4 |
Radiation type | Mo Kα |
μ (mm−1) | 0.11 |
Crystal size (mm) | 0.61 × 0.36 × 0.17 |
Data collection | |
Diffractometer | Stoe IPDS 2 |
Absorption correction | Integration (X-RED32; Stoe & Cie, 2002 ▸) |
T min, T max | 0.963, 0.988 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 17046, 2526, 2117 |
R int | 0.095 |
(sin θ/λ)max (Å−1) | 0.596 |
Refinement | |
R[F 2 > 2σ(F 2)], wR(F 2), S | 0.046, 0.112, 1.08 |
No. of reflections | 2526 |
No. of parameters | 206 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.25, −0.26 |
Absolute structure | Refined as a perfect inversion twin. |
Absolute structure parameter | 0.5 |
Supplementary Material
Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S2056989018016262/xu5950sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989018016262/xu5950Isup2.hkl
CCDC reference: 1879300
Additional supporting information: crystallographic information; 3D view; checkCIF report
Acknowledgments
The Department of Chemistry, Langat Singh College and the Department of Applied Chemistry, Aligarh Muslim University, Aligarh, are thanked for providing laboratory facilities.
supplementary crystallographic information
Crystal data
C15H13NO4·CH4O | Dx = 1.416 Mg m−3 |
Mr = 303.30 | Mo Kα radiation, λ = 0.71073 Å |
Orthorhombic, P212121 | Cell parameters from 8708 reflections |
a = 4.6993 (5) Å | θ = 2.4–29.9° |
b = 10.038 (1) Å | µ = 0.11 mm−1 |
c = 30.155 (3) Å | T = 296 K |
V = 1422.5 (3) Å3 | Prism, colorless |
Z = 4 | 0.61 × 0.36 × 0.17 mm |
F(000) = 640 |
Data collection
STOE IPDS 2 diffractometer | 2526 independent reflections |
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus | 2117 reflections with I > 2σ(I) |
Plane graphite monochromator | Rint = 0.095 |
Detector resolution: 6.67 pixels mm-1 | θmax = 25.1°, θmin = 2.7° |
rotation method scans | h = −5→5 |
Absorption correction: integration (X-RED32; Stoe & Cie, 2002) | k = −11→11 |
Tmin = 0.963, Tmax = 0.988 | l = −35→35 |
17046 measured reflections |
Refinement
Refinement on F2 | Hydrogen site location: mixed |
Least-squares matrix: full | H atoms treated by a mixture of independent and constrained refinement |
R[F2 > 2σ(F2)] = 0.046 | w = 1/[σ2(Fo2) + (0.0401P)2 + 0.7153P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.112 | (Δ/σ)max < 0.001 |
S = 1.08 | Δρmax = 0.25 e Å−3 |
2526 reflections | Δρmin = −0.26 e Å−3 |
206 parameters | Absolute structure: Refined as a perfect inversion twin. |
0 restraints | Absolute structure parameter: 0.5 |
Special details
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refined as a two-component inversion twin |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
x | y | z | Uiso*/Ueq | ||
C1 | 0.9825 (8) | 0.5743 (4) | 0.20579 (12) | 0.0150 (8) | |
C2 | 0.8025 (8) | 0.5849 (4) | 0.24609 (12) | 0.0135 (8) | |
C3 | 0.6780 (8) | 0.7039 (4) | 0.25889 (12) | 0.0156 (9) | |
H3 | 0.723443 | 0.781513 | 0.243631 | 0.019* | |
C4 | 0.4888 (8) | 0.7099 (4) | 0.29364 (12) | 0.0168 (9) | |
H4 | 0.407880 | 0.790869 | 0.301780 | 0.020* | |
C5 | 0.4194 (8) | 0.5940 (4) | 0.31650 (11) | 0.0117 (8) | |
C6 | 0.5553 (8) | 0.4750 (4) | 0.30576 (12) | 0.0161 (8) | |
H6 | 0.519516 | 0.398578 | 0.322296 | 0.019* | |
C7 | 0.7427 (8) | 0.4703 (4) | 0.27069 (12) | 0.0163 (9) | |
H7 | 0.830172 | 0.390229 | 0.263318 | 0.020* | |
C8 | 0.0577 (8) | 0.6914 (4) | 0.36404 (12) | 0.0137 (8) | |
H8 | 0.082942 | 0.774555 | 0.351007 | 0.016* | |
C9 | −0.1484 (8) | 0.6767 (4) | 0.39755 (12) | 0.0133 (8) | |
C10 | −0.1987 (8) | 0.5486 (4) | 0.41710 (12) | 0.0134 (8) | |
C11 | −0.4107 (8) | 0.5431 (4) | 0.45140 (12) | 0.0149 (9) | |
C12 | −0.5604 (9) | 0.6534 (4) | 0.46335 (12) | 0.0162 (8) | |
H12 | −0.697197 | 0.646746 | 0.485520 | 0.019* | |
C13 | −0.5121 (8) | 0.7778 (4) | 0.44273 (12) | 0.0175 (9) | |
H13 | −0.618318 | 0.851778 | 0.451168 | 0.021* | |
C14 | −0.3108 (8) | 0.7897 (4) | 0.41061 (12) | 0.0162 (9) | |
H14 | −0.279196 | 0.871695 | 0.397153 | 0.019* | |
C15 | −0.6548 (9) | 0.4036 (4) | 0.50242 (13) | 0.0216 (10) | |
H15A | −0.838233 | 0.422645 | 0.489935 | 0.032* | |
H15B | −0.617086 | 0.464455 | 0.526284 | 0.032* | |
H15C | −0.652337 | 0.313983 | 0.513495 | 0.032* | |
C16 | 0.4392 (9) | 1.1681 (4) | 0.40083 (13) | 0.0226 (9) | |
H16A | 0.377953 | 1.093074 | 0.383559 | 0.034* | |
H16B | 0.323804 | 1.244117 | 0.393731 | 0.034* | |
H16C | 0.420226 | 1.147815 | 0.431800 | 0.034* | |
N1 | 0.2152 (6) | 0.5912 (3) | 0.35065 (10) | 0.0128 (7) | |
H1 | 0.191331 | 0.516474 | 0.364068 | 0.015* | |
O1 | 1.0635 (6) | 0.4688 (3) | 0.19035 (9) | 0.0244 (7) | |
O2 | 1.0413 (6) | 0.6916 (2) | 0.18743 (8) | 0.0185 (6) | |
H2 | 1.128598 | 0.680031 | 0.164203 | 0.028* | |
O3 | −0.0617 (6) | 0.4431 (2) | 0.40503 (8) | 0.0159 (6) | |
O4 | −0.4410 (6) | 0.4183 (3) | 0.46896 (8) | 0.0185 (6) | |
O5 | 0.7301 (6) | 1.1970 (3) | 0.39101 (9) | 0.0192 (6) | |
H5O | 0.795 (11) | 1.280 (5) | 0.4034 (16) | 0.049 (15)* |
Atomic displacement parameters (Å2)
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.014 (2) | 0.016 (2) | 0.0152 (19) | −0.0037 (18) | −0.0028 (17) | 0.0022 (16) |
C2 | 0.0111 (19) | 0.014 (2) | 0.0151 (19) | 0.0001 (18) | −0.0019 (16) | −0.0005 (16) |
C3 | 0.016 (2) | 0.012 (2) | 0.0190 (19) | −0.0024 (18) | 0.0022 (17) | 0.0026 (16) |
C4 | 0.016 (2) | 0.0114 (19) | 0.022 (2) | 0.0007 (18) | 0.0053 (18) | −0.0034 (16) |
C5 | 0.0084 (17) | 0.016 (2) | 0.0110 (18) | −0.0041 (17) | −0.0013 (16) | −0.0014 (15) |
C6 | 0.0147 (19) | 0.015 (2) | 0.018 (2) | 0.0004 (17) | 0.0007 (18) | 0.0051 (16) |
C7 | 0.017 (2) | 0.014 (2) | 0.018 (2) | 0.0037 (18) | −0.0006 (18) | −0.0011 (16) |
C8 | 0.0125 (18) | 0.0132 (19) | 0.0155 (19) | −0.0008 (18) | −0.0037 (16) | −0.0013 (15) |
C9 | 0.0106 (18) | 0.015 (2) | 0.0145 (19) | 0.0034 (16) | −0.0026 (16) | −0.0007 (16) |
C10 | 0.0091 (18) | 0.018 (2) | 0.0132 (18) | −0.0011 (16) | −0.0057 (16) | −0.0018 (16) |
C11 | 0.012 (2) | 0.018 (2) | 0.0147 (19) | −0.0022 (17) | −0.0030 (16) | −0.0003 (16) |
C12 | 0.0139 (19) | 0.022 (2) | 0.0125 (19) | −0.0008 (18) | 0.0011 (17) | −0.0004 (16) |
C13 | 0.013 (2) | 0.019 (2) | 0.021 (2) | 0.0011 (17) | −0.0017 (18) | −0.0046 (16) |
C14 | 0.015 (2) | 0.016 (2) | 0.0175 (19) | −0.0052 (17) | −0.0032 (17) | −0.0011 (17) |
C15 | 0.019 (2) | 0.024 (2) | 0.021 (2) | 0.000 (2) | 0.0052 (18) | 0.0036 (18) |
C16 | 0.016 (2) | 0.026 (2) | 0.025 (2) | 0.0012 (19) | −0.0024 (19) | 0.0013 (18) |
N1 | 0.0126 (16) | 0.0129 (17) | 0.0130 (16) | −0.0029 (15) | −0.0009 (14) | 0.0015 (13) |
O1 | 0.0321 (17) | 0.0155 (15) | 0.0256 (15) | 0.0024 (13) | 0.0129 (14) | −0.0001 (12) |
O2 | 0.0237 (15) | 0.0145 (14) | 0.0174 (14) | −0.0034 (13) | 0.0081 (13) | 0.0000 (11) |
O3 | 0.0147 (13) | 0.0149 (14) | 0.0182 (13) | 0.0010 (12) | 0.0029 (12) | −0.0012 (11) |
O4 | 0.0172 (13) | 0.0185 (14) | 0.0197 (14) | 0.0012 (13) | 0.0071 (12) | 0.0053 (12) |
O5 | 0.0163 (14) | 0.0205 (15) | 0.0209 (14) | −0.0015 (14) | 0.0047 (12) | −0.0042 (13) |
Geometric parameters (Å, º)
C1—O1 | 1.217 (4) | C8—C9 | 1.408 (5) |
C1—O2 | 1.331 (4) | C9—C14 | 1.422 (5) |
C1—C2 | 1.484 (5) | C9—C10 | 1.434 (5) |
C2—C3 | 1.384 (5) | C10—O3 | 1.292 (4) |
C2—C7 | 1.397 (5) | C10—C11 | 1.437 (5) |
C3—C4 | 1.376 (5) | C11—C12 | 1.360 (5) |
C4—C5 | 1.392 (5) | C11—O4 | 1.367 (4) |
C5—C6 | 1.393 (5) | C12—C13 | 1.414 (5) |
C5—N1 | 1.408 (4) | C13—C14 | 1.359 (5) |
C6—C7 | 1.377 (5) | C15—O4 | 1.432 (4) |
C8—N1 | 1.312 (5) | C16—O5 | 1.429 (5) |
O1—C1—O2 | 123.1 (3) | C8—C9—C14 | 119.0 (3) |
O1—C1—C2 | 123.6 (3) | C8—C9—C10 | 120.2 (3) |
O2—C1—C2 | 113.3 (3) | C14—C9—C10 | 120.8 (3) |
C3—C2—C7 | 118.5 (3) | O3—C10—C9 | 122.5 (3) |
C3—C2—C1 | 122.1 (3) | O3—C10—C11 | 121.1 (3) |
C7—C2—C1 | 119.4 (3) | C9—C10—C11 | 116.4 (3) |
C4—C3—C2 | 121.6 (4) | C12—C11—O4 | 126.1 (3) |
C3—C4—C5 | 119.4 (3) | C12—C11—C10 | 121.2 (3) |
C4—C5—C6 | 119.7 (3) | O4—C11—C10 | 112.7 (3) |
C4—C5—N1 | 122.6 (3) | C11—C12—C13 | 121.3 (4) |
C6—C5—N1 | 117.8 (3) | C14—C13—C12 | 120.1 (4) |
C7—C6—C5 | 120.1 (3) | C13—C14—C9 | 120.1 (4) |
C6—C7—C2 | 120.6 (3) | C8—N1—C5 | 126.5 (3) |
N1—C8—C9 | 121.9 (3) | C11—O4—C15 | 116.1 (3) |
O1—C1—C2—C3 | −169.8 (4) | C8—C9—C10—C11 | 179.3 (3) |
O2—C1—C2—C3 | 8.6 (5) | C14—C9—C10—C11 | −2.6 (5) |
O1—C1—C2—C7 | 6.5 (5) | O3—C10—C11—C12 | −178.3 (3) |
O2—C1—C2—C7 | −175.1 (3) | C9—C10—C11—C12 | 2.0 (5) |
C7—C2—C3—C4 | −3.0 (6) | O3—C10—C11—O4 | 1.1 (5) |
C1—C2—C3—C4 | 173.3 (3) | C9—C10—C11—O4 | −178.6 (3) |
C2—C3—C4—C5 | −0.2 (6) | O4—C11—C12—C13 | −179.7 (3) |
C3—C4—C5—C6 | 4.0 (6) | C10—C11—C12—C13 | −0.4 (6) |
C3—C4—C5—N1 | −176.2 (3) | C11—C12—C13—C14 | −0.7 (6) |
C4—C5—C6—C7 | −4.5 (6) | C12—C13—C14—C9 | 0.2 (5) |
N1—C5—C6—C7 | 175.7 (3) | C8—C9—C14—C13 | 179.7 (3) |
C5—C6—C7—C2 | 1.2 (6) | C10—C9—C14—C13 | 1.6 (5) |
C3—C2—C7—C6 | 2.5 (6) | C9—C8—N1—C5 | 177.6 (3) |
C1—C2—C7—C6 | −173.9 (3) | C4—C5—N1—C8 | 3.2 (6) |
N1—C8—C9—C14 | 179.7 (3) | C6—C5—N1—C8 | −176.9 (3) |
N1—C8—C9—C10 | −2.2 (5) | C12—C11—O4—C15 | 1.2 (5) |
C8—C9—C10—O3 | −0.4 (5) | C10—C11—O4—C15 | −178.1 (3) |
C14—C9—C10—O3 | 177.7 (3) |
Hydrogen-bond geometry (Å, º)
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···O3 | 0.86 | 1.87 | 2.568 (4) | 138 |
O2—H2···O5i | 0.82 | 1.80 | 2.598 (4) | 164 |
O5—H5O···O3ii | 0.96 (5) | 1.77 (5) | 2.690 (4) | 159 (4) |
C7—H7···O2i | 0.93 | 2.56 | 3.233 (5) | 130 |
C8—H8···O1iii | 0.93 | 2.41 | 3.281 (5) | 155 |
Symmetry codes: (i) −x+2, y−1/2, −z+1/2; (ii) x+1, y+1, z; (iii) −x+1, y+1/2, −z+1/2.
Funding Statement
This work was funded by University Grants Commission grant . National Taras Shevchenko University, Ukraine grant .
References
- Amimoto, K. & Kawato, T. (2005). J. Photochem. Photobiol. Photochem. Rev. 6, 207–226.
- Barik, A., Priyadarsini, K. I. & Mohan, H. (2004). Radiat. Phys. Chem. 70, 687–696.
- Benali-Cherif, R., Takouachet, R., Bendeif, E.-E. & Benali-Cherif, N. (2014). Acta Cryst. C70, 323–325. [DOI] [PubMed]
- Bourque, T. A., Nelles, M. E., Gullon, T. J., Garon, C. N., Ringer, M. K., Leger, L. J., Mason, J. W., Wheaton, S. L., Baerlocher, F. J., Vogels, C. M., Decken, A. & Westcott, S. A. (2005). Can. J. Chem. 83, 1063–1070.
- Charland, J.-P., Gabe, E. J., Khoo, L. E. & Smith, F. E. (1989). Polyhedron, 8, 1897–1901.
- Cohen, M. D. & Schmidt, G. M. J. (1964). J. Chem. Soc. pp. 1996–2000.
- Dalapati, S., Alam, M. A., Jana, S. & Guchhait, N. (2011). J. Fluor. Chem. 132, 536–540.
- Elmali, A., Elerman, Y. & Svoboda, I. (2001). Acta Cryst. C57, 485–486. [DOI] [PubMed]
- Eltayeb, N. E., Teoh, S. G., Teh, J. B.-J., Fun, H.-K. & Ibrahim, K. (2007). Acta Cryst. E63, o117–o119.
- Eltayeb, N. E., Teoh, S. G., Yeap, C. S., Fun, H.-K. & Adnan, R. (2009). Acta Cryst. E65, o2065–o2066. [DOI] [PMC free article] [PubMed]
- Faizi, M. S. H., Ahmad, M., Kapshuk, A. A. & Golenya, I. A. (2017a). Acta Cryst. E73, 38–40. [DOI] [PMC free article] [PubMed]
- Faizi, M. S. H., Alam, M. J., Haque, A., Ahmad, S., Shahid, M. & Ahmad, M. (2018). J. Mol. Struct. 1156, 457–464.
- Faizi, M. S. H., Ali, A. & Potaskalov, V. A. (2016a). Acta Cryst. E72, 1366–1369. [DOI] [PMC free article] [PubMed]
- Faizi, M. S. H., Dege, N., Haque, A., Kalibabchuk, V. A. & Cemberci, M. (2017b). Acta Cryst. E73, 96–98. [DOI] [PMC free article] [PubMed]
- Faizi, M. S. H., Gupta, S., Mohan, V. K., Jain, K. V. & Sen, P. (2016b). Sens. Actuators B Chem. 222, 15–20.
- Faizi, M. S. H., Haque, A. & Kalibabchuk, V. A. (2017c). Acta Cryst. E73, 112–114. [DOI] [PMC free article] [PubMed]
- Faizi, M. S. H., Iskenderov, T. S. & Sharkina, N. O. (2015b). Acta Cryst. E71, 28–30. [DOI] [PMC free article] [PubMed]
- Faizi, M. S. H., Ohui, K. A. & Golenya, I. A. (2015a). Acta Cryst. E71, 1433–1435. [DOI] [PMC free article] [PubMed]
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
- Gayathri, D., Velmurugan, D., Ravikumar, K., Devaraj, S. & Kandaswamy, M. (2007). Acta Cryst. E63, o849–o851. [DOI] [PMC free article] [PubMed]
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
- Kamwaya, M. E. & Khoo, L. E. (1985). J. Fiz. Malays. 6, 135–140.
- Kannappan, R., Tooke, D. M., Spek, A. L. & Reedijk, J. (2006). Inorg. Chim. Acta, 359, 334–338.
- Karadayı, N., Albayrak, Ç., Odabaşoğlu, M. & Büyükgüngör, O. (2006). Acta Cryst. E62, o1727–o1729.
- Kumar, M., Kumar, A., Faizi, M. S. H., Kumar, S., Singh, M. K., Sahu, S. K., Kishor, S. & John, R. P. (2018). Sens. Actuators B Chem. 260, 888–899.
- Ligtenbarg, A. G. J., Hage, R., Meetsma, A. & Feringa, B. L. (1999). J. Chem. Soc. Perkin Trans. 2, pp. 807–812.
- Lozier, R. H., Bogomolni, R. A. & Stoeckenius, W. (1975). Biophys. J. 15, 955–962. [DOI] [PMC free article] [PubMed]
- Moroz, Y. S., Demeshko, S., Haukka, M., Mokhir, A., Mitra, U., Stocker, M., Müller, P., Meyer, F. & Fritsky, I. O. (2012). Inorg. Chem. 51, 7445–7447. [DOI] [PubMed]
- Mukherjee, P., Das, A., Faizi, M. S. H. & Sen, P. (2018). ChemistrySelect, 3, 3787–3796.
- Ogawa, K., Kasahara, Y., Ohtani, Y. & Harada, J. (1998). J. Am. Chem. Soc. 120, 7107–7108.
- Ondráček, J., Kovářová, Z., Maixner, J. & Jursık, F. (1993). Acta Cryst. C49, 1948–1949.
- Robinson, F. A. (1966). The Vitamin Co-factors of Enzyme Systems, pp. 541–662 London: Pergamon.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
- Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
- Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.
- Sun, Y., Wang, Y., Liu, Z., Huang, C. & Yu, C. (2012). Spectrochim. Acta Part A, 96, 42–50. [DOI] [PubMed]
- Takahashi, K., Sekiguchi, M. & Kawazoe, Y. (1989). Biochem. Biophys. Res. Commun. 162, 1376–1381. [DOI] [PubMed]
- Thorat, B. R., Mandewale, M., Shelke, S., Kamat, P., Atram, R. G., Bhalerao, M. & Yamgar, R. (2012). J. Chem. Pharm. Res. 4, 14–17.
- Zhi, F., Wang, R., Zhang, Y., Wang, Q. & Yang, Y.-L. (2011). Acta Cryst. E67, o2825. [DOI] [PMC free article] [PubMed]
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S2056989018016262/xu5950sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989018016262/xu5950Isup2.hkl
CCDC reference: 1879300
Additional supporting information: crystallographic information; 3D view; checkCIF report