Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2018 Nov 22;74(Pt 12):1842–1846. doi: 10.1107/S2056989018016298

Crystal structure and Hirshfeld surface analysis of 1-benzyl-3-(prop-2-yn-1-yl)-2,3-di­hydro-1H-1,3-benzo­diazol-2-one

Asmaa Saber a,*, Nada Kheira Sebbar b, Tuncer Hökelek c, Mohamed El hafi a, Joel T Mague d, El Mokhtar Essassi a
PMCID: PMC6281085  PMID: 30574385

In the title compound, the benzo­diazole unit is planar while the benzyl and propynyl substituents are rotated significantly out of this plane.

Keywords: crystal structure, benzo­diazole, hydrogen bond, alkyne, Hirshfeld surface

Abstract

The title compound, C17H14N2O, is built up from the planar benzo­diazole unit linked to the benzyl and propynyl substituents. The substituents are rotated significantly out of the benzo­diazole plane, where the benzyl group is inclined by 68.91 (7)° to the benzo­diazole unit. In the crystal, the mol­ecules are linked via inter­molecular C—HBnzdzl⋯O and C—HBnzy⋯O (Bnzdzl = benzo­diazole and Bnzy = benz­yl) hydrogen bonds, enclosing R 4 4(27) ring motifs, into a network consisting of rectangular layers parallel to the bc plane which are also stacked along the a-axis direction being associated through C—H⋯π (ring) inter­actions. The Hirshfeld surface analysis of the crystal structure indicates that the most important contributions for the crystal packing are from H⋯H (43.6%), H⋯C/C⋯H (42.0%) and H⋯O/O⋯H (8.9%) inter­actions.

Chemical context  

The benzimidazole nucleus constitutes an important pharmacophore in medicinal chemistry and pharmacology (Ouzidan et al., 2011; Dardouri et al., 2011; Soderlind et al., 1999). Benzimidazol-2-one derivatives are of wide inter­est because of their diverse biological activities such as anti­microbial, anti-fungal, anti-histaminic, anti-inflammatory, anti­viral and anti-oxidant (Walia et al., 2011; Luo et al., 2011; Ayhan-Kılcıgil et al., 2007; Navarrete-Vázquez et al., 2001).graphic file with name e-74-01842-scheme1.jpg

As a continuation of our research works devoted to the development of substituted benzimidazol-2-one derivatives (Lakhrissi et al., 2008; Mondieig et al., 2013), we report herein the synthesis, the mol­ecular and crystal structures along with the Hirshfeld surface analysis of a new benzimidazol-2-one derivative, namely 2-benzyl-1-(prop-2-yn­yl)-1H-benzoimidazol 2(3H)-one. It was obtained by condensation of benzyl chloride with 1-(prop-2-yn­yl)-1H-benzoimidazol-2(3H)-one in the presence of tetra-n-butyl­ammonium bromide as catalyst and potassium carbonate as base.

Structural commentary  

The title compound is built up from a benzo­diazole unit linked to benzyl and propynyl substituents (Fig. 1). The benzo­diazole moiety is planar to within 0.015 (1) Å (for atom C7), and the r.m.s. deviation of the fitted atoms is 0.008 Å. It is inclined by 68.91 (7)° to the C12–C17 ring plane. The benzyl substituent is nearly perpendicular to the benzodizole plane, as indicated by the C6—N1—C11—C12 torsion angle of −87.00 (15)° while the propynyl substituent is at a smaller angle [C1—N2—C8—C9 = −73.46 (18)°]. Atoms O1, C8 and C11 deviate by 0.038 (1), 0.003 (2) and 0.047 (2) Å, respectively, from the benzodizole plane.

Figure 1.

Figure 1

The mol­ecular structure of the title compound with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.

Supra­molecular features  

In the crystal, the mol­ecules are linked via inter­molecular C—HBnzdzl⋯O and C—HBnzy⋯O (Bnzdzl = benzo­diazole and Bnzy = benz­yl) hydrogen bonds (Table 1), enclosing Inline graphic(27) ring motifs, into a network consisting of rectangular layers parallel to the bc plane (Fig. 2), which stack along the a-axis direction being associated through C—H⋯π (ring) inter­actions (Fig. 3).

Table 1. Hydrogen-bond geometry (Å, °).

Cg2 is the centroid of the C1–C6 benzene ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯O1iii 0.982 (18) 2.542 (18) 3.4997 (18) 165.1 (14)
C16—H16⋯O1vi 0.994 (18) 2.568 (18) 3.468 (2) 150.6 (14)
C17—H17⋯Cg2viii 1.00 (2) 2.831 (18) 3.6964 (17) 144.6 (15)

Symmetry codes: (iii) Inline graphic; (vi) Inline graphic; (viii) Inline graphic.

Figure 2.

Figure 2

Plan view of a portion of one layer seen along the a-axis direction. Inter­molecular C—HBnzdzl⋯O and C—HBnzy⋯O (Bnzdzl = benzo­diazole and Bnzy = benz­yl) hydrogen bonds are shown by dashed lines.

Figure 3.

Figure 3

Elevation view of two layers seen along the b-axis direction. C—H⋯O hydrogen bonds are shown by black dashed lines while C—H⋯π(ring) inter­actions are shown by green dashed lines.

Hirshfeld surface analysis  

In order to visualize the inter­molecular inter­actions in the crystal of the title compound, a Hirshfeld surface (HS) analysis (Hirshfeld, 1977; Spackman & Jayatilaka, 2009) was carried out using CrystalExplorer17.5 (Turner et al., 2017). In the HS plotted over d norm (Fig. 4), the white surface indicates contacts with distances equal to the sum of van der Waals radii, and the red and blue colours indicate distances shorter (in close contact) or longer (distinct contact) than the van der Waals radii, respectively (Venkatesan et al., 2016). The bright-red spot appearing near O1 indicates its role as acceptor in the dominant C—H⋯O hydrogen bonds. Hydrogen-bond donors and acceptors appear, respectively, as blue and red regions corresponding to positive and negative potentials on the HS mapped over electrostatic potential (Spackman et al., 2008; Jayatilaka et al., 2005) shown in Fig. 5. The shape-index of the HS is a tool to visualize the π–π stacking by the presence of adjacent red and blue triangles; if there are no adjacent red and/or blue triangles, then there are no π–π inter­actions. Fig. 6 clearly suggests that there are no π–π inter­actions present. The overall two-dimensional fingerprint plot, Fig. 7(a), and those delineated into H⋯H, H⋯C/C⋯H, H⋯O/O⋯H, H⋯N/N⋯H, C⋯C and N⋯C/C⋯N contacts (McKinnon et al., 2007) are illustrated in Fig. 7(b)–(g), respectively, together with their relative contributions to the Hirshfeld surface. The most important inter­action type is H⋯H, contributing 43.6% to the overall crystal packing, which is reflected in Fig. 7(b) as widely scattered points of high density due to the large hydrogen content of the mol­ecule and also due to the short H⋯H contacts (Table 2). In the presence of C—H⋯π inter­actions, the pair of widely scattered points of wings in the fingerprint plot delineated into H⋯C/C⋯H contacts (42.0% contribution to the HS) have a nearly symmetrical distribution of points, Fig. 7(c), with the tips at d e + d i ∼2.72 Å. The pair of characteristic wings in the fingerprint plot delineated into H⋯O/O⋯H contacts (8.9% contribution), Fig. 7(d), arises from the C—H⋯O hydrogen bonds (Table 1) as well as from the H⋯O/O⋯H contacts (Table 3) and has a pair of spikes with the tips at d e + d i = 2.43 Å. The pair of characteristic wings resulting in the fingerprint plot delineated into H ⋯ N/N ⋯ H contacts [Fig. 7(e), 2.5% contribution] has a pair of spikes with the tips at d e + d i = 3.12 Å. Finally, the wide spike with the tip at d e = d i = 1.77 Å in Fig. 7(f) is due to the C⋯C contacts (Table 3).

Figure 4.

Figure 4

View of the three-dimensional Hirshfeld surface of the title compound plotted over d norm in the range −0.1150 to 1.2702 a.u.

Figure 5.

Figure 5

View of the three-dimensional Hirshfeld surface of the title compound plotted over electrostatic potential energy in the range −0.0500 to 0.0500 a.u. using the STO-3 G basis set at the Hartree–Fock level of theory hydrogen-bond donors and acceptors are shown as blue and red regions around the atoms corresponding to positive and negative potentials, respectively.

Figure 6.

Figure 6

Hirshfeld surface of the title compound plotted over shape-index.

Figure 7.

Figure 7

The full two-dimensional fingerprint plots for the title compound, showing (a) all inter­actions, and those delineated into (b) H⋯H, (c) H⋯C/C⋯H, (d) H⋯O/O⋯H, (e) H⋯N/N⋯H, (f) C⋯C and (g) N⋯C/C⋯N inter­actions. The d i and d e values are the closest inter­nal and external distances (in Å) from given points on the Hirshfeld surface contacts.

Table 2. Selected interatomic distances (Å).

O1⋯H8B 2.492 (18) C5⋯H11A 2.897 (16)
O1⋯H11B 2.607 (16) C5⋯H10vi 2.93 (3)
O1⋯H13 2.760 (18) C8⋯H2 2.947 (16)
O1⋯H16i 2.568 (18) C10⋯H8A ii 2.874 (18)
C2⋯C9 3.5265 (19) C10⋯H14iii 2.95 (2)
C7⋯C13 3.5805 (19) C10⋯H11A vii 2.895 (17)
C9⋯C1ii 3.5236 (18) C11⋯H5 2.998 (16)
C10⋯N2ii 3.4291 (19) C13⋯H14v 2.964 (17)
C10⋯C8ii 3.385 (2) H3⋯O1iii 2.542 (18)
C10⋯C14iii 3.512 (3) H5⋯H11A 2.46 (2)
C11⋯C13iv 3.495 (2) H11A⋯H17 2.38 (2)
C14⋯C14v 3.543 (2) H11B⋯H13 2.45 (2)
C4⋯H10vi 2.84 (3)    

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic; (vi) Inline graphic; (vii) Inline graphic.

Table 3. Experimental details.

Crystal data
Chemical formula C17H14N2O
M r 262.30
Crystal system, space group Monoclinic, P21/c
Temperature (K) 298
a, b, c (Å) 8.3567 (2), 9.2040 (2), 17.7868 (4)
β (°) 94.559 (1)
V3) 1363.74 (5)
Z 4
Radiation type Cu Kα
μ (mm−1) 0.64
Crystal size (mm) 0.23 × 0.20 × 0.19
 
Data collection
Diffractometer Bruker D8 VENTURE PHOTON 100 CMOS
Absorption correction Multi-scan (SADABS; Krause et al., 2015)
T min, T max 0.86, 0.89
No. of measured, independent and observed [I > 2σ(I)] reflections 13551, 2778, 2433
R int 0.032
(sin θ/λ)max−1) 0.625
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.038, 0.108, 1.05
No. of reflections 2778
No. of parameters 238
H-atom treatment All H-atom parameters refined
Δρmax, Δρmin (e Å−3) 0.15, −0.12

Computer programs: APEX3 and SAINT (Bruker, 2016), SHELXT (Sheldrick, 2015a ), SHELXL2018/1 (Sheldrick, 2015b ), Mercury (Macrae, et al., 2008) and SHELXTL (Sheldrick, 2008).

The Hirshfeld surface representations with the function d norm plotted onto the surface are shown for the H⋯H, H⋯C/C⋯H, H⋯O/O⋯H and H⋯O/O⋯H inter­actions in Fig. 8(a)–(d), respectively.

Figure 8.

Figure 8

The Hirshfeld surface representations with the function d norm plotted onto the surface for (a) H⋯H, (b) H⋯C/C⋯H, (c) H⋯O/O⋯H and (d) H⋯O/O⋯H inter­actions.

The Hirshfeld surface analysis confirms the importance of H-atom contacts in establishing the packing. The large number of H⋯H, H⋯O/O⋯H and H⋯C/C⋯H inter­actions suggest that van der Waals inter­actions and hydrogen bonding play the major roles in the crystal packing (Hathwar et al., 2015).

Synthesis and crystallization  

To a solution of 1-(prop-2-yn­yl)-1H-benzoimidazol-2(3H)-one (3.42 mmol), benzyl chloride (6.81 mmol) and potassium carbonate (6.42 mmol) in DMF (15 ml) was added a catalytic amount of tetra-n-butyl­ammonium bromide (0.37 mmol) and the mixture was stirred for 24 h. The solid material was removed by filtration and the solvent evaporated under vacuum. The solid product was purified by recrystallization from ethanol to afford colourless crystals in 76% yield.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 3. Hydrogen atoms were located in a difference-Fourier map and freely refined.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S2056989018016298/xu5952sup1.cif

e-74-01842-sup1.cif (422.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989018016298/xu5952Isup2.hkl

e-74-01842-Isup2.hkl (222.3KB, hkl)

Supporting information file. DOI: 10.1107/S2056989018016298/xu5952Isup3.cdx

CCDC reference: 1879758

Additional supporting information: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Crystal data

C17H14N2O F(000) = 552
Mr = 262.30 Dx = 1.278 Mg m3
Monoclinic, P21/c Cu Kα radiation, λ = 1.54178 Å
a = 8.3567 (2) Å Cell parameters from 9908 reflections
b = 9.2040 (2) Å θ = 2.5–74.9°
c = 17.7868 (4) Å µ = 0.64 mm1
β = 94.559 (1)° T = 298 K
V = 1363.74 (5) Å3 Block, colourless
Z = 4 0.23 × 0.20 × 0.19 mm

Data collection

Bruker D8 VENTURE PHOTON 100 CMOS diffractometer 2433 reflections with I > 2σ(I)
Radiation source: INCOATEC IµS micro-focus source Rint = 0.032
ω scans θmax = 74.4°, θmin = 5.0°
Absorption correction: multi-scan (SADABS; Krause et al., 2015) h = −10→10
Tmin = 0.86, Tmax = 0.89 k = −11→11
13551 measured reflections l = −22→21
2778 independent reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038 All H-atom parameters refined
wR(F2) = 0.108 w = 1/[σ2(Fo2) + (0.0559P)2 + 0.1595P] where P = (Fo2 + 2Fc2)/3
S = 1.05 (Δ/σ)max < 0.001
2778 reflections Δρmax = 0.15 e Å3
238 parameters Δρmin = −0.12 e Å3
0 restraints Extinction correction: SHELXL-2018/1 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.0123 (10)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.22681 (15) 0.83445 (11) 0.40629 (6) 0.0792 (3)
N1 0.34376 (12) 0.66295 (10) 0.33147 (5) 0.0533 (3)
N2 0.17477 (12) 0.82074 (10) 0.27629 (6) 0.0543 (3)
C1 0.22401 (13) 0.73060 (12) 0.22001 (6) 0.0491 (3)
C2 0.18494 (17) 0.72757 (15) 0.14354 (7) 0.0629 (3)
H2 0.1121 (19) 0.7990 (18) 0.1214 (9) 0.075 (4)*
C3 0.2547 (2) 0.62075 (18) 0.10228 (8) 0.0734 (4)
H3 0.234 (2) 0.617 (2) 0.0472 (10) 0.090 (5)*
C4 0.3609 (2) 0.52123 (16) 0.13680 (8) 0.0703 (4)
H4 0.414 (2) 0.4500 (18) 0.1060 (9) 0.077 (4)*
C5 0.40140 (16) 0.52408 (14) 0.21399 (8) 0.0590 (3)
H5 0.476 (2) 0.4532 (18) 0.2392 (9) 0.077 (4)*
C6 0.33092 (13) 0.63007 (12) 0.25513 (6) 0.0478 (3)
C7 0.24590 (16) 0.77932 (13) 0.34550 (7) 0.0555 (3)
C8 0.06278 (18) 0.94116 (15) 0.26623 (10) 0.0675 (4)
H8A −0.034 (2) 0.908 (2) 0.2331 (11) 0.095 (6)*
H8B 0.030 (2) 0.965 (2) 0.3179 (11) 0.089 (5)*
C9 0.13423 (17) 1.06640 (14) 0.23111 (8) 0.0633 (3)
C10 0.1922 (2) 1.16568 (17) 0.20289 (11) 0.0854 (5)
H10 0.236 (3) 1.249 (3) 0.1798 (13) 0.132 (8)*
C11 0.43747 (17) 0.58361 (15) 0.39115 (8) 0.0600 (3)
H11A 0.539 (2) 0.5429 (18) 0.3684 (9) 0.080 (5)*
H11B 0.4649 (19) 0.6538 (18) 0.4327 (10) 0.080 (5)*
C12 0.34639 (14) 0.45907 (12) 0.42256 (6) 0.0512 (3)
C13 0.23968 (18) 0.48403 (17) 0.47628 (8) 0.0675 (4)
H13 0.223 (2) 0.587 (2) 0.4938 (9) 0.087 (5)*
C14 0.1570 (2) 0.3702 (2) 0.50568 (10) 0.0819 (5)
H14 0.086 (2) 0.387 (2) 0.5429 (12) 0.107 (6)*
C15 0.1808 (2) 0.2308 (2) 0.48218 (11) 0.0830 (5)
H15 0.123 (2) 0.154 (2) 0.5025 (10) 0.095 (6)*
C16 0.2874 (3) 0.20500 (18) 0.42939 (11) 0.0870 (5)
H16 0.306 (2) 0.104 (2) 0.4124 (11) 0.106 (6)*
C17 0.3696 (2) 0.31841 (15) 0.39958 (9) 0.0701 (4)
H17 0.446 (2) 0.299 (2) 0.3599 (12) 0.103 (6)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.1247 (9) 0.0571 (6) 0.0569 (5) 0.0079 (5) 0.0134 (5) −0.0057 (4)
N1 0.0663 (6) 0.0445 (5) 0.0475 (5) 0.0034 (4) −0.0042 (4) 0.0037 (4)
N2 0.0612 (6) 0.0435 (5) 0.0583 (6) 0.0059 (4) 0.0049 (4) 0.0066 (4)
C1 0.0519 (6) 0.0436 (6) 0.0512 (6) −0.0061 (4) 0.0006 (4) 0.0055 (4)
C2 0.0717 (8) 0.0593 (7) 0.0557 (7) −0.0085 (6) −0.0081 (6) 0.0106 (6)
C3 0.1009 (11) 0.0707 (9) 0.0478 (7) −0.0184 (8) 0.0008 (7) 0.0001 (6)
C4 0.0940 (10) 0.0571 (8) 0.0619 (8) −0.0090 (7) 0.0197 (7) −0.0083 (6)
C5 0.0661 (7) 0.0469 (6) 0.0645 (7) 0.0002 (5) 0.0090 (6) 0.0013 (5)
C6 0.0524 (6) 0.0413 (5) 0.0493 (6) −0.0050 (4) 0.0014 (4) 0.0035 (4)
C7 0.0727 (8) 0.0420 (6) 0.0520 (6) −0.0020 (5) 0.0054 (5) 0.0027 (5)
C8 0.0649 (8) 0.0524 (7) 0.0868 (10) 0.0123 (6) 0.0158 (7) 0.0174 (7)
C9 0.0715 (8) 0.0472 (6) 0.0723 (8) 0.0125 (6) 0.0130 (6) 0.0067 (6)
C10 0.1019 (12) 0.0519 (8) 0.1070 (13) 0.0087 (8) 0.0373 (10) 0.0107 (8)
C11 0.0641 (7) 0.0574 (7) 0.0560 (7) −0.0024 (6) −0.0113 (6) 0.0091 (6)
C12 0.0549 (6) 0.0490 (6) 0.0478 (6) 0.0059 (5) −0.0082 (5) 0.0057 (5)
C13 0.0748 (8) 0.0627 (8) 0.0652 (8) 0.0149 (7) 0.0066 (6) 0.0057 (6)
C14 0.0666 (8) 0.0971 (12) 0.0833 (10) 0.0159 (8) 0.0131 (8) 0.0295 (9)
C15 0.0703 (9) 0.0791 (11) 0.0967 (12) −0.0107 (8) −0.0120 (8) 0.0368 (9)
C16 0.1131 (14) 0.0506 (8) 0.0956 (12) −0.0019 (8) −0.0018 (10) 0.0065 (8)
C17 0.0896 (10) 0.0526 (7) 0.0687 (8) 0.0097 (7) 0.0099 (7) 0.0036 (6)

Geometric parameters (Å, º)

O1—C7 1.2163 (15) C8—H8A 1.01 (2)
N1—C7 1.3823 (16) C8—H8B 1.004 (18)
N1—C6 1.3869 (15) C9—C10 1.166 (2)
N1—C11 1.4632 (15) C10—H10 0.95 (2)
N2—C7 1.3775 (16) C11—C12 1.5076 (17)
N2—C1 1.3875 (15) C11—H11A 1.042 (17)
N2—C8 1.4525 (16) C11—H11B 0.995 (18)
C1—C2 1.3737 (17) C12—C17 1.3761 (18)
C1—C6 1.3985 (16) C12—C13 1.3771 (19)
C2—C3 1.383 (2) C13—C14 1.381 (2)
C2—H2 0.959 (17) C13—H13 1.008 (19)
C3—C4 1.384 (2) C14—C15 1.369 (3)
C3—H3 0.982 (18) C14—H14 0.94 (2)
C4—C5 1.388 (2) C15—C16 1.366 (3)
C4—H4 0.983 (17) C15—H15 0.94 (2)
C5—C6 1.3793 (17) C16—C17 1.379 (2)
C5—H5 0.986 (17) C16—H16 0.99 (2)
C8—C9 1.4610 (19) C17—H17 1.00 (2)
O1···H8B 2.492 (18) C5···H11A 2.897 (16)
O1···H11B 2.607 (16) C5···H10vi 2.93 (3)
O1···H13 2.760 (18) C8···H2 2.947 (16)
O1···H16i 2.568 (18) C10···H8Aii 2.874 (18)
C2···C9 3.5265 (19) C10···H14iii 2.95 (2)
C7···C13 3.5805 (19) C10···H11Avii 2.895 (17)
C9···C1ii 3.5236 (18) C11···H5 2.998 (16)
C10···N2ii 3.4291 (19) C13···H14v 2.964 (17)
C10···C8ii 3.385 (2) H3···O1iii 2.542 (18)
C10···C14iii 3.512 (3) H5···H11A 2.46 (2)
C11···C13iv 3.495 (2) H11A···H17 2.38 (2)
C14···C14v 3.543 (2) H11B···H13 2.45 (2)
C4···H10vi 2.84 (3)
C7—N1—C6 110.18 (9) N2—C8—H8B 105.8 (10)
C7—N1—C11 123.09 (10) C9—C8—H8B 111.9 (11)
C6—N1—C11 126.62 (10) H8A—C8—H8B 109.7 (15)
C7—N2—C1 110.34 (9) C10—C9—C8 179.48 (16)
C7—N2—C8 123.32 (11) C9—C10—H10 178.1 (14)
C1—N2—C8 126.34 (11) N1—C11—C12 113.05 (10)
C2—C1—N2 131.74 (11) N1—C11—H11A 107.8 (9)
C2—C1—C6 121.46 (11) C12—C11—H11A 108.8 (9)
N2—C1—C6 106.80 (10) N1—C11—H11B 107.1 (10)
C1—C2—C3 117.56 (13) C12—C11—H11B 108.2 (9)
C1—C2—H2 119.0 (10) H11A—C11—H11B 112.0 (13)
C3—C2—H2 123.4 (10) C17—C12—C13 118.52 (13)
C2—C3—C4 121.16 (13) C17—C12—C11 121.19 (12)
C2—C3—H3 120.6 (11) C13—C12—C11 120.28 (12)
C4—C3—H3 118.2 (11) C12—C13—C14 120.50 (15)
C3—C4—C5 121.56 (14) C12—C13—H13 119.1 (10)
C3—C4—H4 119.7 (10) C14—C13—H13 120.4 (10)
C5—C4—H4 118.6 (10) C15—C14—C13 120.41 (16)
C6—C5—C4 117.22 (13) C15—C14—H14 119.1 (14)
C6—C5—H5 120.5 (10) C13—C14—H14 120.5 (14)
C4—C5—H5 122.3 (10) C16—C15—C14 119.46 (16)
C5—C6—N1 132.12 (11) C16—C15—H15 120.9 (11)
C5—C6—C1 121.03 (11) C14—C15—H15 119.6 (11)
N1—C6—C1 106.85 (10) C15—C16—C17 120.33 (16)
O1—C7—N2 126.95 (12) C15—C16—H16 119.8 (12)
O1—C7—N1 127.23 (12) C17—C16—H16 119.8 (12)
N2—C7—N1 105.82 (10) C12—C17—C16 120.78 (15)
N2—C8—C9 111.93 (11) C12—C17—H17 119.1 (11)
N2—C8—H8A 108.6 (11) C16—C17—H17 120.1 (11)
C9—C8—H8A 108.8 (11)
C7—N2—C1—C2 179.03 (13) C1—N2—C7—N1 1.23 (13)
C8—N2—C1—C2 −0.1 (2) C8—N2—C7—N1 −179.61 (11)
C7—N2—C1—C6 −0.58 (13) C6—N1—C7—O1 178.85 (13)
C8—N2—C1—C6 −179.71 (11) C11—N1—C7—O1 2.4 (2)
N2—C1—C2—C3 −179.26 (12) C6—N1—C7—N2 −1.44 (13)
C6—C1—C2—C3 0.29 (18) C11—N1—C7—N2 −177.93 (11)
C1—C2—C3—C4 −0.4 (2) C7—N2—C8—C9 107.51 (15)
C2—C3—C4—C5 0.2 (2) C1—N2—C8—C9 −73.46 (18)
C3—C4—C5—C6 0.2 (2) C7—N1—C11—C12 88.90 (15)
C4—C5—C6—N1 179.75 (12) C6—N1—C11—C12 −87.00 (15)
C4—C5—C6—C1 −0.37 (18) N1—C11—C12—C17 99.61 (15)
C7—N1—C6—C5 −179.00 (12) N1—C11—C12—C13 −81.60 (15)
C11—N1—C6—C5 −2.7 (2) C17—C12—C13—C14 −0.6 (2)
C7—N1—C6—C1 1.11 (13) C11—C12—C13—C14 −179.46 (13)
C11—N1—C6—C1 177.44 (11) C12—C13—C14—C15 0.4 (2)
C2—C1—C6—C5 0.12 (17) C13—C14—C15—C16 0.1 (3)
N2—C1—C6—C5 179.78 (10) C14—C15—C16—C17 −0.5 (3)
C2—C1—C6—N1 −179.98 (11) C13—C12—C17—C16 0.3 (2)
N2—C1—C6—N1 −0.32 (12) C11—C12—C17—C16 179.09 (14)
C1—N2—C7—O1 −179.06 (13) C15—C16—C17—C12 0.3 (3)
C8—N2—C7—O1 0.1 (2)

Symmetry codes: (i) x, y+1, z; (ii) −x, y+1/2, −z+1/2; (iii) x, −y+3/2, z−1/2; (iv) −x+1, −y+1, −z+1; (v) −x, −y+1, −z+1; (vi) x, y−1, z; (vii) −x+1, y+1/2, −z+1/2.

Hydrogen-bond geometry (Å, º)

Cg2 is the centroid of the C1–C6 benzene ring.

D—H···A D—H H···A D···A D—H···A
C3—H3···O1iii 0.982 (18) 2.542 (18) 3.4997 (18) 165.1 (14)
C16—H16···O1vi 0.994 (18) 2.568 (18) 3.468 (2) 150.6 (14)
C17—H17···Cg2viii 1.00 (2) 2.831 (18) 3.6964 (17) 144.6 (15)

Symmetry codes: (iii) x, −y+3/2, z−1/2; (vi) x, y−1, z; (viii) −x+1, y−1/2, −z+1/2.

Funding Statement

This work was funded by National Science Foundation grant 1228232. Tulane University grant . Hacettepe University Scientific Research Project Unit grant 013 D04 602 004 to Tuncer Hökelek.

References

  1. Ayhan-Kılcıgil, G., Kus, G., Özdamar, E. D., Can-Eke, B. & Iscan, M. (2007). Arch. Pharm. Chem. Life Sci. 340, 607–611. [DOI] [PubMed]
  2. Bruker (2016). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Dardouri, R., Rodi, Y. K., Saffon, N., Essassi, E. M. & Ng, S. W. (2011). Acta Cryst. E67, o1853. [DOI] [PMC free article] [PubMed]
  4. Hathwar, V. R., Sist, M., Jørgensen, M. R. V., Mamakhel, A. H., Wang, X., Hoffmann, C. M., Sugimoto, K., Overgaard, J. & Iversen, B. B. (2015). IUCrJ, 2, 563–574. [DOI] [PMC free article] [PubMed]
  5. Hirshfeld, H. L. (1977). Theor. Chim. Acta, 44, 129–138.
  6. Jayatilaka, D., Grimwood, D. J., Lee, A., Lemay, A., Russel, A. J., Taylor, C., Wolff, S. K., Cassam-Chenai, P. & Whitton, A. (2005). TONTO - A System for Computational Chemistry. Available at: http://hirshfeldsurface.net/
  7. Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. [DOI] [PMC free article] [PubMed]
  8. Lakhrissi, B., Benksim, A., Massoui, M., Essassi, el M., Lequart, V., Joly, N., Beaupère, D., Wadouachi, A. & Martin, P. (2008). Carbohydr. Res. 343, 421–433. [DOI] [PubMed]
  9. Luo, Y., Yao, J.-P., Yang, L., Feng, C.-L., Tang, W., Wang, G.-F., Zuo, J.-P. & Lu, W. (2011). Arch. Pharm. Pharm. Med. Chem. 344, 78–83. [DOI] [PubMed]
  10. Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
  11. McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816. [DOI] [PubMed]
  12. Mondieig, D., Lakhrissi, L., El Assyry, A., Lakhrissi, B., Negrier, P., Essassi, E. M., Massoui, M., Michel Leger, J. & Benali, B. (2013). J. Mar. Chim. Heterocycl. 12, 51–61.
  13. Navarrete-Vázquez, G., Cedillo, R., Hernández-Campos, A., Yépez, L., Hernández-Luis, F., Valdez, J., Morales, R., Cortés, R., Hernández, M. & Castillo, R. (2001). Bioorg. Med. Chem. 11, 187–190. [DOI] [PubMed]
  14. Ouzidan, Y., Kandri Rodi, Y., Fronczek, F. R., Venkatraman, R., El Ammari, L. & Essassi, E. M. (2011). Acta Cryst. E67, o362–o363. [DOI] [PMC free article] [PubMed]
  15. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  16. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  17. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  18. Soderlind, K. J., Gorodetsky, B., Singh, A. K., Bachur, N., Miller, G. G. & Lown, J. W. (1999). Anticancer Drug. Des. 14, 19–36. [PubMed]
  19. Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.
  20. Spackman, M. A., McKinnon, J. J. & Jayatilaka, D. (2008). CrystEngComm, 10, 377–388.
  21. Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia.
  22. Venkatesan, P., Thamotharan, S., Ilangovan, A., Liang, H. & Sundius, T. (2016). Spectrochim. Acta Part A, 153, 625–636. [DOI] [PubMed]
  23. Walia, R., Hedaitullah, M., Naaz, S. F., Iqbal, K. & &Lamba, H. S. (2011). Int. J. Res. Pharm. & Chem. 1, 565–574.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S2056989018016298/xu5952sup1.cif

e-74-01842-sup1.cif (422.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989018016298/xu5952Isup2.hkl

e-74-01842-Isup2.hkl (222.3KB, hkl)

Supporting information file. DOI: 10.1107/S2056989018016298/xu5952Isup3.cdx

CCDC reference: 1879758

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES