Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2018 Nov 16;74(Pt 12):1804–1807. doi: 10.1107/S2056989018015827

Hydrogen-bonding chain and dimer motifs in pyridinium and morpholinium hydrogen oxalate salts

David Z T Mulrooney a, Eimear C Madden a, Rhona F Lonergan a, Valentyna D Slyusarchuk a, Helge Müller-Bunz a, Tony D Keene a,*
PMCID: PMC6281086  PMID: 30574378

Three compounds consisting of pyridinium or morpholinium hydrogen oxalates each display different hydrogen oxalate hydrogen-bonding motifs, resulting in chains for 4-(di­methyl­amino)­pyridinium hydrogen oxalate 0.22-hydrate, dimers for 4-tert-butyl­pyridinium hydrogen oxalate and chains for morpholinium hydrogen oxalate.

Keywords: oxalate, hydrogen bonding, ammonium cations, crystal structure

Abstract

We present here three compounds consisting of pyridinium or morpholinium hydrogen oxalates, each displaying different hydrogen-bonding motifs, resulting in chains for 4-(di­methyl­amino)­pyridinium hydrogen oxalate 0.22-hydrate, C7H11N2 +·C2HO4 ·0.22H2O (1), dimers for 4-tert-butyl­pyridinium hydrogen oxalate, C9H14N+·C2HO4 (2), and chains for morpholin­ium hydrogen oxalate, C4H10NO+·C2HO4 (3).

Chemical context  

Oxalate is a common ligand in coordination chemistry, utilized for its ability to chelate and bridge metal ions to form complexes and coordination polymers (Decurtins, 1999). Its ability to facilitate strong magnetic inter­actions and stability under differing synthetic conditions makes it a ligand of choice for the rational design of magnetic materials (Pilkington & Decurtins, 2003). As the simplest di­carb­oxy­lic acid, it can also be found in differing states of deprotonation, providing a range of hydrogen-bonding motifs. Oxalate also has the unusual property of containing a C—C bond with a bond order of slightly less than one, resulting in the carboxyl­ate moieties taking a perpendicular orientation in gas phase calculations (Herbert & Ortiz, 2000). While this structure is the most energetically favourable, the difference in energy between the 90° and 0° torsion angles is slight and is often overridden in hydrogen-bonded structures. Ammonium hydrogen oxalate salts are often useful precursors in the formation of transition metal complexes (Keene et al., 2003) and coordination polymers (Keene et al., 2004). Our research group has an inter­est in these precursors as part of our investigations into mol­ecular magnets (Keene, et al. 2010), not only for their usefulness in this role, but for the complex hydrogen-bonded structures that often arise on crystallization. Previous work from our group has focused on the structure of discrete oxalate dianions and drawn correlations between torsion angles, bond lengths and the crystal packing (Keene et al., 2012).

Structural commentary  

Compound 1 crystallizes in the triclinic space group P Inline graphic. The asymmetric unit of 1 (Fig. 1) consists of two 4-di­methyl­amino­pyridinium cations, two hydrogen oxalate anions and a partial-occupancy water mol­ecule [44.3 (4)% occupancy]. The two hydrogen oxalate anions show markedly different structures with the C21–C22 moiety displaying almost perpendic­ular O—C—C—O torsion angles of −82.784 (9) and −81.855 (10)° while C41—C42 is closer to planar with torsion angles of −13.267 (11) and −12.915 (10)°. The C—C bonds (Table 1) are consistent with other oxalate anions being 1.5276 (18) Å for C21–C22 and 1.5527 (18) Å for C41–C42.graphic file with name e-74-01804-scheme1.jpg

Figure 1.

Figure 1

Asymmetric unit of 1. Displacement ellipsoids are drawn at the 50% probability level.

Table 1. Selected geometric parameters (Å, °) for (1) .

C21—O23 1.2639 (16) C22—O28 1.196 (2)
C21—O24 1.2310 (17) C22—O27 1.2976 (19)
C21—C22 1.5276 (18) C41—C42 1.5527 (18)
       
O24—C21—O23 126.89 (13) O46—C41—O45 127.39 (13)
O28—C22—O27 125.39 (14) O43—C42—O44 122.19 (12)

Compound 2 crystallizes in the monoclinic space group P21/c. The asymmetric unit of 2 (Fig. 2) consists of two 4-t-butyl­pyridinium cations and two hydrogen oxalate anions. Both of the hydrogen oxalate moieties are nearly planar with torsion angles of 1.39 (13)° and 1.58 (15)° for C11—C15 and 1.93 (14)° and 2.73 (15)° for C13—C23.

Figure 2.

Figure 2

Asymmetric unit of 2. Displacement ellipsoids are drawn at the 50% probability level.

Compound 3 crystallizes in the monoclinic space group P21/c. The asymmetric unit of 3 (Fig. 3) consists of one morpholinium cation and one hydrogen oxalate anion. The hydrogen oxalate moiety is near to planar with torsion angles of −11.3 (2) and −12.0 (2)°.

Figure 3.

Figure 3

Asymmetric unit of 3. Displacement ellipsoids are drawn at the 50% probability level.

Supra­molecular features  

Each of the salts displays a hydrogen-bonded network, building the three-dimensional structure of the crystal (Fig. 4). In compound 1, every oxygen atom of the hydrogen oxalates and water groups takes part in hydrogen bonds (Table 2). Extensive C—H⋯O inter­actions and π–π stacking [Cg1⋯Cg1(2 − x, −y, 2 − z) = 3.6418 (8) Å and Cg2Cg2(2 − x, 1 − y, 1 − z) = 3.6535 (9) Å; Cg1 and Cg2 are the centroids of the N11/C12–C16 and N31/C32–C36 rings, respectively] complete the inter­molecular inter­actions. The hydrogen oxalate moieties form a hydrogen-bonded chain along the [1Inline graphic0] direction.

Figure 4.

Figure 4

Hydrogen bonding in hydrogen oxalate groups: (a) chain formed in compound 1, (b) hydrogen-bonded dimer tecton in compound 2 and (c) chain formed in compound 3. [Please include the cell axes]

Table 2. Hydrogen-bond geometry (Å, °) for 1 .

D—H⋯A D—H H⋯A DA D—H⋯A
O27—H27⋯O45 0.84 1.72 2.553 (2) 171
O44—H44⋯O23i 0.84 1.84 2.645 (2) 160
N31—H31⋯O45 0.88 1.87 2.672 (2) 151
N11—H11⋯O23 0.88 1.87 2.749 (2) 174

Symmetry code: (i) Inline graphic.

In compound 2, the hydrogen oxalate moieties form hydrogen-bonded pairs (Table 3) with a four-membered ring formed at the centre of the pair. The opposite sides of the oxalates form a bifurcated hydrogen bond to the 4-t-butyl­pyridinium groups, generating a supra­molecular tecton. These are then built into the three-dimensional structure through C—H⋯O inter­actions. The presence of the t-butyl groups suppresses π–π stacking due to steric inter­ference with no obvious C—H⋯π inter­actions present.

Table 3. Hydrogen-bond geometry (Å, °) for 2 .

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H5⋯O1 0.84 2.22 2.702 (2) 116
O5—H5⋯O7 0.84 1.89 2.621 (2) 144
O4—H4⋯O1 0.84 1.95 2.667 (2) 143
O4—H4⋯O7 0.84 2.17 2.665 (2) 117
N8—H8⋯O6i 0.88 1.80 2.635 (2) 159
N10—H10⋯O2ii 0.88 1.84 2.691 (2) 162

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

In compound 3, the hydrogen oxalates form a chain along the a-axis direction. These chains form the core of the structure with hydrogen bonds (Table 4) coming from the morpholinium along with C—H⋯O inter­actions that form the three-dimensional structure.

Table 4. Hydrogen-bond geometry (Å, °) for 3 .

D—H⋯A D—H H⋯A DA D—H⋯A
O23—H23⋯O26i 0.84 1.75 2.587 (2) 173
N11—H11A⋯O26ii 0.91 2.06 2.879 (2) 149
N11—H11B⋯O25iii 0.91 1.92 2.773 (2) 156

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Database survey  

Hydrogen-bonding motifs in hydrogen oxalate compounds often tend towards chain formation. Different chain types are formed depending on the conformation of the hydroxyl group, i.e. whether the O—H bond is cis or trans to the C—C bond. In compound 3, the hydrogen oxalate is the trans conformer and produces a chain along the a-axis direction and is comparable to compounds reported in the Cambridge Structural Database (CSD version 5.39, updated August 2018, Groom et al., 2016), such as ACOQER (Mora et al., 2017) and FOMBIU (Traut-Johnstone et al., 2014). The hydrogen oxalates in compound 2 are in the cis conformation and form a hydrogen-bonded pair, as seen in a small handful of structures: the combination of this pair-wise inter­action with a birfurcated hydrogen bond to a pyridinium cation is also seen in EZECOC (Androš et al., 2011; Chen et al. 2012,), GULQOV (Thomas et al., 2015; Suresh et al., 2015), LOFMAW (Hu et al., 2014), YEPBAX (Said et al., 2006), YINVUO (Martin et al., 2013) and XEJRIQ (Edwards & Schafer, 2017). The chain type in 1 is not seen in any hydrogen oxalate compounds in the CSD.

Synthesis and crystallization  

Compound 1 was synthesized by adding a solution of 4-di­methyl­amino­pyridine (1.0 mmol, 122 mg) in water (10 ml) and oxalic acid dihydrate (126 mg, 1.0 mmol) in water (10 ml). The resultant solution was left to evaporate to a white powder and was then recrystallized from hot aceto­nitrile to give colourless crystals suitable for single-crystal X-ray diffraction.

The synthesis of compound 2 was achieved by addition of anhydrous oxalic acid (900 mg, 10 mmol) in distilled water (10 ml) to a non-miscible mixture of 4-t-butyl­pyridine (1.465ml, 10 mmol) and distilled water (10 ml) to give a homogenous solution. This was left to evaporate over five days and the white product recrystallized from hot methanol.

Compound 3 was synthesized by adding a solution of oxalic acid dihydrate (1271 mg, 10 mmol) in water (10 ml) to a solution of morpholine (862 µl, 871 mg, 10 mmol) in water (10 ml) and leaving the resultant solution to evaporate until crystals had formed.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 5. In all cases, the proton of the hydrogen oxalate was placed according to C—O bond lengths (O—H = 0.84 Å). All other H atoms were positioned geometrically (N—H = 0.88, O—H = 0.97, C—H = 0.95–0.98 Å) and refined as riding with U iso(H) = kU eq(parent atom) where k = 1.2 for all C—H and N—H groups and 1.5 for Cmethyl, Ohy­droxy and Owater.

Table 5. Experimental details.

  1 2 3
Crystal data
Chemical formula C7H11N2 +·C2HO4 ·0.22H2O C9H14N+·C2HO4 C4H10NO+·C2HO4
M r 216.21 225.24 177.16
Crystal system, space group Triclinic, P Inline graphic Monoclinic, P21/c Monoclinic, P21/c
Temperature (K) 101 101 100
a, b, c (Å) 7.5241 (3), 8.2898 (3), 18.7359 (6) 9.7043 (1), 20.6128 (2), 11.3649 (2) 5.6867 (3), 12.2465 (8), 12.0831 (6)
α, β, γ (°) 89.738 (3), 79.626 (3), 64.741 (4) 90, 95.301 (1), 90 90, 113.150 (4), 90
V3) 1036.17 (7) 2263.63 (5) 773.73 (8)
Z 4 8 4
Radiation type Cu Kα Cu Kα Mo Kα
μ (mm−1) 0.95 0.84 0.13
Crystal size (mm) 0.22 × 0.12 × 0.12 0.23 × 0.21 × 0.15 0.12 × 0.08 × 0.06
 
Data collection
Diffractometer Rigaku SuperNova, Dual, Cu at zero, Atlas Rigaku SuperNova, Dual, Cu at zero, Atlas Nonius Kappa CCD
Absorption correction Gaussian (CrysAlis PRO; Rigaku OD, 2017) Gaussian (CrysAlis PRO; Rigaku OD, 2017) Multi-scan (SORTAV; Blessing, 1997)
T min, T max 0.857, 0.918 0.875, 0.914 0.887, 1.175
No. of measured, independent and observed [I > 2σ(I)] reflections 12774, 4321, 3792 23245, 4749, 4309 6288, 1769, 1390
R int 0.024 0.026 0.075
(sin θ/λ)max−1) 0.631 0.632 0.652
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.039, 0.102, 1.03 0.032, 0.086, 1.03 0.042, 0.110, 1.05
No. of reflections 4321 4749 1769
No. of parameters 290 298 111
H-atom treatment H-atom parameters constrained H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.64, −0.61 0.30, −0.20 0.29, −0.27

Computer programs: CrysAlis PRO (Rigaku OD, 2017), DENZO (Otwinowski & Minor, 1997), COLLECT (Hooft, 1998), SHELXT (Sheldrick, 2015a ), SHELXS97 (Sheldrick, 2008), SHELXL2018 (Sheldrick, 2015b ) and OLEX2 (Dolomanov et al., 2009).

The occupancy of the water mol­ecule in compound 1 was allowed to refine freely to 0.443 (4). Attempts to split the O27/O28 carboxyl­ate in 1 were unsuccessful, leading to a poor-quality refinement. Attempts to locate extra symmetry in compound 2 were unsuccessful, despite superficially appearing to have an inversion centre between the 4-tbpy moieties and between the hydrogen oxalate moieties.

Supplementary Material

Crystal structure: contains datablock(s) 1, 2, 3. DOI: 10.1107/S2056989018015827/qm2130sup1.cif

e-74-01804-sup1.cif (1.5MB, cif)

Structure factors: contains datablock(s) 1. DOI: 10.1107/S2056989018015827/qm21301sup2.hkl

e-74-01804-1sup2.hkl (344.2KB, hkl)

Structure factors: contains datablock(s) 2. DOI: 10.1107/S2056989018015827/qm21302sup3.hkl

e-74-01804-2sup3.hkl (378.1KB, hkl)

Structure factors: contains datablock(s) 3. DOI: 10.1107/S2056989018015827/qm21303sup4.hkl

e-74-01804-3sup4.hkl (141KB, hkl)

CCDC references: 1877733, 1877732, 1877731

Additional supporting information: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

4-(Dimethylamino)pyridinum hydrogen oxalate 0.22-hydrate, (1). Crystal data

C7H11N2+·C2HO4·0.22H2O Z = 4
Mr = 216.21 F(000) = 457
Triclinic, P1 Dx = 1.386 Mg m3
a = 7.5241 (3) Å Cu Kα radiation, λ = 1.54184 Å
b = 8.2898 (3) Å Cell parameters from 6456 reflections
c = 18.7359 (6) Å θ = 4.8–76.7°
α = 89.738 (3)° µ = 0.95 mm1
β = 79.626 (3)° T = 101 K
γ = 64.741 (4)° Block, colourless
V = 1036.17 (7) Å3 0.22 × 0.12 × 0.12 mm

4-(Dimethylamino)pyridinum hydrogen oxalate 0.22-hydrate, (1). Data collection

Rigaku SuperNova, Dual, Cu at zero, Atlas diffractometer 4321 independent reflections
Radiation source: micro-focus sealed X-ray tube, SuperNova (Cu) X-ray Source 3792 reflections with I > 2σ(I)
Mirror monochromator Rint = 0.024
Detector resolution: 10.3196 pixels mm-1 θmax = 76.8°, θmin = 4.8°
ω scans h = −9→9
Absorption correction: gaussian (CrysAlis PRO; Rigaku OD, 2017) k = −10→10
Tmin = 0.857, Tmax = 0.918 l = −23→23
12774 measured reflections

4-(Dimethylamino)pyridinum hydrogen oxalate 0.22-hydrate, (1). Refinement

Refinement on F2 Hydrogen site location: mixed
Least-squares matrix: full H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.039 w = 1/[σ2(Fo2) + (0.0459P)2 + 0.4606P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.102 (Δ/σ)max = 0.001
S = 1.03 Δρmax = 0.64 e Å3
4321 reflections Δρmin = −0.60 e Å3
290 parameters Extinction correction: SHELXL2017 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraints Extinction coefficient: 0.0050 (6)
Primary atom site location: dual

4-(Dimethylamino)pyridinum hydrogen oxalate 0.22-hydrate, (1). Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

4-(Dimethylamino)pyridinum hydrogen oxalate 0.22-hydrate, (1). Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
C21 0.63947 (19) 0.24757 (17) 0.81649 (7) 0.0209 (3)
O23 0.81556 (15) 0.12920 (14) 0.79288 (5) 0.0291 (2)
O24 0.53451 (15) 0.26088 (13) 0.87673 (5) 0.0291 (2)
C22 0.5487 (2) 0.38424 (19) 0.76292 (7) 0.0252 (3)
O28 0.4407 (3) 0.3678 (3) 0.72680 (10) 0.0782 (6)
O27 0.6027 (2) 0.51364 (15) 0.76121 (7) 0.0423 (3)
H27 0.543889 0.587961 0.732904 0.063*
C41 0.31016 (19) 0.88186 (18) 0.69597 (7) 0.0221 (3)
C42 0.2033 (2) 1.00318 (18) 0.63889 (7) 0.0229 (3)
O43 0.28018 (16) 0.97891 (14) 0.57487 (5) 0.0304 (2)
O44 0.02609 (15) 1.13493 (14) 0.66442 (5) 0.0287 (2)
H44 −0.013467 1.120732 0.707824 0.043*
O45 0.46062 (17) 0.73901 (14) 0.66943 (6) 0.0362 (3)
O46 0.24268 (16) 0.93378 (15) 0.76030 (5) 0.0334 (3)
N31 0.64826 (18) 0.59063 (16) 0.53471 (7) 0.0265 (3)
H31 0.559425 0.667206 0.570245 0.032*
C32 0.7864 (2) 0.43279 (19) 0.55026 (7) 0.0255 (3)
H32 0.785917 0.406403 0.599668 0.031*
C33 0.9265 (2) 0.31050 (18) 0.49705 (7) 0.0230 (3)
H33 1.022104 0.200326 0.509378 0.028*
C34 0.9289 (2) 0.34848 (17) 0.42281 (7) 0.0218 (3)
C35 0.7797 (2) 0.51610 (18) 0.40884 (7) 0.0247 (3)
H35 0.773915 0.547156 0.360160 0.030*
C36 0.6455 (2) 0.63162 (19) 0.46511 (8) 0.0266 (3)
H36 0.547814 0.743611 0.455160 0.032*
N37 1.06573 (19) 0.23242 (16) 0.36900 (6) 0.0265 (3)
C38 1.2241 (2) 0.0656 (2) 0.38514 (8) 0.0308 (3)
H38A 1.306530 −0.004623 0.339489 0.046*
H38B 1.163647 −0.003441 0.414125 0.046*
H38C 1.308285 0.093268 0.412603 0.046*
C39 1.0741 (3) 0.2804 (2) 0.29357 (8) 0.0346 (3)
H39A 1.177294 0.178370 0.261209 0.052*
H39B 1.106919 0.382807 0.288657 0.052*
H39C 0.943665 0.312091 0.280341 0.052*
N11 0.93551 (19) −0.08918 (16) 0.90258 (6) 0.0271 (3)
H11 0.905583 −0.023294 0.865684 0.033*
C12 1.1096 (2) −0.23848 (19) 0.89417 (8) 0.0279 (3)
H12 1.198139 −0.271263 0.848133 0.034*
C13 1.1617 (2) −0.34363 (18) 0.95003 (8) 0.0253 (3)
H13 1.284904 −0.448706 0.942505 0.030*
C14 1.0325 (2) −0.29652 (18) 1.01939 (7) 0.0232 (3)
C15 0.8495 (2) −0.13857 (18) 1.02576 (8) 0.0262 (3)
H15 0.756700 −0.101448 1.070848 0.031*
C16 0.8072 (2) −0.04046 (18) 0.96725 (8) 0.0269 (3)
H16 0.684523 0.064542 0.972233 0.032*
N17 1.07977 (18) −0.39505 (16) 1.07586 (7) 0.0262 (3)
C18 1.2723 (2) −0.5515 (2) 1.06937 (9) 0.0313 (3)
H18A 1.380322 −0.513174 1.062420 0.047*
H18B 1.291850 −0.631894 1.027518 0.047*
H18C 1.273973 −0.614446 1.113826 0.047*
C19 0.9438 (2) −0.3446 (2) 1.14685 (8) 0.0323 (3)
H19A 0.815307 −0.342245 1.141889 0.048*
H19B 0.922145 −0.225643 1.165034 0.048*
H19C 1.002919 −0.431983 1.181181 0.048*
O51 0.5352 (3) 0.9043 (3) 0.84705 (12) 0.0266 (7) 0.443 (4)
H51A 0.525878 1.012002 0.852157 0.040* 0.443 (4)
H51B 0.451198 0.913256 0.819034 0.040* 0.443 (4)

4-(Dimethylamino)pyridinum hydrogen oxalate 0.22-hydrate, (1). Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C21 0.0200 (6) 0.0189 (6) 0.0233 (6) −0.0069 (5) −0.0074 (5) 0.0009 (5)
O23 0.0220 (5) 0.0278 (5) 0.0269 (5) −0.0012 (4) −0.0041 (4) 0.0030 (4)
O24 0.0244 (5) 0.0274 (5) 0.0272 (5) −0.0045 (4) −0.0021 (4) 0.0080 (4)
C22 0.0193 (6) 0.0309 (7) 0.0211 (6) −0.0061 (5) −0.0053 (5) 0.0044 (5)
O28 0.1000 (13) 0.1124 (14) 0.0845 (12) −0.0817 (12) −0.0781 (11) 0.0698 (11)
O27 0.0641 (8) 0.0266 (6) 0.0474 (7) −0.0205 (6) −0.0360 (6) 0.0180 (5)
C41 0.0213 (6) 0.0214 (6) 0.0222 (6) −0.0077 (5) −0.0051 (5) 0.0044 (5)
C42 0.0231 (6) 0.0210 (6) 0.0233 (6) −0.0077 (5) −0.0060 (5) 0.0038 (5)
O43 0.0304 (5) 0.0302 (5) 0.0232 (5) −0.0064 (4) −0.0048 (4) 0.0080 (4)
O44 0.0251 (5) 0.0274 (5) 0.0246 (5) −0.0025 (4) −0.0059 (4) 0.0047 (4)
O45 0.0408 (6) 0.0238 (5) 0.0241 (5) 0.0037 (5) −0.0041 (4) 0.0051 (4)
O46 0.0276 (5) 0.0364 (6) 0.0217 (5) −0.0001 (4) −0.0055 (4) 0.0014 (4)
N31 0.0249 (6) 0.0253 (6) 0.0263 (6) −0.0084 (5) −0.0040 (5) −0.0018 (5)
C32 0.0293 (7) 0.0274 (7) 0.0220 (6) −0.0131 (6) −0.0081 (5) 0.0037 (5)
C33 0.0258 (6) 0.0217 (6) 0.0224 (6) −0.0095 (5) −0.0090 (5) 0.0046 (5)
C34 0.0254 (6) 0.0220 (6) 0.0213 (6) −0.0121 (5) −0.0078 (5) 0.0027 (5)
C35 0.0281 (7) 0.0261 (7) 0.0231 (6) −0.0124 (6) −0.0115 (5) 0.0070 (5)
C36 0.0248 (7) 0.0237 (7) 0.0319 (7) −0.0090 (5) −0.0112 (5) 0.0054 (5)
N37 0.0321 (6) 0.0245 (6) 0.0208 (6) −0.0106 (5) −0.0046 (5) 0.0014 (4)
C38 0.0301 (7) 0.0240 (7) 0.0334 (8) −0.0077 (6) −0.0047 (6) −0.0020 (6)
C39 0.0454 (9) 0.0386 (8) 0.0198 (7) −0.0191 (7) −0.0041 (6) 0.0018 (6)
N11 0.0347 (6) 0.0228 (6) 0.0261 (6) −0.0115 (5) −0.0141 (5) 0.0063 (4)
C12 0.0322 (7) 0.0270 (7) 0.0255 (7) −0.0127 (6) −0.0083 (6) 0.0016 (5)
C13 0.0253 (6) 0.0211 (6) 0.0285 (7) −0.0076 (5) −0.0092 (5) 0.0008 (5)
C14 0.0278 (7) 0.0207 (6) 0.0268 (7) −0.0132 (5) −0.0127 (5) 0.0043 (5)
C15 0.0293 (7) 0.0230 (7) 0.0264 (7) −0.0100 (6) −0.0085 (5) 0.0011 (5)
C16 0.0292 (7) 0.0200 (6) 0.0315 (7) −0.0081 (5) −0.0125 (6) 0.0021 (5)
N17 0.0286 (6) 0.0251 (6) 0.0278 (6) −0.0122 (5) −0.0116 (5) 0.0075 (5)
C18 0.0317 (7) 0.0270 (7) 0.0376 (8) −0.0109 (6) −0.0179 (6) 0.0101 (6)
C19 0.0384 (8) 0.0353 (8) 0.0256 (7) −0.0167 (7) −0.0100 (6) 0.0065 (6)
O51 0.0255 (12) 0.0223 (12) 0.0306 (13) −0.0075 (9) −0.0093 (9) 0.0031 (9)

4-(Dimethylamino)pyridinum hydrogen oxalate 0.22-hydrate, (1). Geometric parameters (Å, º)

C21—O23 1.2639 (16) C38—H38B 0.9800
C21—O24 1.2310 (17) C38—H38C 0.9800
C21—C22 1.5276 (18) C39—H39A 0.9800
C22—O28 1.196 (2) C39—H39B 0.9800
C22—O27 1.2976 (19) C39—H39C 0.9800
O27—H27 0.8400 N11—H11 0.8800
C41—C42 1.5527 (18) N11—C12 1.3476 (19)
C41—O45 1.2608 (17) N11—C16 1.3467 (19)
C41—O46 1.2222 (17) C12—H12 0.9500
C42—O43 1.2112 (17) C12—C13 1.363 (2)
C42—O44 1.3161 (16) C13—H13 0.9500
O44—H44 0.8400 C13—C14 1.418 (2)
N31—H31 0.8800 C14—C15 1.4243 (19)
N31—C32 1.3500 (19) C14—N17 1.3388 (18)
N31—C36 1.3476 (19) C15—H15 0.9500
C32—H32 0.9500 C15—C16 1.364 (2)
C32—C33 1.360 (2) C16—H16 0.9500
C33—H33 0.9500 N17—C18 1.4593 (18)
C33—C34 1.4234 (18) N17—C19 1.4630 (19)
C34—C35 1.4251 (19) C18—H18A 0.9800
C34—N37 1.3386 (18) C18—H18B 0.9800
C35—H35 0.9500 C18—H18C 0.9800
C35—C36 1.360 (2) C19—H19A 0.9800
C36—H36 0.9500 C19—H19B 0.9800
N37—C38 1.4641 (19) C19—H19C 0.9800
N37—C39 1.4641 (18) O51—H51A 0.8694
C38—H38A 0.9800 O51—H51B 0.8714
O23—C21—C22 115.43 (11) N37—C39—H39A 109.5
O24—C21—O23 126.89 (13) N37—C39—H39B 109.5
O24—C21—C22 117.66 (11) N37—C39—H39C 109.5
O28—C22—C21 121.46 (14) H39A—C39—H39B 109.5
O28—C22—O27 125.39 (14) H39A—C39—H39C 109.5
O27—C22—C21 113.14 (12) H39B—C39—H39C 109.5
C22—O27—H27 109.5 C12—N11—H11 119.9
O45—C41—C42 114.75 (11) C16—N11—H11 119.9
O46—C41—C42 117.86 (12) C16—N11—C12 120.22 (12)
O46—C41—O45 127.39 (13) N11—C12—H12 119.2
O43—C42—C41 121.78 (12) N11—C12—C13 121.67 (14)
O43—C42—O44 122.19 (12) C13—C12—H12 119.2
O44—C42—C41 116.02 (11) C12—C13—H13 119.9
C42—O44—H44 109.5 C12—C13—C14 120.14 (13)
C32—N31—H31 119.8 C14—C13—H13 119.9
C36—N31—H31 119.8 C13—C14—C15 116.37 (12)
C36—N31—C32 120.39 (12) N17—C14—C13 121.90 (13)
N31—C32—H32 119.1 N17—C14—C15 121.73 (13)
N31—C32—C33 121.76 (13) C14—C15—H15 119.9
C33—C32—H32 119.1 C16—C15—C14 120.14 (13)
C32—C33—H33 120.2 C16—C15—H15 119.9
C32—C33—C34 119.66 (13) N11—C16—C15 121.46 (13)
C34—C33—H33 120.2 N11—C16—H16 119.3
C33—C34—C35 116.72 (12) C15—C16—H16 119.3
N37—C34—C33 121.39 (12) C14—N17—C18 121.00 (12)
N37—C34—C35 121.88 (12) C14—N17—C19 121.01 (12)
C34—C35—H35 120.0 C18—N17—C19 117.93 (12)
C36—C35—C34 120.06 (13) N17—C18—H18A 109.5
C36—C35—H35 120.0 N17—C18—H18B 109.5
N31—C36—C35 121.40 (13) N17—C18—H18C 109.5
N31—C36—H36 119.3 H18A—C18—H18B 109.5
C35—C36—H36 119.3 H18A—C18—H18C 109.5
C34—N37—C38 120.70 (12) H18B—C18—H18C 109.5
C34—N37—C39 120.23 (12) N17—C19—H19A 109.5
C38—N37—C39 118.64 (12) N17—C19—H19B 109.5
N37—C38—H38A 109.5 N17—C19—H19C 109.5
N37—C38—H38B 109.5 H19A—C19—H19B 109.5
N37—C38—H38C 109.5 H19A—C19—H19C 109.5
H38A—C38—H38B 109.5 H19B—C19—H19C 109.5
H38A—C38—H38C 109.5 H51A—O51—H51B 104.5
H38B—C38—H38C 109.5

4-(Dimethylamino)pyridinum hydrogen oxalate 0.22-hydrate, (1). Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O27—H27···O45 0.84 1.72 2.553 (2) 171
O44—H44···O23i 0.84 1.84 2.645 (2) 160
N31—H31···O45 0.88 1.87 2.672 (2) 151
C33—H33···O43ii 0.95 2.54 3.447 (2) 160
C35—H35···O28iii 0.95 2.39 3.204 (2) 143
C39—H39A···O51iv 0.98 2.54 3.367 (2) 143
N11—H11···O23 0.88 1.87 2.749 (2) 174
C12—H12···O46ii 0.95 2.44 3.101 (2) 126
C13—H13···O24ii 0.95 2.49 3.363 (2) 154
C15—H15···O51v 0.95 2.37 3.254 (2) 155
C16—H16···O24 0.95 2.50 3.189 (2) 129
C18—H18C···O51vi 0.98 2.41 3.204 (2) 138
C19—H19A···O24vii 0.98 2.51 3.474 (2) 167
C19—H19B···O23vi 0.98 2.66 3.355 (2) 128
C19—H19B···O46v 0.98 2.49 3.419 (2) 158

Symmetry codes: (i) x−1, y+1, z; (ii) x+1, y−1, z; (iii) −x+1, −y+1, −z+1; (iv) −x+2, −y+1, −z+1; (v) −x+1, −y+1, −z+2; (vi) −x+2, −y, −z+2; (vii) −x+1, −y, −z+2.

4-tert-Butylpyridinium hydrogen oxalate (2) . Crystal data

C9H14N+·C2HO4 F(000) = 960
Mr = 225.24 Dx = 1.322 Mg m3
Monoclinic, P21/c Cu Kα radiation, λ = 1.54184 Å
a = 9.7043 (1) Å Cell parameters from 12822 reflections
b = 20.6128 (2) Å θ = 4.3–76.7°
c = 11.3649 (2) Å µ = 0.84 mm1
β = 95.301 (1)° T = 101 K
V = 2263.63 (5) Å3 Block, colourless
Z = 8 0.23 × 0.21 × 0.15 mm

4-tert-Butylpyridinium hydrogen oxalate (2) . Data collection

Rigaku SuperNova, Dual, Cu at zero, Atlas diffractometer 4749 independent reflections
Radiation source: micro-focus sealed X-ray tube, SuperNova (Cu) X-ray Source 4309 reflections with I > 2σ(I)
Mirror monochromator Rint = 0.026
Detector resolution: 10.3196 pixels mm-1 θmax = 76.9°, θmin = 4.3°
ω scans h = −12→6
Absorption correction: gaussian (CrysAlis PRO; Rigaku OD, 2017) k = −25→25
Tmin = 0.875, Tmax = 0.914 l = −14→13
23245 measured reflections

4-tert-Butylpyridinium hydrogen oxalate (2) . Refinement

Refinement on F2 Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.032 w = 1/[σ2(Fo2) + (0.0436P)2 + 0.6305P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.086 (Δ/σ)max = 0.001
S = 1.03 Δρmax = 0.30 e Å3
4749 reflections Δρmin = −0.19 e Å3
298 parameters Extinction correction: SHELXL2018 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraints Extinction coefficient: 0.0014 (2)
Primary atom site location: structure-invariant direct methods

4-tert-Butylpyridinium hydrogen oxalate (2) . Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

4-tert-Butylpyridinium hydrogen oxalate (2) . Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.25550 (8) 0.43622 (3) 0.70494 (6) 0.02235 (17)
O2 0.32304 (8) 0.44362 (4) 0.52213 (7) 0.02470 (17)
O3 0.33459 (8) 0.31095 (4) 0.51650 (7) 0.02367 (17)
O5 0.26234 (8) 0.30529 (3) 0.69505 (6) 0.02384 (17)
H5 0.236580 0.331294 0.745548 0.036*
C11 0.29745 (10) 0.33807 (5) 0.60229 (9) 0.0178 (2)
C15 0.29057 (10) 0.41332 (5) 0.61104 (9) 0.0176 (2)
O4 0.18857 (9) 0.46451 (4) 0.92146 (7) 0.02595 (18)
H4 0.195934 0.439668 0.863786 0.039*
O6 0.08701 (8) 0.32454 (3) 1.07151 (6) 0.02113 (16)
O7 0.15176 (9) 0.33744 (4) 0.88866 (7) 0.02549 (18)
N8 0.01187 (9) 0.13839 (4) 0.77806 (8) 0.02008 (18)
H8 0.048459 0.141529 0.710267 0.024*
O9 0.13464 (11) 0.45509 (4) 1.10604 (8) 0.0384 (2)
N10 −0.58139 (9) 0.10354 (4) 0.82435 (8) 0.01965 (18)
H10 −0.618785 0.096784 0.890936 0.024*
C12 −0.02998 (10) 0.18412 (5) 0.96208 (9) 0.0197 (2)
H12 −0.017786 0.219014 1.016658 0.024*
C13 0.12757 (10) 0.35674 (5) 0.98830 (9) 0.0180 (2)
C14 −0.11752 (10) 0.07878 (5) 0.90662 (9) 0.0190 (2)
H14 −0.167076 0.040537 0.922749 0.023*
C16 −0.43731 (11) 0.07692 (5) 0.41698 (9) 0.0235 (2)
H16A −0.537903 0.075552 0.398349 0.035*
H16B −0.406152 0.036516 0.456362 0.035*
H16C −0.392251 0.081887 0.343806 0.035*
C17 −0.33134 (11) 0.11400 (6) 1.07311 (10) 0.0242 (2)
H17A −0.348024 0.073140 1.030059 0.036*
H17B −0.367429 0.150194 1.023517 0.036*
H17C −0.378245 0.112917 1.145842 0.036*
C18 −0.56068 (10) 0.16819 (5) 0.65500 (9) 0.0195 (2)
H18 −0.587545 0.205627 0.609813 0.023*
C19 −0.43104 (10) 0.06991 (5) 0.68462 (9) 0.0190 (2)
H19 −0.365858 0.039443 0.660399 0.023*
C20 0.02689 (11) 0.18748 (5) 0.85519 (9) 0.0206 (2)
H20 0.077167 0.225023 0.836279 0.025*
C21 −0.44818 (12) 0.19745 (5) 0.43687 (10) 0.0252 (2)
H21A −0.406218 0.201309 0.361993 0.038*
H21B −0.420537 0.234575 0.487513 0.038*
H21C −0.549192 0.196699 0.421293 0.038*
C22 −0.49071 (11) 0.06006 (5) 0.78815 (9) 0.0201 (2)
H22 −0.467953 0.022485 0.834317 0.024*
C23 0.14999 (11) 0.43045 (5) 1.01214 (9) 0.0225 (2)
C24 −0.17490 (11) 0.12303 (5) 1.10438 (9) 0.0188 (2)
C25 −0.11670 (11) 0.06294 (5) 1.17200 (9) 0.0236 (2)
H25A −0.158292 0.059412 1.247100 0.035*
H25B −0.016064 0.067113 1.187537 0.035*
H25C −0.138637 0.023997 1.124460 0.035*
C26 −0.61575 (10) 0.15684 (5) 0.76097 (9) 0.0206 (2)
H26 −0.678645 0.187189 0.789160 0.025*
C27 −0.46546 (10) 0.12460 (5) 0.61422 (9) 0.0169 (2)
C28 −0.39912 (10) 0.13457 (5) 0.49908 (9) 0.0182 (2)
C29 −0.10559 (10) 0.12926 (5) 0.98989 (9) 0.0171 (2)
C30 −0.24103 (11) 0.13659 (5) 0.52676 (10) 0.0226 (2)
H30A −0.208251 0.094310 0.557250 0.034*
H30B −0.216597 0.170110 0.586209 0.034*
H30C −0.197493 0.146638 0.454478 0.034*
C31 −0.14953 (13) 0.18296 (5) 1.18272 (10) 0.0266 (2)
H31A −0.186910 0.221388 1.140180 0.040*
H31B −0.049865 0.188524 1.202940 0.040*
H31C −0.195574 0.177365 1.255250 0.040*
C32 −0.05806 (11) 0.08431 (5) 0.80202 (9) 0.0204 (2)
H32 −0.066310 0.049822 0.746359 0.025*

4-tert-Butylpyridinium hydrogen oxalate (2) . Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0307 (4) 0.0184 (3) 0.0189 (4) 0.0006 (3) 0.0073 (3) −0.0010 (3)
O2 0.0365 (4) 0.0178 (4) 0.0214 (4) 0.0019 (3) 0.0111 (3) 0.0021 (3)
O3 0.0313 (4) 0.0191 (4) 0.0218 (4) 0.0018 (3) 0.0088 (3) −0.0017 (3)
O5 0.0372 (4) 0.0159 (3) 0.0196 (4) 0.0009 (3) 0.0094 (3) 0.0001 (3)
C11 0.0185 (4) 0.0175 (5) 0.0174 (5) 0.0004 (3) 0.0024 (4) 0.0005 (4)
C15 0.0177 (4) 0.0173 (5) 0.0181 (5) 0.0008 (3) 0.0026 (4) 0.0002 (4)
O4 0.0394 (4) 0.0177 (4) 0.0226 (4) −0.0059 (3) 0.0126 (3) −0.0031 (3)
O6 0.0262 (4) 0.0187 (3) 0.0192 (4) −0.0015 (3) 0.0063 (3) 0.0004 (3)
O7 0.0383 (4) 0.0204 (4) 0.0189 (4) −0.0040 (3) 0.0090 (3) −0.0024 (3)
N8 0.0217 (4) 0.0220 (4) 0.0169 (4) 0.0020 (3) 0.0041 (3) 0.0022 (3)
O9 0.0653 (6) 0.0252 (4) 0.0281 (4) −0.0146 (4) 0.0230 (4) −0.0097 (3)
N10 0.0224 (4) 0.0207 (4) 0.0162 (4) −0.0006 (3) 0.0040 (3) −0.0003 (3)
C12 0.0223 (5) 0.0162 (4) 0.0203 (5) −0.0002 (4) 0.0007 (4) −0.0006 (4)
C13 0.0181 (4) 0.0180 (5) 0.0179 (5) −0.0008 (3) 0.0023 (4) −0.0011 (4)
C14 0.0220 (5) 0.0161 (4) 0.0189 (5) −0.0004 (4) 0.0024 (4) 0.0008 (4)
C16 0.0273 (5) 0.0262 (5) 0.0171 (5) −0.0030 (4) 0.0036 (4) −0.0035 (4)
C17 0.0213 (5) 0.0301 (5) 0.0214 (5) 0.0026 (4) 0.0038 (4) 0.0023 (4)
C18 0.0218 (5) 0.0182 (5) 0.0187 (5) 0.0019 (4) 0.0022 (4) 0.0011 (4)
C19 0.0221 (5) 0.0165 (4) 0.0184 (5) 0.0013 (4) 0.0021 (4) −0.0013 (4)
C20 0.0209 (5) 0.0179 (5) 0.0230 (5) −0.0009 (4) 0.0020 (4) 0.0036 (4)
C21 0.0299 (6) 0.0247 (5) 0.0219 (5) 0.0049 (4) 0.0072 (4) 0.0067 (4)
C22 0.0251 (5) 0.0168 (5) 0.0183 (5) −0.0003 (4) 0.0017 (4) 0.0004 (4)
C23 0.0279 (5) 0.0196 (5) 0.0213 (5) −0.0048 (4) 0.0086 (4) −0.0028 (4)
C24 0.0217 (5) 0.0183 (5) 0.0165 (5) 0.0009 (4) 0.0029 (4) 0.0006 (4)
C25 0.0266 (5) 0.0244 (5) 0.0199 (5) 0.0030 (4) 0.0026 (4) 0.0060 (4)
C26 0.0217 (5) 0.0205 (5) 0.0200 (5) 0.0026 (4) 0.0033 (4) −0.0006 (4)
C27 0.0177 (4) 0.0167 (4) 0.0162 (4) −0.0018 (3) 0.0008 (4) −0.0016 (3)
C28 0.0207 (5) 0.0184 (5) 0.0158 (4) 0.0008 (4) 0.0031 (4) 0.0005 (4)
C29 0.0175 (4) 0.0169 (4) 0.0166 (5) 0.0024 (3) 0.0003 (4) 0.0015 (4)
C30 0.0211 (5) 0.0243 (5) 0.0227 (5) −0.0023 (4) 0.0036 (4) 0.0013 (4)
C31 0.0361 (6) 0.0250 (5) 0.0193 (5) 0.0003 (4) 0.0057 (4) −0.0043 (4)
C32 0.0240 (5) 0.0183 (5) 0.0189 (5) 0.0016 (4) 0.0016 (4) −0.0011 (4)

4-tert-Butylpyridinium hydrogen oxalate (2) . Geometric parameters (Å, º)

O1—C15 1.2429 (12) C13—C23 1.5551 (14)
O2—C15 1.2526 (12) C14—C29 1.4041 (14)
O3—C11 1.2075 (12) C14—C32 1.3732 (14)
O5—C11 1.3230 (12) C16—C28 1.5350 (14)
C11—C15 1.5560 (13) C17—C24 1.5382 (14)
O4—C23 1.3291 (13) C18—C26 1.3820 (14)
O6—C13 1.2485 (12) C18—C27 1.3982 (14)
O7—C13 1.2429 (12) C19—C22 1.3735 (14)
N8—C20 1.3379 (14) C19—C27 1.4046 (14)
N8—C32 1.3460 (14) C21—C28 1.5310 (14)
O9—C23 1.2035 (13) C24—C25 1.5374 (14)
N10—C22 1.3469 (13) C24—C29 1.5243 (13)
N10—C26 1.3390 (14) C24—C31 1.5293 (14)
C12—C20 1.3816 (15) C27—C28 1.5248 (13)
C12—C29 1.3999 (14) C28—C30 1.5379 (14)
O3—C11—O5 121.67 (9) C25—C24—C17 109.09 (8)
O3—C11—C15 122.06 (9) C29—C24—C17 108.48 (8)
O5—C11—C15 116.26 (8) C29—C24—C25 108.90 (8)
O1—C15—O2 127.77 (9) C29—C24—C31 111.65 (8)
O1—C15—C11 116.76 (9) C31—C24—C17 109.55 (9)
O2—C15—C11 115.47 (8) C31—C24—C25 109.13 (9)
C20—N8—C32 121.35 (9) N10—C26—C18 120.70 (9)
C26—N10—C22 121.26 (9) C18—C27—C19 117.17 (9)
C20—C12—C29 119.95 (9) C18—C27—C28 122.83 (9)
O6—C13—C23 115.87 (9) C19—C27—C28 120.00 (9)
O7—C13—O6 128.26 (9) C16—C28—C30 109.00 (8)
O7—C13—C23 115.88 (9) C21—C28—C16 109.11 (8)
C32—C14—C29 120.45 (9) C21—C28—C30 109.47 (8)
C26—C18—C27 120.05 (9) C27—C28—C16 108.66 (8)
C22—C19—C27 120.64 (9) C27—C28—C21 111.87 (8)
N8—C20—C12 120.67 (9) C27—C28—C30 108.68 (8)
N10—C22—C19 120.16 (9) C12—C29—C14 117.31 (9)
O4—C23—C13 115.21 (9) C12—C29—C24 122.86 (9)
O9—C23—O4 122.11 (10) C14—C29—C24 119.83 (9)
O9—C23—C13 122.68 (10) N8—C32—C14 120.26 (9)

4-tert-Butylpyridinium hydrogen oxalate (2) . Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O5—H5···O1 0.84 2.22 2.702 (2) 116
O5—H5···O7 0.84 1.89 2.621 (2) 144
O4—H4···O1 0.84 1.95 2.667 (2) 143
O4—H4···O7 0.84 2.17 2.665 (2) 117
N8—H8···O6i 0.88 1.80 2.635 (2) 159
N10—H10···O2ii 0.88 1.84 2.691 (2) 162
C12—H12···O6 0.95 2.46 3.310 (2) 149
C14—H14···O2iii 0.95 2.62 3.563 (2) 174
C18—H18···O3iv 0.95 2.50 3.446 (2) 172
C19—H19···O4iii 0.95 2.55 3.498 (2) 175
C20—H20···O7 0.95 2.48 3.329 (2) 148
C22—H22···O2iii 0.95 2.62 3.523 (2) 159
C26—H26···O3ii 0.95 2.58 3.060 (2) 112
C32—H32···O9i 0.95 2.63 3.144 (2) 114

Symmetry codes: (i) x, −y+1/2, z−1/2; (ii) x−1, −y+1/2, z+1/2; (iii) −x, y−1/2, −z+3/2; (iv) x−1, y, z.

Morpholinium hydrogen oxalate (3). Crystal data

C4H10NO+·C2HO4 F(000) = 376
Mr = 177.16 Dx = 1.521 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
a = 5.6867 (3) Å Cell parameters from 1705 reflections
b = 12.2465 (8) Å θ = 2.9–27.5°
c = 12.0831 (6) Å µ = 0.13 mm1
β = 113.150 (4)° T = 100 K
V = 773.73 (8) Å3 Block, colourless
Z = 4 0.12 × 0.08 × 0.06 mm

Morpholinium hydrogen oxalate (3). Data collection

Nonius Kappa CCD diffractometer 1769 independent reflections
Radiation source: Nonius FR591 rotating anode, Rotating Anode 1390 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.075
Detector resolution: 9.091 pixels mm-1 θmax = 27.6°, θmin = 3.3°
φ and ω scans to fill Ewald Sphere h = −5→7
Absorption correction: multi-scan (SORTAV; Blessing, 1997) k = −15→15
Tmin = 0.887, Tmax = 1.175 l = −15→15
6288 measured reflections

Morpholinium hydrogen oxalate (3). Refinement

Refinement on F2 Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.042 w = 1/[σ2(Fo2) + (0.0476P)2 + 0.2356P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.110 (Δ/σ)max < 0.001
S = 1.05 Δρmax = 0.29 e Å3
1769 reflections Δρmin = −0.26 e Å3
111 parameters Extinction correction: SHELXL2014 (Sheldrick, 2015bb), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraints Extinction coefficient: 0.128 (10)
Primary atom site location: structure-invariant direct methods

Morpholinium hydrogen oxalate (3). Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Morpholinium hydrogen oxalate (3). Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O26 0.15522 (19) 0.29264 (8) 0.49858 (9) 0.0209 (3)
O23 0.6961 (2) 0.22022 (8) 0.44496 (10) 0.0241 (3)
H23 0.8454 0.2452 0.4678 0.036*
O14 0.5274 (2) 0.36802 (9) 0.17836 (10) 0.0269 (3)
O24 0.6384 (2) 0.36286 (9) 0.54702 (11) 0.0303 (3)
O25 0.1977 (2) 0.17448 (9) 0.36656 (10) 0.0269 (3)
N11 0.6060 (2) 0.57855 (10) 0.28681 (11) 0.0201 (3)
H11A 0.6178 0.6219 0.3499 0.024*
H11B 0.6287 0.6212 0.2301 0.024*
C22 0.2790 (3) 0.24484 (12) 0.44633 (13) 0.0181 (3)
C21 0.5606 (3) 0.28215 (12) 0.48638 (13) 0.0187 (3)
C13 0.7757 (3) 0.41615 (13) 0.22554 (14) 0.0242 (4)
H13A 0.8032 0.4566 0.1607 0.029*
H13B 0.9063 0.3578 0.2541 0.029*
C12 0.8090 (3) 0.49324 (12) 0.32829 (14) 0.0216 (4)
H12A 0.7971 0.4522 0.3965 0.026*
H12B 0.9797 0.5281 0.3563 0.026*
C16 0.3484 (3) 0.52708 (13) 0.23515 (14) 0.0229 (4)
H16A 0.2153 0.5841 0.2035 0.027*
H16B 0.3167 0.4859 0.2984 0.027*
C15 0.3368 (3) 0.45091 (13) 0.13495 (15) 0.0257 (4)
H15A 0.1655 0.4166 0.0997 0.031*
H15B 0.3629 0.4931 0.0708 0.031*

Morpholinium hydrogen oxalate (3). Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O26 0.0142 (6) 0.0220 (5) 0.0276 (6) 0.0011 (4) 0.0095 (4) −0.0038 (4)
O23 0.0133 (6) 0.0254 (6) 0.0359 (6) −0.0027 (4) 0.0121 (5) −0.0082 (5)
O14 0.0195 (6) 0.0230 (6) 0.0355 (7) −0.0009 (5) 0.0078 (5) −0.0072 (5)
O24 0.0223 (6) 0.0305 (6) 0.0433 (7) −0.0095 (5) 0.0185 (5) −0.0158 (5)
O25 0.0181 (6) 0.0322 (6) 0.0313 (6) −0.0061 (5) 0.0107 (5) −0.0122 (5)
N11 0.0204 (7) 0.0183 (6) 0.0230 (7) −0.0013 (5) 0.0101 (5) −0.0016 (5)
C22 0.0144 (8) 0.0174 (7) 0.0224 (8) 0.0008 (6) 0.0073 (6) 0.0010 (5)
C21 0.0157 (8) 0.0191 (7) 0.0226 (7) −0.0010 (6) 0.0090 (6) 0.0015 (6)
C13 0.0152 (8) 0.0261 (8) 0.0302 (9) 0.0022 (6) 0.0075 (6) −0.0026 (7)
C12 0.0156 (8) 0.0251 (8) 0.0240 (8) 0.0001 (6) 0.0077 (6) 0.0002 (6)
C16 0.0162 (8) 0.0256 (8) 0.0280 (8) 0.0008 (6) 0.0099 (7) −0.0007 (6)
C15 0.0164 (8) 0.0299 (9) 0.0284 (9) 0.0011 (6) 0.0062 (7) −0.0050 (6)

Morpholinium hydrogen oxalate (3). Geometric parameters (Å, º)

O26—C22 1.2596 (18) C22—C21 1.548 (2)
O23—H23 0.8400 C13—H13A 0.9900
O23—C21 1.3127 (18) C13—H13B 0.9900
O14—C13 1.4263 (19) C13—C12 1.511 (2)
O14—C15 1.4260 (19) C12—H12A 0.9900
O24—C21 1.2062 (18) C12—H12B 0.9900
O25—C22 1.2389 (18) C16—H16A 0.9900
N11—H11A 0.9100 C16—H16B 0.9900
N11—H11B 0.9100 C16—C15 1.509 (2)
N11—C12 1.4902 (19) C15—H15A 0.9900
N11—C16 1.4876 (19) C15—H15B 0.9900
C21—O23—H23 109.5 C12—C13—H13B 109.3
C15—O14—C13 110.06 (11) N11—C12—C13 109.36 (12)
H11A—N11—H11B 108.1 N11—C12—H12A 109.8
C12—N11—H11A 109.6 N11—C12—H12B 109.8
C12—N11—H11B 109.6 C13—C12—H12A 109.8
C16—N11—H11A 109.6 C13—C12—H12B 109.8
C16—N11—H11B 109.6 H12A—C12—H12B 108.3
C16—N11—C12 110.42 (12) N11—C16—H16A 109.9
O26—C22—C21 114.79 (13) N11—C16—H16B 109.9
O25—C22—O26 127.01 (14) N11—C16—C15 108.91 (12)
O25—C22—C21 118.19 (13) H16A—C16—H16B 108.3
O23—C21—C22 113.60 (12) C15—C16—H16A 109.9
O24—C21—O23 125.08 (14) C15—C16—H16B 109.9
O24—C21—C22 121.29 (13) O14—C15—C16 110.95 (12)
O14—C13—H13A 109.3 O14—C15—H15A 109.4
O14—C13—H13B 109.3 O14—C15—H15B 109.4
O14—C13—C12 111.78 (12) C16—C15—H15A 109.4
H13A—C13—H13B 107.9 C16—C15—H15B 109.4
C12—C13—H13A 109.3 H15A—C15—H15B 108.0

Morpholinium hydrogen oxalate (3). Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O23—H23···O26i 0.84 1.75 2.587 (2) 173
N11—H11A···O26ii 0.91 2.06 2.879 (2) 149
N11—H11A···O24ii 0.91 2.27 2.945 (2) 131
N11—H11B···O23iii 0.91 2.51 3.166 (2) 130
N11—H11B···O25iii 0.91 1.92 2.773 (2) 156
C12—H12A···O24 0.99 2.57 3.534 (2) 164
C12—H12B···O24iv 0.99 2.42 3.395 (2) 167
C16—H16A···O23iii 0.99 2.64 3.156 (2) 113
C16—H16A···O25v 0.99 2.43 3.378 (2) 161

Symmetry codes: (i) x+1, y, z; (ii) −x+1, −y+1, −z+1; (iii) −x+1, y+1/2, −z+1/2; (iv) −x+2, −y+1, −z+1; (v) −x, y+1/2, −z+1/2.

References

  1. Androš, L., Planinić, P. & Jurić, M. (2011). Acta Cryst. C67, o337–o340. [DOI] [PubMed]
  2. Blessing, R. H. (1997). J. Appl. Cryst. 30, 421–426.
  3. Chen, X., Han, S. & Wang, R. (2012). CrystEngComm, 14, 6400–6403.
  4. Decurtins, S. (1999). Philos. Trans. Roy. Soc. Lond. A, 357, 3025–3040.
  5. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
  6. Edwards, P. M. & Schafer, L. L. (2017). Org. Lett. 19, 5720–5723. [DOI] [PubMed]
  7. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  8. Herbert, J. M. & Ortiz, J. V. (2000). J. Phys. Chem. A, 104, 11786–11795.
  9. Hooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.
  10. Hu, Y., Gniado, K., Erxleben, A. & McArdle, P. (2014). Cryst. Growth Des. 14, 803–813.
  11. Keene, T. D., Hursthouse, M. B. & Price, D. J. (2003). Acta Cryst. E59, m1131–m1133.
  12. Keene, T. D., Hursthouse, M. B. & Price, D. J. (2012). CrystEngComm, 14, 116–123.
  13. Keene, T. D., Ogilvie, H. R., Hursthouse, M. B. & Price, D. J. (2004). Eur. J. Inorg. Chem. pp. 1007–1013.
  14. Keene, T. D., Zimmermann, I., Neels, A., Sereda, O., Hauser, J., Bonin, M., Hursthouse, M. B., Price, D. J. & Decurtins, S. (2010). Dalton Trans. 39, 4937–4950. [DOI] [PubMed]
  15. Martin, F. A., Pop, M. M., Borodi, G., Filip, X. & Kacso, I. (2013). Cryst. Growth Des. 13, 4295–4304.
  16. Mora, A. J., Belandria, L. M., Delgado, G. E., Seijas, L. E., Lunar, A. & Almeida, R. (2017). Acta Cryst. B73, 968–980. [DOI] [PubMed]
  17. Otwinowski, Z. & Minor, W. (1997). Methods Enzymol. 276, 307–326. [DOI] [PubMed]
  18. Pilkington, M. & Decurtins, S. (2003). Oxalate–Based 2D and 3D Magnets In Magnetism: Molecules to Materials II edited by J. S. Miller & M. Drillon. Weinheim: Wiley-VCH.
  19. Rigaku OD (2017). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Abingdon, England.
  20. Said, F. F., Ong, T.-G., Bazinet, P., Yap, G. P. A. & Richeson, D. S. (2006). Cryst. Growth Des. 6, 1848–1857.
  21. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  22. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  23. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  24. Suresh, K., Minkov, V. S., Namila, K. K., Derevyannikova, E., Losev, E., Nangia, A. & Boldyreva, E. V. (2015). Cryst. Growth Des. 15, 3498–3510.
  25. Thomas, S. P., Veccham, S. P. K. P., Farrugia, L. J. & Guru Row, T. N. (2015). Cryst. Growth Des. 15, 2110–2118.
  26. Traut-Johnstone, T., Kriel, F. H., Hewer, R. & Williams, D. B. G. (2014). Acta Cryst. C70, 1121–1124. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) 1, 2, 3. DOI: 10.1107/S2056989018015827/qm2130sup1.cif

e-74-01804-sup1.cif (1.5MB, cif)

Structure factors: contains datablock(s) 1. DOI: 10.1107/S2056989018015827/qm21301sup2.hkl

e-74-01804-1sup2.hkl (344.2KB, hkl)

Structure factors: contains datablock(s) 2. DOI: 10.1107/S2056989018015827/qm21302sup3.hkl

e-74-01804-2sup3.hkl (378.1KB, hkl)

Structure factors: contains datablock(s) 3. DOI: 10.1107/S2056989018015827/qm21303sup4.hkl

e-74-01804-3sup4.hkl (141KB, hkl)

CCDC references: 1877733, 1877732, 1877731

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES