Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2018 Nov 22;74(Pt 12):1862–1866. doi: 10.1107/S2056989018016109

A new co-crystal dinuclear/trinuclear ZnII–ZnII/ZnII–SmIII–ZnII complex with a salen-type Schiff base ligand

Mamour Sarr a, Mayoro Diop a, Elhadj Ibrahima Thiam a, Mohamed Gaye a,*, Aliou Hamady Barry b, James B Orton c, Simon J Coles c
PMCID: PMC6281091  PMID: 30574389

In the penta­nuclear title complex, [SmZn2(C22H18N2O4)2(NCS)2(C3H7NO)2][Zn2(C22H18N2O4)(NCS)3]·C3H7NO·0.32H2O, a dinuclear unit and a trinuclear unit co-exist. In the crystal, the trinuclear cationic units and dinuclear anionic units are assembled into infinite layers.

Keywords: crystal structure, zinc, samarium, Schiff base

Abstract

In the penta­nuclear title complex, [SmZn2(C22H18N2O4)2(NCS)2(C3H7NO)2][Zn2(C22H18N2O4)(NCS)3]·C3H7NO·0.32H2O, namely bis­{μ2-6,6′-dimeth­oxy-2,2′-[phenyl­ene-1,2-diylbis(nitrilo­methanylyl­idene)]diphenolato}-1κ4 O,N,N′,O′:2κ3 O,O′,O 6;2κ3 O,O′,O 6:3κ4 O,N,N′,O′-bis­(di­methyl­formamide-2κO)di­thiocyanato-1κN,3κN-2-samarium(III)-1,3-dizinc(II) {μ2-6,6′-dimeth­oxy-2,2′-[phenyl­ene-1,2-diylbis(nitrilo­methanylyl­idene)]diphenolato-1κ4 O,N,N′,O′:2κ2 O,O′}trithio­cyan­ato-1κN;2κ2 N,N-dizinc(II) di­methyl­formamide monosolvate 1.32-hydrate, a dinuclear unit and a trinuclear unit co-exist. One of the ZnII centers in the dinuclear unit as well as the two ZnII centers in the trinuclear unit are located in the inner N2O2 cavity of the ligand and are coordinated to the nitro­gen atom of one thio­cyanate moiety, giving rise to a square-pyramidal geometry. The second ZnII center in the dinuclear unit is coordinated to the two phenolate oxygen atoms of the ligand and to two thio­cyanate groups via the nitro­gen atom in a tetra­hedral geometry. The SmIII ion is eight-coordinated by four phenolate O atoms from the two ligand mol­ecules, two meth­oxy O atoms from the two ligand mol­ecules and two O atoms from the DFM solvent mol­ecule. In the dinuclear unit, the two meth­oxy oxygen atoms remain uncoordinated while in the trinuclear unit, for each ligand one meth­oxy oxygen is coordinated and the other one remains uncoordinated. In the crystal, the trinuclear cationic units and dinuclear anionic units are assembled into infinite layers. These layers are held together via electrostatic inter­actions, forming a three-dimensional structure. In the dinuclear unit, the C and S atoms of one of the thio­cyanate groups are disordered over two sets of sites in a 0.680 (4)(4):0.320 (4) ratio.

Chemical context  

Over recent years, polyheteronuclear complexes of 3d and 4f metals have been studied with increasing inter­est by chemists (Cristóvão et al., 2017; Cristóvão & Miroslaw, 2013; Ding et al., 2015; Tian et al., 2012; Wu & Hou, 2010). The various structures obtained (Rossi et al., 2018; Zhou et al., 2015; Ghosh & Ghosh, 2016), the physicochemical properties (Cristóvão et al., 2017) and the potential applications in fields such as luminescence (Zhao et al., 2014; Zhu et al., 2018), magneto chemistry (Chesman et al., 2012; Klokishner & Reu, 2012), electrochemistry (Yin et al., 2017) and catalysis (Lan et al., 2018) have made this chemistry very attractive. These compounds are obtained from Schiff bases, which are organic compounds having several donor sites, which are used to assemble stable structures with transition metal or lanthanide ions. Both the nature of the ligand and the nature of the metal strongly influence the properties of the compound obtained. The Schiff bases obtained by condensation between a di­amine and a well-selected keto-precursor may have two cavities of different dimensions, which can accommodate metal ions of different sizes (Andruh, 2011; Gao et al., 2012). The salen-type Schiff base obtained by the condensation of 1,2-di­amino­benzene and ortho-vanillin has two cavities of different sizes, viz. N2O2 and O2O2. The smaller inner N2O2 cavity consists of two imino nitro­gen atoms and two phenolato oxygen atoms and can encapsulate 3d metal ions. The larger outer O2O2 cavity consists of two phenolato oxygen atoms and two oxygen atoms from meth­oxy groups and can encapsulate 3d ions or lanthanide ions that have a larger ionic radius and prefer oxygen because of their hard-acid characters. By controlling the ratio of the ligand–3d metal–4f metal, it is possible to synthesize 3d–3d and 3d–4f–3d complexes. It is in this context that we used the ligand N,N′-bis­(3-meth­oxy­salicyl­idene)phenyl­ene-1,2-di­amine (H2 L) to synthesize the Zn–Zn/Zn–Sm–Zn co-crystal whose structure is described herein.graphic file with name e-74-01862-scheme1.jpg

Structural commentary  

The title compound crystallizes in the triclinic system in the space group Pī. The asymmetric unit (Fig. 1) consists a co-crystal of one trinuclear cationic unit, [SmZn2(L)2(SCN)2(DMF)2]+, one dinuclear anionic unit, [Zn2(L)(SCN)3], one uncoordinated DMF solvent mol­ecule and 0.32 of a water mol­ecule.

Figure 1.

Figure 1

An ORTEP view of the asymmetric unit of the title compound, showing the atom-numbering scheme. Displacement ellipsoids are plotted at the 50% probability level.

In the trinuclear unit, both zinc ions are in an N3O2 environment, which can be characterized by the Addison parameter τ [τ = (α − β)/60; τ = 0 indicates a regular square-pyramidal geometry and τ = 1 indicates a regular trigonal bipyramid; α and β are the largest angles around the metal ions; Addison et al., 1984]. The τ values of 0.146 for Zn1 and 0.212 for Zn31 are indicative of a severely distorted square-pyramidal geometry around each zinc ion, with the apical positions of each metal ion being occupied by a terminal nitro­gen atom from an anionic thio­cyanate moiety. The apical bond lengths N121—Zn1 and N131—Zn31 are 1.9842 (17) and 1.9786 (16) Å, respectively, and are the shortest distances around these two atoms. The values are slightly lower than those found for the reported Zn2Sm complex (Gao et al., 2012). The equatorial planes around each of these two zinc ions in the trinuclear unit are formed, respectively, by two imino nitro­gen atoms and two phenolate oxygen atoms. The diagonal basal angles, N1—Zn1—O2 = 147.54 (6)° and N2—Zn1—O3 = 138.79 (6)°, N31—Zn31—O32 = 136.30 (6)° and N32—Zn31—O33 = 149.00 (6)° significantly deviate from the ideal values of 180°. The Zn1⋯Zn31, Zn1⋯Sm1 and Sm1⋯Zn31 distances of 5.0288 (5), 3.5372 (5) and 3.5443 (5) Å, respectively, and the Zn1⋯Sm1⋯Zn31, Sm1⋯Zn31⋯Zn1 and Zn31⋯Zn1⋯Sm1 angles of 90.49 (1), 44.70 (1) and 44.81 (1)° respectively, are indicative of an isosceles triangular arrangement of the metal centres in the trinuclear unit.

In the dinuclear unit, all of the meth­oxy oxygen atoms remain uncoordinated, whereas in the trinuclear unit, for each of the two metalloligands, one of the meth­oxy atoms remains uncoordinated (O1 and O34) while the others (O4 and O31) are coordinated to the SmIII atom. The longest bond distances around the SmIII ion are for Sm—O4 [2.6707 (13) Å] and Sm—O31 [2.6934 (13) Å]. The Sm—Ophen­oxy distances are in the range 2.3348 (12)–2.4417 (12) Å and are comparable to those found for the Zn2Sm complex (Gao et al., 2012) in which the mean Sm—Ophen­oxy distance is 2.332 Å. The Sm—ODMF distances are longer than those found in a samarium complex (Kou et al., 1998) with Sm—O91 and Sm—O101 values of 2.3831 (13) and 2.3476 (13) Å, respectively (Table 1). The octa­coordinated polyhedron around the SmIII atom is best described as slightly distorted square anti­prism. The Zn—Ophenoxo bond lengths in both the dinuclear and trinuclear units are in the range 1.9985 (13)–2.0395 (12) Å. These values are comparable with the distances for the dinuclear complex [Zn(H2O)(valdmpn)Sm(O2NO)3] [where valdmpn is N,N′-bis­(3-meth­oxy­salicyl­idene)(2,2-di­methyl­propyl­idene)-1,3-di­amine); Pasatoiu et al., 2012].

Table 1. Selected geometric parameters (Å, °).

N1—Zn1 2.0863 (16) O3—Zn1 1.9985 (13)
N2—Zn1 2.0451 (16) O4—Sm1 2.6707 (13)
N31—Zn31 2.0534 (16) O31—Sm1 2.6934 (13)
N32—Zn31 2.0644 (16) O32—Sm1 2.3599 (12)
N121—Zn1 1.9842 (17) O32—Zn31 2.0143 (13)
N131—Zn31 1.9786 (16) O33—Sm1 2.4038 (13)
O2—Sm1 2.4417 (12) O33—Zn31 2.0175 (13)
O2—Zn1 2.0395 (12) O91—Sm1 2.3831 (13)
O3—Sm1 2.3348 (12) O101—Sm1 2.3476 (13)
O2—Sm1—O4 119.60 (4) O32—Sm1—O31 59.85 (4)
O2—Sm1—O31 111.28 (4) O32—Sm1—O33 65.80 (4)
O3—Sm1—O2 66.10 (4) O91—Sm1—O2 83.29 (4)
O3—Sm1—O4 60.69 (4) O91—Sm1—O4 70.36 (4)
O3—Sm1—O31 159.39 (4) O91—Sm1—O31 69.71 (4)
O3—Sm1—O32 134.80 (4) O91—Sm1—O33 162.88 (5)
O3—Sm1—O33 80.48 (4) N121—Zn1—N1 108.05 (7)
O32—Sm1—O2 78.61 (4) N121—Zn1—N2 112.95 (7)
O32—Sm1—O4 161.77 (4) N121—Zn1—O2 104.31 (6)

In the trinuclear unit, the Zn(di-μ-phenoxo)2Sm bridging fragments show a difference between the Zn—O and Sm—O binding lengths whose mean values are 2.0204 (su?) and 2.3860 (su?) Å, respectively. The four Zn—Ophenoxo—Sm angles have different values with an averages of 106.54 (su?) and 107.16 (su?)°, respectively, for those involving the Zn1 and Zn31 atoms. The sum of the angles in the Zn1(di-μ-phenoxo)2Sm1 and Zn31(di-μ-phenoxo)2Sm1 arms are 359.58 and 359.89°, respectively, indicating regular planar geometries. The dihedral angle between Zn1/O2/Sm1/O3 and Zn31/O32/Sm1/O33 plane normals is 76.01 (3)° with the displacement of the respective constituent atoms not exceeding 0.046 and 0.023 Å. In the trinuclear unit, the dihedral angles between the planes O2/Sm1/O3 and O2/Zn1/O3 and the plane normals O32/Sm1/O33 and O32/Zn1/O33 are 6.04 (6) and 3.10 (6)°, respectively. In the dinuclear unit, the dihedral angle between the O62/Zn61/O63 and O62/Zn62/O63 planes is 21.31 (10)°.

In the dinuclear unit, the Zn61 atom is tetra­coordinated while the Zn62 atom is penta­coordinated. The values of the angles around Zn61, which fall in the range 76.86 (6)–119.03 (8)°, are indicative of a distorted tetra­hedral environment. The geometry around the Zn62 atom is best described as a distorted square pyramidal, as indicated by the value of 0.105 for the Addison parameter τ. The apical position is occupied by the nitro­gen atom N141 of the thio­cyanate group with the basal plan occupied by atoms N51, N52, O62 and O63 from the ligand mol­ecule. The angles between the N141 atom in the apical position and each of the four basal plane atoms fall in the range 106.67 (6)–111.37 (7)° and are far from the ideal value of 90°. The deformation of the basal plane around the Zn62 atom is indicated by the values of the transoid [138.41 (6) and 144.96 (7)°] and cisoid angles [88.34 (6) and 88.94 (6)°], which are different from the ideal values of 180 and 90° for a square-planar geometry (Table 1). The anionic thio­cyanate ions are N donors and bind to the zinc atoms in a unidentate fashion. The Zn—N—CS bond angles in the dinuclear and trinuclear units are in the range 170.9 (5)–176.12 (18)°, indicating a quasi-linear alignment. The N—C—S angles vary between 177.7 (2) and 179.4 (2)°, showing that these three atoms adopt an almost linear alignment.

Supra­molecular features  

Fig. 2 shows the packing arrangement in the crystal. The structure is clearly composed of alternating layers composed of cationic units and anionic units stacked along the [101] direction. The complex mol­ecules display no hydrogen-bonding contacts. The trinuclear cationic units and dinuclear anionic units are assembled into infinite layers via electrostatic inter­actions. The alternating ionic layers are held together via electrostatic inter­actions, forming a three-dimensional structure.

Figure 2.

Figure 2

Mol­ecular representation of the title compound, showing the network of dinuclear and trinuclear complex units in layers.

Database survey  

A survey of the Cambridge Structural Database (CSD) (Version 5.39, last update November 2017; Groom et al., 2016) shows that dinuclear complexes of the ligand bis­(2-hy­droxy-3-meth­oxy­benzyl­idene)-1,2-di­amino­benzene where the smaller N2O2 cage is occupied by a 3d metal and the larger, open O2O2 cage is occupied by one s-, p-, d- or f-block metal are well documented. Trinuclear complexes formed by two 3d metals with the above organic ligand in which the 3d metal atom is situated in the smaller N2O2 cage and one s-, d- or f-block metal atom is coordinated to the two larger O2O2 cages have also been reported: five entries corresponding to ds [BIZBAO (Bian et al., 2008), KAZQEK (Andrez et al., 2017), KESYOY and KESZAL (Biswas et al., 2013b ), LARPIG (Feng et al., 2017)], four entries correspond dd [DEDPIM (Yang et al., 2006), OKECIS (Zhang et al., 2016), UGAMOF (Wang et al., 2008b ), WOGQAL (Wang et al., 2008a )], seven correspond to sf [FEVDUH (Wang et al., 2013), ITOVIY (Ma et al., 2016), YIMLUD, YIMMAK, YIMMEO, YIMMIS and YIMMOY (Ma et al., 2013)], twenty entries correspond to df [AYOKIJ (Yang et al., 2011), DEJLEK and DEJLAG (Wong et al., 2006), EBIZUM, EBOBAA and EBOBEE (Chen et al., 2011), GICBUR and GICCAY (Yang et al., 2013), KEBGUW (Pushkarev et al., 2017), MEPXEL, MEPXIP and MEPXOV (Lo et al., 2006), NOGPIJ (Bi et al., 2008a ), NOMQIQ, NOMQOW and NOMQUC (Bi et al., 2008b ), PALZUA (Fu et al., 2017), POXMIZ (Bi et al., 2009), VAYBEF (Liu et al., 2017), YIMMUE (Ma et al., 2013)], five entries corresponding to dsd [DAVZEI (Nandy et al., 2017), IZEHEB (Das et al., 2011), KESZEP, KESZIT and KESZOZ (Biswas et al., 2013a )], three entries corresponding to ddd [DUCJER, DUCJOB and DUCJOB01 (Wang et al., 2009)]. In all, there are thirteen entries for hetero trinuclear 3d–4f–3d complexes in which the 3d metal ion is Zn2+ [DEJKUZ and DEJLIO (Wong et al., 2006), DUCKAO, DUCKOC, DUCKUI, DUCLAP and DUCLET (Wang et al., 2009), EJAGIG (Liao et al., 2010), GICCEC and GICCIG (Yang et al., 2013), QUQKUK, QUQLAR and QUQLEV (Sun et al., 2016)]. Combinations of mononuclear and hetero dinuclear coordination complexes as co-crystals are observed in three cases [BICBEW and BICBIA (Biswas et al., 2013b ), KAZPOT (Andrez et al., 2017)], while the combination of hetero dinuclear and hetero trinuclear coordination complexes as a co-crystal is observed in one case (Sarr et al., 2018).

Synthesis and crystallization  

The complex [(ZnL)·(H2O)] was prepared according to a literature method (Liu et al., 2014) with slight modification. To a solution of 1,2-di­amino­benzene (0.250 g, 2.31 mmol) in 10 mL of aceto­nitrile was added a solution of o-vanillin (0.705 g, 4.62 mmol) in 10 mL of aceto­nitrile. The resulting orange mixture was refluxed for 60 min, affording the organic H2 L ligand. After cooling, a solution of Zn(CH3COO)2·2H2O (0.507 g, 2.31 mmol) in 10 mL of aceto­nitrile was added. The mixture was heated under reflux for 60 min. On cooling, the orange precipitate was filtered off, washed with 3 × 10 mL of ether and dried in air, yielding a compound formulated as [(ZnL)·(H2O)] in 75% yield, m.p. 571–573 K. FT–IR (KBr, ν, cm−1): 3307 (OH) (br, water), 1609 (C=N) 1594 (C=C), 1586 (C=C), 1488 (C=C), 1439, 1234, 1187, 731. Analysis calculated for C22H20ZnN2O5: C, 57.72; H, 4.40; N, 6.12. Found: C, 57.68; H, 4.42; N, 6.07%. Λ (S cm2 mol−1): 5. The filtrate of a mixture of Sm(NO3)3·6H2O (0.1112 g, 0.25 mmol) and KSCN (0.1458 g, 1.5 mmol) in 20 mL of absolute ethanol was added to a DMF solution (5 mL) of [(ZnL)·(H2O)] (0.2288 g, 0.5 mmol). The resulting solution was heated under reflux for two h. After cooling, the solution was filtered and the filtrate was kept at 298 K. After four weeks, crystals suitable for X-ray diffraction were collected and formulated as [{Zn2(L)(SCN)3}]·[Sm{Zn(L)(SCN)}2(DMF)2]·(DMF)·0.18H2O. FT–IR (KBr, ν, cm−1): 2078 (S=C=N), 1654, 1607 (C=N), 1584 (C=C), 1545 (C=C), 1463 (C=C), 1440, 1238, 1191, 731. Analysis calculated for C80H75.36Zn4SmN14O15.18S5: C, 46.92; H, 3.71; N, 9.57; S, 7.83%. Found: C, C, 46.87; H, 3.68; N, 9.51; S, 7.85%. ΛM (S m2 mol−1): 28. μeff = 1.6 µB.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 2. All H atoms were positioned geometrically (C—H = 0.95–0.98 Å) and refined using a riding model with U iso(H) = 1.2U eq(C) or 1.5U eq(Cmeth­yl, O). One of the thio­cyanate groups was found to be partially disordered such that the C and S atoms 136 of this group were distributed over two positions. In the dinuclear unit, the C and S atoms of one of the thio­cyanate groups are disordered over two sets of sites in a 0.680 (4):0.320 (4) ratio. The water mol­ecule is partially occupied [0.32 (4)].

Table 2. Experimental details.

Crystal data
Chemical formula [Zn2(C52H50N8O10S2Sm)][(Zn2(C25H18N5O4S3)]·C3H7NO·0.32H2O
M r 2050.43
Crystal system, space group Triclinic, P Inline graphic
Temperature (K) 100
a, b, c (Å) 14.76937 (9), 15.57623 (10), 19.28129 (13)
α, β, γ (°) 94.7754 (5), 104.1999 (6), 100.9287 (5)
V3) 4182.75 (5)
Z 2
Radiation type Mo Kα
μ (mm−1) 2.02
Crystal size (mm) 0.33 × 0.21 × 0.17
 
Data collection
Diffractometer Rigaku FRE+ equipped with VHF Varimax confocal mirrors, an AFC12 goniometer and HyPix 6000 detector
Absorption correction Gaussian (CrysAlis PRO; Rigaku OD, 2018)
T min, T max 0.317, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 381624, 19170, 18483
R int 0.031
(sin θ/λ)max−1) 0.649
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.024, 0.057, 1.06
No. of reflections 19170
No. of parameters 1115
No. of restraints 14
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.48, −1.13

Computer programs: CrysAlis PRO (Rigaku OD, 2018), SHELXT (Sheldrick, 2015a ), SHELXL (Sheldrick, 2015b ) and OLEX2 (Dolomanov et al., 2009).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989018016109/ex2013sup1.cif

e-74-01862-sup1.cif (12.1MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989018016109/ex2013Isup2.hkl

e-74-01862-Isup2.hkl (1.5MB, hkl)

CCDC reference: 1878960

Additional supporting information: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Crystal data

[Zn2(C52H50N8O10S2Sm)][(Zn2(C25H18N5O4S3)]·C3H7NO·0.32H2O Z = 2
Mr = 2050.43 F(000) = 2076
Triclinic, P1 Dx = 1.628 Mg m3
a = 14.76937 (9) Å Mo Kα radiation, λ = 0.71075 Å
b = 15.57623 (10) Å Cell parameters from 217952 reflections
c = 19.28129 (13) Å θ = 2.2–31.9°
α = 94.7754 (5)° µ = 2.02 mm1
β = 104.1999 (6)° T = 100 K
γ = 100.9287 (5)° Block, orange
V = 4182.75 (5) Å3 0.33 × 0.21 × 0.17 mm

Data collection

Rigaku FRE+ equipped with VHF Varimax confocal mirrors, an AFC12 goniometer and HyPix 6000 detector diffractometer 19170 independent reflections
Radiation source: Rotating Anode, Rigaku FRE+ 18483 reflections with I > 2σ(I)
Confocal mirrors, VHF Varimax monochromator Rint = 0.031
Detector resolution: 10 pixels mm-1 θmax = 27.5°, θmin = 1.9°
profile data from ω–scans h = −19→19
Absorption correction: gaussian (CrysAlisPro; Rigaku OD, 2018) k = −20→20
Tmin = 0.317, Tmax = 1.000 l = −25→25
381624 measured reflections

Refinement

Refinement on F2 Primary atom site location: dual
Least-squares matrix: full Hydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.024 H-atom parameters constrained
wR(F2) = 0.057 w = 1/[σ2(Fo2) + (0.0211P)2 + 5.627P] where P = (Fo2 + 2Fc2)/3
S = 1.06 (Δ/σ)max = 0.002
19170 reflections Δρmax = 1.48 e Å3
1115 parameters Δρmin = −1.13 e Å3
14 restraints

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. One of the thiocyanate ligands is partially disordered. Atoms C161 and S161 are modelled over two positions using thermal parameter restraints. Water molecule O171 partially occupies its site. Its occupancy was refined to 32%, linked to the minor component of the partially disordered thiocyanate.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
C1 0.47788 (14) 0.28188 (13) 1.04840 (11) 0.0234 (4)
H1A 0.491216 0.223269 1.039509 0.035*
H1B 0.440589 0.281503 1.084026 0.035*
H1C 0.538343 0.325565 1.066878 0.035*
C2 0.35372 (12) 0.40497 (12) 0.91731 (10) 0.0163 (3)
C3 0.39956 (13) 0.38428 (12) 0.98574 (10) 0.0173 (3)
C4 0.41594 (13) 0.44118 (13) 1.04845 (10) 0.0202 (4)
H4 0.447296 0.425959 1.093454 0.024*
C5 0.38637 (14) 0.52140 (13) 1.04576 (11) 0.0226 (4)
H5 0.395746 0.559797 1.089062 0.027*
C6 0.34397 (13) 0.54428 (12) 0.98067 (11) 0.0203 (4)
H6 0.323774 0.598652 0.979282 0.024*
C7 0.32954 (12) 0.48859 (12) 0.91529 (10) 0.0175 (3)
C8 0.29304 (13) 0.52442 (12) 0.85001 (10) 0.0192 (4)
H8 0.266496 0.574909 0.854613 0.023*
C9 0.26062 (14) 0.53571 (13) 0.72522 (11) 0.0231 (4)
C10 0.25789 (18) 0.62528 (15) 0.72943 (13) 0.0338 (5)
H10 0.277159 0.661216 0.775038 0.041*
C11 0.2271 (2) 0.66125 (16) 0.66710 (14) 0.0393 (6)
H11 0.226179 0.722250 0.669859 0.047*
C12 0.19754 (18) 0.60888 (16) 0.60061 (13) 0.0352 (5)
H12 0.174177 0.633715 0.558188 0.042*
C13 0.20176 (16) 0.52053 (15) 0.59538 (12) 0.0291 (4)
H13 0.181865 0.485229 0.549469 0.035*
C14 0.23524 (14) 0.48334 (13) 0.65759 (11) 0.0225 (4)
C15 0.21799 (14) 0.33654 (14) 0.60309 (10) 0.0230 (4)
H15 0.186779 0.353629 0.558842 0.028*
C16 0.22727 (14) 0.24583 (13) 0.60267 (10) 0.0213 (4)
C17 0.20302 (15) 0.19239 (15) 0.53515 (10) 0.0253 (4)
H17 0.185879 0.217950 0.492077 0.030*
C18 0.20380 (15) 0.10436 (15) 0.53072 (11) 0.0260 (4)
H18 0.188572 0.069887 0.484727 0.031*
C19 0.22688 (14) 0.06467 (13) 0.59352 (10) 0.0218 (4)
H19 0.227046 0.003518 0.590431 0.026*
C20 0.24932 (13) 0.11582 (12) 0.65979 (10) 0.0181 (3)
C21 0.25185 (13) 0.20688 (12) 0.66623 (10) 0.0178 (3)
C22 0.27917 (16) −0.00449 (13) 0.72560 (11) 0.0246 (4)
H22A 0.299045 −0.016821 0.775448 0.037*
H22B 0.328112 −0.012850 0.700909 0.037*
H22C 0.218325 −0.044851 0.700303 0.037*
C31 0.32608 (16) 0.03342 (14) 0.96039 (12) 0.0272 (4)
H31A 0.334181 0.013293 0.913207 0.041*
H31B 0.281165 −0.012632 0.974032 0.041*
H31C 0.388050 0.045749 0.996648 0.041*
C32 0.23365 (13) 0.22423 (12) 1.00721 (10) 0.0173 (3)
C33 0.27561 (13) 0.15082 (13) 1.01867 (10) 0.0194 (4)
C34 0.30241 (14) 0.12524 (14) 1.08608 (11) 0.0237 (4)
H34 0.327948 0.073914 1.091930 0.028*
C35 0.29158 (15) 0.17583 (15) 1.14596 (11) 0.0266 (4)
H35 0.308912 0.158332 1.192586 0.032*
C36 0.25608 (14) 0.25030 (14) 1.13726 (10) 0.0254 (4)
H36 0.251603 0.285339 1.178524 0.030*
C37 0.22583 (13) 0.27649 (13) 1.06822 (10) 0.0202 (4)
C38 0.19608 (14) 0.35980 (13) 1.06429 (10) 0.0226 (4)
H38 0.210236 0.399065 1.107828 0.027*
C39 0.13107 (13) 0.46871 (13) 1.00127 (11) 0.0219 (4)
C40 0.14305 (15) 0.53108 (14) 1.06130 (13) 0.0288 (4)
H40 0.164081 0.516947 1.108763 0.035*
C41 0.12407 (16) 0.61338 (15) 1.05102 (14) 0.0337 (5)
H41 0.131615 0.655590 1.091666 0.040*
C42 0.09435 (16) 0.63475 (15) 0.98244 (14) 0.0345 (5)
H42 0.083192 0.692073 0.976254 0.041*
C43 0.08054 (15) 0.57354 (14) 0.92236 (13) 0.0295 (4)
H43 0.059203 0.588534 0.875224 0.035*
C44 0.09821 (13) 0.48952 (13) 0.93150 (11) 0.0225 (4)
C45 0.06749 (14) 0.43569 (13) 0.80713 (11) 0.0230 (4)
H45 0.065584 0.494387 0.797918 0.028*
C46 0.05095 (14) 0.36976 (13) 0.74565 (11) 0.0220 (4)
C47 0.00884 (16) 0.39196 (15) 0.67714 (12) 0.0292 (4)
H47 −0.001569 0.449921 0.673269 0.035*
C48 −0.01701 (16) 0.33123 (17) 0.61657 (12) 0.0332 (5)
H48 −0.045509 0.347113 0.571068 0.040*
C49 −0.00170 (15) 0.24575 (16) 0.62125 (11) 0.0290 (4)
H49 −0.021575 0.203148 0.579247 0.035*
C50 0.04234 (14) 0.22333 (14) 0.68703 (10) 0.0222 (4)
C51 0.07168 (13) 0.28513 (13) 0.75038 (10) 0.0186 (4)
C52 0.01779 (16) 0.07149 (16) 0.64128 (13) 0.0334 (5)
H52A 0.041190 0.083384 0.598912 0.050*
H52B −0.051725 0.065734 0.628769 0.050*
H52C 0.033356 0.016528 0.656932 0.050*
C61 0.5946 (2) 1.04315 (18) 0.77533 (12) 0.0451 (7)
H61A 0.651492 1.087975 0.776329 0.068*
H61B 0.613469 0.998703 0.805712 0.068*
H61C 0.549523 1.071190 0.793689 0.068*
C62 0.45184 (14) 1.00189 (13) 0.58964 (10) 0.0207 (4)
C63 0.51311 (14) 1.05321 (14) 0.65420 (11) 0.0239 (4)
C64 0.53124 (15) 1.14368 (14) 0.66317 (12) 0.0271 (4)
H64 0.569312 1.176545 0.707936 0.033*
C65 0.49331 (16) 1.18724 (14) 0.60597 (12) 0.0285 (4)
H65 0.504546 1.249856 0.612180 0.034*
C66 0.43987 (15) 1.13970 (14) 0.54088 (12) 0.0261 (4)
H66 0.418122 1.169986 0.501405 0.031*
C67 0.41665 (14) 1.04641 (13) 0.53161 (11) 0.0215 (4)
C68 0.35884 (14) 1.00181 (13) 0.46112 (11) 0.0222 (4)
H68 0.351414 1.035837 0.422254 0.027*
C69 0.26370 (14) 0.87812 (14) 0.37728 (10) 0.0226 (4)
C70 0.22243 (16) 0.92248 (16) 0.32200 (11) 0.0293 (4)
H70 0.229898 0.984743 0.329941 0.035*
C71 0.17050 (17) 0.87523 (17) 0.25547 (12) 0.0344 (5)
H71 0.142465 0.905339 0.217773 0.041*
C72 0.15917 (16) 0.78435 (16) 0.24355 (12) 0.0319 (5)
H72 0.123988 0.752733 0.197577 0.038*
C73 0.19858 (14) 0.73949 (15) 0.29790 (11) 0.0265 (4)
H73 0.190194 0.677168 0.289380 0.032*
C74 0.25078 (14) 0.78568 (14) 0.36542 (10) 0.0224 (4)
C75 0.30916 (14) 0.66808 (14) 0.41934 (11) 0.0244 (4)
H75 0.294017 0.637218 0.371930 0.029*
C76 0.35154 (15) 0.62422 (14) 0.47861 (11) 0.0244 (4)
C77 0.35354 (16) 0.53432 (15) 0.46215 (12) 0.0304 (5)
H77 0.327367 0.505985 0.413826 0.036*
C78 0.39237 (17) 0.48743 (15) 0.51437 (13) 0.0343 (5)
H78 0.390680 0.426635 0.502367 0.041*
C79 0.43454 (16) 0.52873 (14) 0.58538 (13) 0.0302 (5)
H79 0.462072 0.496328 0.621501 0.036*
C80 0.43585 (15) 0.61642 (14) 0.60247 (11) 0.0257 (4)
C81 0.39344 (14) 0.66613 (13) 0.55010 (11) 0.0239 (4)
C82 0.52080 (18) 0.62428 (16) 0.72639 (13) 0.0365 (5)
H82A 0.573459 0.602533 0.713608 0.055*
H82B 0.474809 0.574719 0.734843 0.055*
H82C 0.546158 0.667221 0.770334 0.055*
C91 0.48768 (15) 0.21332 (13) 0.86469 (11) 0.0244 (4)
H91 0.487373 0.264835 0.841573 0.029*
C92 0.5778 (2) 0.1232 (2) 0.93742 (13) 0.0433 (7)
H92A 0.592493 0.142763 0.989351 0.065*
H92B 0.628646 0.095895 0.927387 0.065*
H92C 0.516687 0.079954 0.921885 0.065*
C93 0.66121 (18) 0.25655 (18) 0.9000 (2) 0.0573 (9)
H93A 0.648782 0.303536 0.870560 0.086*
H93B 0.701183 0.222644 0.880642 0.086*
H93C 0.694468 0.282697 0.949917 0.086*
C101 0.07480 (14) 0.02528 (14) 0.84680 (11) 0.0247 (4)
H101 0.043799 0.067091 0.864475 0.030*
C102 0.0824 (2) −0.12585 (17) 0.81992 (19) 0.0544 (8)
H10A 0.040705 −0.157291 0.773556 0.082*
H10B 0.090995 −0.167595 0.855051 0.082*
H10C 0.144704 −0.098456 0.813532 0.082*
C103 −0.0466 (2) −0.0882 (2) 0.86993 (17) 0.0514 (7)
H10D −0.067862 −0.036988 0.888074 0.077*
H10E −0.032022 −0.124630 0.908563 0.077*
H10F −0.097489 −0.123217 0.829274 0.077*
C110 −0.0162 (2) 0.34916 (18) 0.28550 (16) 0.0479 (7)
H110 −0.054878 0.326883 0.315544 0.057*
C111 0.1395 (3) 0.4214 (3) 0.2762 (2) 0.0765 (12)
H11A 0.199011 0.400565 0.291166 0.115*
H11B 0.153809 0.486088 0.284269 0.115*
H11C 0.109420 0.400721 0.224752 0.115*
C112 0.1110 (2) 0.3983 (2) 0.39459 (16) 0.0572 (8)
H11D 0.162972 0.366962 0.407982 0.086*
H11E 0.058861 0.373820 0.415257 0.086*
H11F 0.134829 0.461119 0.413244 0.086*
C121 0.54729 (15) 0.41108 (14) 0.75563 (10) 0.0245 (4)
C131 −0.07003 (13) 0.16694 (13) 0.93407 (10) 0.0202 (4)
C141 0.13318 (15) 0.82477 (13) 0.56942 (10) 0.0228 (4)
C151 0.69896 (19) 0.82208 (17) 0.66168 (11) 0.0350 (5)
C161 0.4141 (6) 0.8390 (5) 0.7919 (4) 0.0362 (17) 0.680 (4)
C961 0.4396 (10) 0.8561 (10) 0.7940 (8) 0.020 (2) 0.320 (4)
N1 0.24878 (12) 0.39575 (11) 0.65877 (9) 0.0203 (3)
N2 0.29349 (11) 0.49364 (10) 0.78619 (9) 0.0195 (3)
N31 0.08461 (11) 0.42159 (10) 0.87339 (9) 0.0194 (3)
N32 0.15182 (11) 0.38385 (10) 1.00570 (9) 0.0200 (3)
N51 0.29036 (12) 0.74530 (11) 0.42560 (9) 0.0214 (3)
N52 0.31698 (11) 0.91976 (11) 0.44740 (9) 0.0208 (3)
N91 0.57117 (13) 0.19849 (12) 0.89834 (10) 0.0289 (4)
N101 0.03909 (13) −0.05827 (12) 0.84590 (10) 0.0296 (4)
N110 0.07606 (17) 0.38786 (15) 0.31729 (12) 0.0433 (5)
N121 0.46702 (12) 0.39695 (11) 0.75462 (10) 0.0245 (3)
N131 −0.01118 (11) 0.21749 (10) 0.92008 (9) 0.0195 (3)
N141 0.20378 (13) 0.82501 (12) 0.55333 (9) 0.0258 (4)
N151 0.62234 (14) 0.83099 (13) 0.65747 (10) 0.0305 (4)
N161 0.45048 (16) 0.83626 (13) 0.74264 (10) 0.0349 (4)
O1 0.42459 (9) 0.30425 (9) 0.98237 (7) 0.0192 (3)
O2 0.33573 (9) 0.34532 (8) 0.85947 (7) 0.0166 (2)
O3 0.27275 (9) 0.24984 (8) 0.73285 (7) 0.0175 (2)
O4 0.26748 (10) 0.08498 (8) 0.72583 (7) 0.0192 (3)
O31 0.28939 (10) 0.11197 (9) 0.95643 (7) 0.0216 (3)
O32 0.20855 (9) 0.24163 (8) 0.94012 (7) 0.0166 (2)
O33 0.11769 (9) 0.26091 (9) 0.81137 (7) 0.0183 (3)
O34 0.06243 (10) 0.14280 (10) 0.69857 (8) 0.0251 (3)
O61 0.55042 (12) 1.00204 (10) 0.70337 (8) 0.0321 (3)
O62 0.43286 (10) 0.91519 (9) 0.58715 (7) 0.0248 (3)
O63 0.39607 (11) 0.74948 (9) 0.57098 (8) 0.0268 (3)
O64 0.47437 (12) 0.66543 (10) 0.66895 (8) 0.0304 (3)
O91 0.40942 (10) 0.16447 (9) 0.86118 (7) 0.0212 (3)
O101 0.14673 (10) 0.05369 (9) 0.82604 (8) 0.0239 (3)
O110 −0.05398 (19) 0.34068 (16) 0.21991 (13) 0.0669 (6)
O971 0.2471 (4) 0.7241 (3) 0.8914 (3) 0.0312 (13) 0.320 (4)
H97A 0.191678 0.713560 0.859708 0.047* 0.320 (4)
H97B 0.286528 0.765421 0.879411 0.047* 0.320 (4)
S121 0.66030 (4) 0.43263 (6) 0.75822 (3) 0.04730 (18)
S131 −0.15358 (5) 0.09592 (4) 0.95208 (4) 0.04343 (15)
S141 0.03489 (4) 0.82561 (4) 0.59226 (4) 0.03809 (13)
S151 0.80856 (6) 0.81383 (8) 0.66793 (4) 0.0716 (3)
S161 0.36571 (19) 0.84272 (15) 0.85955 (6) 0.0601 (7) 0.680 (4)
S961 0.41791 (18) 0.88705 (18) 0.86980 (10) 0.0261 (6) 0.320 (4)
Sm1 0.25154 (2) 0.19066 (2) 0.83656 (2) 0.01485 (3)
Zn1 0.33194 (2) 0.37866 (2) 0.75889 (2) 0.01671 (4)
Zn31 0.09979 (2) 0.30267 (2) 0.90801 (2) 0.01559 (4)
Zn61 0.48983 (2) 0.83366 (2) 0.65355 (2) 0.02684 (5)
Zn62 0.31979 (2) 0.83012 (2) 0.51943 (2) 0.02048 (5)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0196 (9) 0.0251 (10) 0.0234 (9) 0.0034 (7) 0.0012 (7) 0.0090 (8)
C2 0.0123 (8) 0.0167 (8) 0.0186 (8) −0.0008 (6) 0.0045 (6) 0.0024 (7)
C3 0.0137 (8) 0.0171 (8) 0.0203 (9) 0.0007 (6) 0.0043 (7) 0.0039 (7)
C4 0.0166 (9) 0.0232 (9) 0.0179 (9) 0.0004 (7) 0.0023 (7) 0.0026 (7)
C5 0.0207 (9) 0.0226 (9) 0.0217 (9) −0.0001 (7) 0.0058 (7) −0.0028 (7)
C6 0.0176 (9) 0.0164 (8) 0.0263 (10) 0.0015 (7) 0.0070 (7) 0.0008 (7)
C7 0.0120 (8) 0.0178 (8) 0.0214 (9) 0.0006 (6) 0.0041 (7) 0.0029 (7)
C8 0.0147 (8) 0.0160 (8) 0.0264 (9) 0.0016 (7) 0.0052 (7) 0.0050 (7)
C9 0.0240 (10) 0.0222 (9) 0.0266 (10) 0.0066 (8) 0.0093 (8) 0.0120 (8)
C10 0.0479 (14) 0.0233 (10) 0.0322 (12) 0.0106 (10) 0.0100 (10) 0.0101 (9)
C11 0.0564 (16) 0.0257 (11) 0.0414 (13) 0.0165 (11) 0.0133 (12) 0.0172 (10)
C12 0.0456 (14) 0.0345 (12) 0.0338 (12) 0.0181 (10) 0.0133 (10) 0.0212 (10)
C13 0.0358 (12) 0.0325 (11) 0.0253 (10) 0.0139 (9) 0.0115 (9) 0.0142 (9)
C14 0.0230 (9) 0.0246 (10) 0.0254 (10) 0.0082 (8) 0.0110 (8) 0.0130 (8)
C15 0.0263 (10) 0.0294 (10) 0.0183 (9) 0.0111 (8) 0.0084 (8) 0.0118 (8)
C16 0.0232 (9) 0.0265 (10) 0.0167 (9) 0.0087 (8) 0.0064 (7) 0.0060 (7)
C17 0.0275 (10) 0.0363 (11) 0.0157 (9) 0.0130 (9) 0.0065 (8) 0.0066 (8)
C18 0.0278 (10) 0.0358 (11) 0.0156 (9) 0.0116 (9) 0.0058 (8) −0.0001 (8)
C19 0.0221 (9) 0.0242 (9) 0.0203 (9) 0.0075 (7) 0.0068 (7) 0.0006 (7)
C20 0.0174 (8) 0.0227 (9) 0.0157 (8) 0.0059 (7) 0.0055 (7) 0.0044 (7)
C21 0.0158 (8) 0.0231 (9) 0.0152 (8) 0.0046 (7) 0.0054 (7) 0.0034 (7)
C22 0.0337 (11) 0.0204 (9) 0.0227 (9) 0.0112 (8) 0.0079 (8) 0.0051 (7)
C31 0.0365 (12) 0.0235 (10) 0.0281 (10) 0.0128 (9) 0.0128 (9) 0.0127 (8)
C32 0.0142 (8) 0.0209 (9) 0.0151 (8) −0.0010 (7) 0.0044 (6) 0.0032 (7)
C33 0.0182 (9) 0.0224 (9) 0.0162 (8) −0.0006 (7) 0.0049 (7) 0.0051 (7)
C34 0.0227 (10) 0.0272 (10) 0.0201 (9) 0.0010 (8) 0.0047 (7) 0.0105 (8)
C35 0.0248 (10) 0.0368 (11) 0.0152 (9) −0.0005 (8) 0.0038 (7) 0.0089 (8)
C36 0.0236 (10) 0.0349 (11) 0.0147 (9) −0.0006 (8) 0.0056 (7) 0.0013 (8)
C37 0.0163 (9) 0.0255 (9) 0.0162 (8) −0.0006 (7) 0.0040 (7) 0.0011 (7)
C38 0.0195 (9) 0.0268 (10) 0.0194 (9) 0.0008 (7) 0.0070 (7) −0.0049 (7)
C39 0.0132 (8) 0.0196 (9) 0.0311 (10) 0.0003 (7) 0.0073 (7) −0.0037 (8)
C40 0.0210 (10) 0.0288 (11) 0.0335 (11) 0.0024 (8) 0.0075 (8) −0.0077 (9)
C41 0.0241 (11) 0.0268 (11) 0.0467 (14) 0.0030 (8) 0.0110 (10) −0.0134 (10)
C42 0.0271 (11) 0.0215 (10) 0.0552 (15) 0.0063 (8) 0.0143 (10) −0.0046 (10)
C43 0.0240 (10) 0.0240 (10) 0.0418 (12) 0.0064 (8) 0.0111 (9) 0.0017 (9)
C44 0.0136 (8) 0.0193 (9) 0.0336 (11) 0.0008 (7) 0.0085 (8) −0.0020 (8)
C45 0.0185 (9) 0.0201 (9) 0.0315 (10) 0.0044 (7) 0.0069 (8) 0.0081 (8)
C46 0.0180 (9) 0.0271 (10) 0.0223 (9) 0.0051 (7) 0.0061 (7) 0.0092 (8)
C47 0.0287 (11) 0.0354 (11) 0.0287 (11) 0.0141 (9) 0.0082 (9) 0.0160 (9)
C48 0.0309 (11) 0.0510 (14) 0.0221 (10) 0.0184 (10) 0.0046 (9) 0.0156 (10)
C49 0.0239 (10) 0.0454 (13) 0.0178 (9) 0.0115 (9) 0.0032 (8) 0.0031 (9)
C50 0.0182 (9) 0.0305 (10) 0.0201 (9) 0.0086 (8) 0.0064 (7) 0.0046 (8)
C51 0.0133 (8) 0.0264 (9) 0.0173 (8) 0.0048 (7) 0.0046 (7) 0.0066 (7)
C52 0.0291 (11) 0.0359 (12) 0.0319 (11) 0.0050 (9) 0.0084 (9) −0.0106 (9)
C61 0.0646 (18) 0.0433 (14) 0.0188 (11) 0.0173 (13) −0.0060 (11) −0.0061 (10)
C62 0.0201 (9) 0.0229 (9) 0.0195 (9) 0.0061 (7) 0.0057 (7) 0.0006 (7)
C63 0.0237 (10) 0.0277 (10) 0.0207 (9) 0.0078 (8) 0.0058 (8) 0.0001 (8)
C64 0.0257 (10) 0.0277 (10) 0.0261 (10) 0.0035 (8) 0.0080 (8) −0.0053 (8)
C65 0.0299 (11) 0.0222 (10) 0.0343 (11) 0.0043 (8) 0.0125 (9) 0.0009 (8)
C66 0.0260 (10) 0.0257 (10) 0.0293 (10) 0.0068 (8) 0.0101 (8) 0.0068 (8)
C67 0.0194 (9) 0.0236 (9) 0.0230 (9) 0.0059 (7) 0.0076 (7) 0.0031 (7)
C68 0.0214 (9) 0.0270 (10) 0.0209 (9) 0.0097 (8) 0.0063 (7) 0.0071 (7)
C69 0.0184 (9) 0.0316 (10) 0.0173 (9) 0.0069 (8) 0.0030 (7) 0.0033 (8)
C70 0.0281 (11) 0.0350 (11) 0.0241 (10) 0.0106 (9) 0.0016 (8) 0.0074 (9)
C71 0.0327 (12) 0.0464 (14) 0.0218 (10) 0.0137 (10) −0.0020 (9) 0.0083 (9)
C72 0.0258 (11) 0.0457 (13) 0.0197 (10) 0.0089 (9) −0.0015 (8) −0.0002 (9)
C73 0.0214 (10) 0.0351 (11) 0.0208 (9) 0.0075 (8) 0.0019 (8) −0.0011 (8)
C74 0.0174 (9) 0.0315 (10) 0.0182 (9) 0.0071 (8) 0.0036 (7) 0.0027 (8)
C75 0.0231 (10) 0.0290 (10) 0.0194 (9) 0.0057 (8) 0.0036 (7) −0.0010 (8)
C76 0.0245 (10) 0.0251 (10) 0.0240 (10) 0.0075 (8) 0.0059 (8) 0.0019 (8)
C77 0.0328 (11) 0.0277 (11) 0.0289 (11) 0.0086 (9) 0.0056 (9) −0.0025 (8)
C78 0.0386 (13) 0.0240 (10) 0.0405 (13) 0.0118 (9) 0.0082 (10) 0.0005 (9)
C79 0.0308 (11) 0.0266 (10) 0.0344 (11) 0.0105 (9) 0.0060 (9) 0.0090 (9)
C80 0.0251 (10) 0.0254 (10) 0.0252 (10) 0.0056 (8) 0.0034 (8) 0.0052 (8)
C81 0.0238 (10) 0.0235 (10) 0.0243 (10) 0.0068 (8) 0.0048 (8) 0.0040 (8)
C82 0.0391 (13) 0.0318 (12) 0.0307 (12) 0.0076 (10) −0.0074 (10) 0.0110 (9)
C91 0.0268 (10) 0.0187 (9) 0.0299 (10) 0.0098 (8) 0.0077 (8) 0.0036 (8)
C92 0.0475 (15) 0.0749 (19) 0.0237 (11) 0.0415 (14) 0.0138 (10) 0.0202 (12)
C93 0.0250 (12) 0.0307 (13) 0.108 (3) 0.0047 (10) 0.0126 (14) −0.0171 (15)
C101 0.0227 (10) 0.0243 (10) 0.0259 (10) 0.0037 (8) 0.0061 (8) 0.0016 (8)
C102 0.068 (2) 0.0219 (12) 0.081 (2) 0.0044 (12) 0.0373 (17) 0.0059 (13)
C103 0.0339 (14) 0.0588 (18) 0.0582 (18) −0.0103 (12) 0.0206 (13) 0.0121 (14)
C110 0.0610 (18) 0.0378 (14) 0.0460 (16) 0.0085 (13) 0.0150 (13) 0.0151 (12)
C111 0.055 (2) 0.120 (3) 0.063 (2) 0.011 (2) 0.0313 (18) 0.032 (2)
C112 0.063 (2) 0.0597 (19) 0.0393 (15) −0.0102 (15) 0.0151 (14) 0.0039 (13)
C121 0.0257 (10) 0.0320 (11) 0.0178 (9) 0.0088 (8) 0.0072 (8) 0.0050 (8)
C131 0.0194 (9) 0.0208 (9) 0.0205 (9) 0.0063 (7) 0.0046 (7) 0.0026 (7)
C141 0.0299 (11) 0.0188 (9) 0.0167 (9) 0.0037 (8) 0.0019 (8) 0.0025 (7)
C151 0.0466 (14) 0.0459 (14) 0.0160 (9) 0.0193 (11) 0.0061 (9) 0.0082 (9)
C161 0.058 (5) 0.035 (4) 0.0200 (16) 0.028 (3) 0.004 (3) 0.006 (2)
C961 0.023 (5) 0.012 (4) 0.0205 (18) 0.001 (3) 0.000 (3) 0.004 (2)
N1 0.0218 (8) 0.0227 (8) 0.0208 (8) 0.0079 (6) 0.0090 (6) 0.0104 (6)
N2 0.0185 (8) 0.0181 (7) 0.0229 (8) 0.0034 (6) 0.0060 (6) 0.0082 (6)
N31 0.0142 (7) 0.0173 (7) 0.0264 (8) 0.0021 (6) 0.0060 (6) 0.0021 (6)
N32 0.0154 (7) 0.0196 (8) 0.0230 (8) 0.0003 (6) 0.0061 (6) −0.0034 (6)
N51 0.0190 (8) 0.0264 (8) 0.0175 (7) 0.0057 (6) 0.0025 (6) 0.0019 (6)
N52 0.0186 (8) 0.0264 (8) 0.0173 (7) 0.0066 (6) 0.0032 (6) 0.0039 (6)
N91 0.0232 (9) 0.0289 (9) 0.0323 (10) 0.0107 (7) 0.0026 (7) −0.0065 (7)
N101 0.0271 (9) 0.0283 (9) 0.0315 (9) −0.0031 (7) 0.0113 (8) 0.0045 (7)
N110 0.0518 (14) 0.0428 (12) 0.0386 (12) 0.0103 (10) 0.0170 (10) 0.0082 (9)
N121 0.0223 (9) 0.0261 (9) 0.0289 (9) 0.0065 (7) 0.0105 (7) 0.0110 (7)
N131 0.0180 (8) 0.0192 (8) 0.0199 (8) 0.0015 (6) 0.0050 (6) 0.0013 (6)
N141 0.0318 (10) 0.0248 (9) 0.0227 (8) 0.0073 (7) 0.0092 (7) 0.0053 (7)
N151 0.0349 (10) 0.0315 (10) 0.0240 (9) 0.0115 (8) 0.0014 (8) 0.0066 (7)
N161 0.0470 (12) 0.0336 (10) 0.0224 (8) 0.0123 (9) 0.0039 (8) 0.0024 (7)
O1 0.0206 (6) 0.0190 (6) 0.0178 (6) 0.0053 (5) 0.0029 (5) 0.0052 (5)
O2 0.0179 (6) 0.0157 (6) 0.0153 (6) 0.0012 (5) 0.0044 (5) 0.0028 (5)
O3 0.0223 (6) 0.0178 (6) 0.0129 (6) 0.0039 (5) 0.0056 (5) 0.0038 (5)
O4 0.0261 (7) 0.0173 (6) 0.0156 (6) 0.0064 (5) 0.0066 (5) 0.0033 (5)
O31 0.0312 (7) 0.0205 (7) 0.0172 (6) 0.0104 (6) 0.0088 (5) 0.0076 (5)
O32 0.0177 (6) 0.0195 (6) 0.0130 (6) 0.0040 (5) 0.0043 (5) 0.0035 (5)
O33 0.0178 (6) 0.0226 (6) 0.0152 (6) 0.0058 (5) 0.0042 (5) 0.0040 (5)
O34 0.0266 (7) 0.0283 (7) 0.0208 (7) 0.0098 (6) 0.0054 (6) −0.0005 (6)
O61 0.0418 (9) 0.0290 (8) 0.0188 (7) 0.0112 (7) −0.0050 (6) −0.0029 (6)
O62 0.0295 (8) 0.0216 (7) 0.0193 (7) 0.0064 (6) −0.0015 (6) 0.0023 (5)
O63 0.0347 (8) 0.0217 (7) 0.0203 (7) 0.0092 (6) −0.0016 (6) 0.0023 (5)
O64 0.0382 (9) 0.0243 (7) 0.0240 (7) 0.0072 (6) −0.0024 (6) 0.0073 (6)
O91 0.0223 (7) 0.0218 (7) 0.0211 (7) 0.0077 (5) 0.0059 (5) 0.0050 (5)
O101 0.0267 (7) 0.0197 (7) 0.0252 (7) 0.0010 (5) 0.0093 (6) 0.0047 (5)
O110 0.0822 (17) 0.0565 (14) 0.0609 (15) 0.0144 (12) 0.0128 (13) 0.0216 (11)
O971 0.032 (3) 0.026 (3) 0.031 (3) 0.004 (2) 0.004 (2) 0.001 (2)
S121 0.0194 (3) 0.0920 (6) 0.0300 (3) 0.0114 (3) 0.0091 (2) −0.0001 (3)
S131 0.0325 (3) 0.0404 (3) 0.0586 (4) −0.0051 (3) 0.0200 (3) 0.0198 (3)
S141 0.0280 (3) 0.0428 (3) 0.0449 (3) 0.0059 (2) 0.0148 (3) 0.0029 (3)
S151 0.0513 (5) 0.1423 (9) 0.0340 (4) 0.0500 (5) 0.0135 (3) 0.0104 (5)
S161 0.1116 (17) 0.0738 (13) 0.0242 (5) 0.0725 (14) 0.0286 (7) 0.0186 (6)
S961 0.0349 (12) 0.0298 (12) 0.0178 (8) 0.0150 (10) 0.0082 (7) 0.0042 (7)
Sm1 0.01849 (5) 0.01405 (4) 0.01404 (4) 0.00403 (3) 0.00687 (3) 0.00452 (3)
Zn1 0.01724 (10) 0.01703 (10) 0.01765 (10) 0.00387 (8) 0.00633 (8) 0.00702 (8)
Zn31 0.01394 (10) 0.01608 (10) 0.01577 (10) 0.00152 (7) 0.00384 (7) 0.00109 (7)
Zn61 0.03172 (13) 0.02864 (12) 0.01707 (11) 0.00918 (10) −0.00126 (9) 0.00330 (9)
Zn62 0.02403 (11) 0.02136 (11) 0.01524 (10) 0.00642 (9) 0.00265 (8) 0.00237 (8)

Geometric parameters (Å, º)

C1—H1A 0.9800 C67—C68 1.452 (3)
C1—H1B 0.9800 C68—H68 0.9500
C1—H1C 0.9800 C68—N52 1.284 (3)
C1—O1 1.431 (2) C69—C70 1.396 (3)
C2—C3 1.421 (2) C69—C74 1.408 (3)
C2—C7 1.415 (3) C69—N52 1.417 (2)
C2—O2 1.329 (2) C70—H70 0.9500
C3—C4 1.379 (3) C70—C71 1.386 (3)
C3—O1 1.367 (2) C71—H71 0.9500
C4—H4 0.9500 C71—C72 1.386 (3)
C4—C5 1.400 (3) C72—H72 0.9500
C5—H5 0.9500 C72—C73 1.379 (3)
C5—C6 1.367 (3) C73—H73 0.9500
C6—H6 0.9500 C73—C74 1.396 (3)
C6—C7 1.415 (3) C74—N51 1.418 (2)
C7—C8 1.444 (3) C75—H75 0.9500
C8—H8 0.9500 C75—C76 1.451 (3)
C8—N2 1.285 (3) C75—N51 1.287 (3)
C9—C10 1.400 (3) C76—C77 1.417 (3)
C9—C14 1.405 (3) C76—C81 1.410 (3)
C9—N2 1.420 (2) C77—H77 0.9500
C10—H10 0.9500 C77—C78 1.369 (3)
C10—C11 1.380 (3) C78—H78 0.9500
C11—H11 0.9500 C78—C79 1.400 (3)
C11—C12 1.384 (4) C79—H79 0.9500
C12—H12 0.9500 C79—C80 1.374 (3)
C12—C13 1.386 (3) C80—C81 1.420 (3)
C13—H13 0.9500 C80—O64 1.365 (3)
C13—C14 1.397 (3) C81—O63 1.317 (2)
C14—N1 1.417 (2) C82—H82A 0.9800
C15—H15 0.9500 C82—H82B 0.9800
C15—C16 1.445 (3) C82—H82C 0.9800
C15—N1 1.283 (3) C82—O64 1.421 (2)
C16—C17 1.412 (3) C91—H91 0.9500
C16—C21 1.411 (3) C91—N91 1.317 (3)
C17—H17 0.9500 C91—O91 1.241 (2)
C17—C18 1.369 (3) C92—H92A 0.9800
C18—H18 0.9500 C92—H92B 0.9800
C18—C19 1.402 (3) C92—H92C 0.9800
C19—H19 0.9500 C92—N91 1.452 (3)
C19—C20 1.378 (3) C93—H93A 0.9800
C20—C21 1.406 (3) C93—H93B 0.9800
C20—O4 1.381 (2) C93—H93C 0.9800
C21—O3 1.333 (2) C93—N91 1.451 (3)
C22—H22A 0.9800 C101—H101 0.9500
C22—H22B 0.9800 C101—N101 1.305 (3)
C22—H22C 0.9800 C101—O101 1.243 (2)
C22—O4 1.436 (2) C102—H10A 0.9800
C31—H31A 0.9800 C102—H10B 0.9800
C31—H31B 0.9800 C102—H10C 0.9800
C31—H31C 0.9800 C102—N101 1.446 (3)
C31—O31 1.429 (2) C103—H10D 0.9800
C32—C33 1.409 (3) C103—H10E 0.9800
C32—C37 1.415 (3) C103—H10F 0.9800
C32—O32 1.321 (2) C103—N101 1.461 (3)
C33—C34 1.378 (3) C110—H110 0.9500
C33—O31 1.376 (2) C110—N110 1.347 (4)
C34—H34 0.9500 C110—O110 1.235 (4)
C34—C35 1.402 (3) C111—H11A 0.9800
C35—H35 0.9500 C111—H11B 0.9800
C35—C36 1.367 (3) C111—H11C 0.9800
C36—H36 0.9500 C111—N110 1.424 (4)
C36—C37 1.416 (3) C112—H11D 0.9800
C37—C38 1.449 (3) C112—H11E 0.9800
C38—H38 0.9500 C112—H11F 0.9800
C38—N32 1.282 (3) C112—N110 1.437 (4)
C39—C40 1.401 (3) C121—N121 1.159 (3)
C39—C44 1.401 (3) C121—S121 1.626 (2)
C39—N32 1.417 (2) C131—N131 1.157 (3)
C40—H40 0.9500 C131—S131 1.620 (2)
C40—C41 1.383 (3) C141—N141 1.158 (3)
C41—H41 0.9500 C141—S141 1.619 (2)
C41—C42 1.377 (4) C151—N151 1.150 (3)
C42—H42 0.9500 C151—S151 1.624 (3)
C42—C43 1.385 (3) C161—N161 1.203 (7)
C43—H43 0.9500 C161—S161 1.635 (6)
C43—C44 1.399 (3) C961—N161 1.070 (14)
C44—N31 1.424 (2) C961—S961 1.626 (13)
C45—H45 0.9500 N1—Zn1 2.0863 (16)
C45—C46 1.442 (3) N2—Zn1 2.0451 (16)
C45—N31 1.286 (3) N31—Zn31 2.0534 (16)
C46—C47 1.416 (3) N32—Zn31 2.0644 (16)
C46—C51 1.414 (3) N51—Zn62 2.0508 (16)
C47—H47 0.9500 N52—Zn62 2.0486 (16)
C47—C48 1.366 (3) N121—Zn1 1.9842 (17)
C48—H48 0.9500 N131—Zn31 1.9786 (16)
C48—C49 1.399 (3) N141—Zn62 1.9687 (18)
C49—H49 0.9500 N151—Zn61 1.949 (2)
C49—C50 1.382 (3) N161—Zn61 1.943 (2)
C50—C51 1.412 (3) O2—Sm1 2.4417 (12)
C50—O34 1.366 (2) O2—Zn1 2.0395 (12)
C51—O33 1.329 (2) O3—Sm1 2.3348 (12)
C52—H52A 0.9800 O3—Zn1 1.9985 (13)
C52—H52B 0.9800 O4—Sm1 2.6707 (13)
C52—H52C 0.9800 O31—Sm1 2.6934 (13)
C52—O34 1.432 (2) O32—Sm1 2.3599 (12)
C61—H61A 0.9800 O32—Zn31 2.0143 (13)
C61—H61B 0.9800 O33—Sm1 2.4038 (13)
C61—H61C 0.9800 O33—Zn31 2.0175 (13)
C61—O61 1.418 (3) O62—Zn61 2.0267 (14)
C62—C63 1.419 (3) O62—Zn62 2.0132 (14)
C62—C67 1.408 (3) O63—Zn61 2.0135 (14)
C62—O62 1.321 (2) O63—Zn62 2.0073 (14)
C63—C64 1.372 (3) O91—Sm1 2.3831 (13)
C63—O61 1.369 (3) O101—Sm1 2.3476 (13)
C64—H64 0.9500 O971—H97A 0.8700
C64—C65 1.399 (3) O971—H97B 0.8699
C65—H65 0.9500 Sm1—Zn1 3.5372 (2)
C65—C66 1.373 (3) Sm1—Zn31 3.5444 (2)
C66—H66 0.9500 Zn61—Zn62 3.1201 (3)
C66—C67 1.414 (3)
H1A—C1—H1B 109.5 N91—C91—H91 117.8
H1A—C1—H1C 109.5 O91—C91—H91 117.8
H1B—C1—H1C 109.5 O91—C91—N91 124.34 (19)
O1—C1—H1A 109.5 H92A—C92—H92B 109.5
O1—C1—H1B 109.5 H92A—C92—H92C 109.5
O1—C1—H1C 109.5 H92B—C92—H92C 109.5
C7—C2—C3 117.35 (16) N91—C92—H92A 109.5
O2—C2—C3 118.66 (16) N91—C92—H92B 109.5
O2—C2—C7 123.99 (16) N91—C92—H92C 109.5
C4—C3—C2 121.73 (17) H93A—C93—H93B 109.5
O1—C3—C2 113.53 (16) H93A—C93—H93C 109.5
O1—C3—C4 124.74 (17) H93B—C93—H93C 109.5
C3—C4—H4 120.0 N91—C93—H93A 109.5
C3—C4—C5 120.00 (18) N91—C93—H93B 109.5
C5—C4—H4 120.0 N91—C93—H93C 109.5
C4—C5—H5 120.1 N101—C101—H101 117.9
C6—C5—C4 119.80 (18) O101—C101—H101 117.9
C6—C5—H5 120.1 O101—C101—N101 124.2 (2)
C5—C6—H6 119.3 H10A—C102—H10B 109.5
C5—C6—C7 121.31 (18) H10A—C102—H10C 109.5
C7—C6—H6 119.3 H10B—C102—H10C 109.5
C2—C7—C8 124.65 (17) N101—C102—H10A 109.5
C6—C7—C2 119.60 (17) N101—C102—H10B 109.5
C6—C7—C8 115.71 (17) N101—C102—H10C 109.5
C7—C8—H8 117.3 H10D—C103—H10E 109.5
N2—C8—C7 125.39 (17) H10D—C103—H10F 109.5
N2—C8—H8 117.3 H10E—C103—H10F 109.5
C10—C9—C14 120.05 (18) N101—C103—H10D 109.5
C10—C9—N2 123.68 (19) N101—C103—H10E 109.5
C14—C9—N2 116.17 (17) N101—C103—H10F 109.5
C9—C10—H10 120.1 N110—C110—H110 117.8
C11—C10—C9 119.8 (2) O110—C110—H110 117.8
C11—C10—H10 120.1 O110—C110—N110 124.4 (3)
C10—C11—H11 119.8 H11A—C111—H11B 109.5
C10—C11—C12 120.3 (2) H11A—C111—H11C 109.5
C12—C11—H11 119.8 H11B—C111—H11C 109.5
C11—C12—H12 119.7 N110—C111—H11A 109.5
C11—C12—C13 120.6 (2) N110—C111—H11B 109.5
C13—C12—H12 119.7 N110—C111—H11C 109.5
C12—C13—H13 120.0 H11D—C112—H11E 109.5
C12—C13—C14 120.1 (2) H11D—C112—H11F 109.5
C14—C13—H13 120.0 H11E—C112—H11F 109.5
C9—C14—N1 115.65 (17) N110—C112—H11D 109.5
C13—C14—C9 119.10 (19) N110—C112—H11E 109.5
C13—C14—N1 125.23 (19) N110—C112—H11F 109.5
C16—C15—H15 117.6 N121—C121—S121 178.9 (2)
N1—C15—H15 117.6 N131—C131—S131 178.92 (19)
N1—C15—C16 124.87 (17) N141—C141—S141 179.4 (2)
C17—C16—C15 117.83 (17) N151—C151—S151 177.7 (2)
C21—C16—C15 123.11 (17) N161—C161—S161 179.4 (8)
C21—C16—C17 118.86 (18) N161—C961—S961 177.1 (16)
C16—C17—H17 119.4 C14—N1—Zn1 111.82 (13)
C18—C17—C16 121.11 (18) C15—N1—C14 123.18 (17)
C18—C17—H17 119.4 C15—N1—Zn1 124.87 (13)
C17—C18—H18 119.7 C8—N2—C9 121.74 (17)
C17—C18—C19 120.54 (18) C8—N2—Zn1 125.65 (13)
C19—C18—H18 119.7 C9—N2—Zn1 112.50 (13)
C18—C19—H19 120.5 C44—N31—Zn31 112.56 (13)
C20—C19—C18 118.94 (18) C45—N31—C44 122.48 (17)
C20—C19—H19 120.5 C45—N31—Zn31 124.93 (14)
C19—C20—C21 121.94 (17) C38—N32—C39 123.60 (17)
C19—C20—O4 125.38 (17) C38—N32—Zn31 123.97 (14)
O4—C20—C21 112.63 (15) C39—N32—Zn31 112.41 (13)
C20—C21—C16 118.57 (17) C74—N51—Zn62 110.35 (13)
O3—C21—C16 124.27 (17) C75—N51—C74 122.96 (17)
O3—C21—C20 117.06 (16) C75—N51—Zn62 126.57 (14)
H22A—C22—H22B 109.5 C68—N52—C69 123.05 (17)
H22A—C22—H22C 109.5 C68—N52—Zn62 126.59 (14)
H22B—C22—H22C 109.5 C69—N52—Zn62 110.33 (13)
O4—C22—H22A 109.5 C91—N91—C92 121.3 (2)
O4—C22—H22B 109.5 C91—N91—C93 122.6 (2)
O4—C22—H22C 109.5 C93—N91—C92 116.1 (2)
H31A—C31—H31B 109.5 C101—N101—C102 121.1 (2)
H31A—C31—H31C 109.5 C101—N101—C103 122.1 (2)
H31B—C31—H31C 109.5 C102—N101—C103 116.8 (2)
O31—C31—H31A 109.5 C110—N110—C111 121.5 (3)
O31—C31—H31B 109.5 C110—N110—C112 119.5 (2)
O31—C31—H31C 109.5 C111—N110—C112 118.9 (3)
C33—C32—C37 118.09 (17) C121—N121—Zn1 176.12 (18)
O32—C32—C33 117.14 (16) C131—N131—Zn31 172.86 (16)
O32—C32—C37 124.68 (17) C141—N141—Zn62 175.46 (17)
C34—C33—C32 122.15 (18) C151—N151—Zn61 173.9 (2)
O31—C33—C32 112.33 (15) C161—N161—Zn61 170.9 (5)
O31—C33—C34 125.46 (18) C961—N161—Zn61 164.2 (7)
C33—C34—H34 120.4 C3—O1—C1 116.75 (15)
C33—C34—C35 119.25 (19) C2—O2—Sm1 130.20 (11)
C35—C34—H34 120.4 C2—O2—Zn1 122.79 (11)
C34—C35—H35 120.0 Zn1—O2—Sm1 103.89 (5)
C36—C35—C34 120.03 (18) C21—O3—Sm1 127.23 (11)
C36—C35—H35 120.0 C21—O3—Zn1 123.57 (11)
C35—C36—H36 119.2 Zn1—O3—Sm1 109.18 (5)
C35—C36—C37 121.59 (19) C20—O4—C22 116.69 (14)
C37—C36—H36 119.2 C20—O4—Sm1 115.77 (10)
C32—C37—C36 118.72 (18) C22—O4—Sm1 126.89 (11)
C32—C37—C38 123.00 (17) C31—O31—Sm1 124.14 (11)
C36—C37—C38 118.06 (18) C33—O31—C31 117.42 (15)
C37—C38—H38 118.0 C33—O31—Sm1 118.41 (11)
N32—C38—C37 124.09 (17) C32—O32—Sm1 130.47 (11)
N32—C38—H38 118.0 C32—O32—Zn31 120.58 (11)
C40—C39—C44 119.82 (19) Zn31—O32—Sm1 107.99 (5)
C40—C39—N32 124.1 (2) C51—O33—Sm1 130.64 (11)
C44—C39—N32 116.04 (17) C51—O33—Zn31 122.08 (11)
C39—C40—H40 120.2 Zn31—O33—Sm1 106.25 (5)
C41—C40—C39 119.6 (2) C50—O34—C52 116.72 (17)
C41—C40—H40 120.2 C63—O61—C61 117.58 (18)
C40—C41—H41 119.7 C62—O62—Zn61 132.34 (12)
C42—C41—C40 120.6 (2) C62—O62—Zn62 125.95 (12)
C42—C41—H41 119.7 Zn62—O62—Zn61 101.13 (6)
C41—C42—H42 119.6 C81—O63—Zn61 129.26 (13)
C41—C42—C43 120.7 (2) C81—O63—Zn62 128.36 (13)
C43—C42—H42 119.6 Zn62—O63—Zn61 101.79 (6)
C42—C43—H43 120.2 C80—O64—C82 118.24 (17)
C42—C43—C44 119.6 (2) C91—O91—Sm1 131.76 (12)
C44—C43—H43 120.2 C101—O101—Sm1 136.34 (13)
C39—C44—N31 116.47 (17) H97A—O971—H97B 109.5
C43—C44—C39 119.62 (19) O2—Sm1—O4 119.60 (4)
C43—C44—N31 123.9 (2) O2—Sm1—O31 111.28 (4)
C46—C45—H45 117.3 O2—Sm1—Zn1 34.04 (3)
N31—C45—H45 117.3 O2—Sm1—Zn31 75.83 (3)
N31—C45—C46 125.38 (18) O3—Sm1—O2 66.10 (4)
C47—C46—C45 116.73 (18) O3—Sm1—O4 60.69 (4)
C51—C46—C45 124.06 (17) O3—Sm1—O31 159.39 (4)
C51—C46—C47 119.19 (19) O3—Sm1—O32 134.80 (4)
C46—C47—H47 119.5 O3—Sm1—O33 80.48 (4)
C48—C47—C46 120.9 (2) O3—Sm1—O91 89.74 (5)
C48—C47—H47 119.5 O3—Sm1—O101 119.90 (5)
C47—C48—H48 119.9 O3—Sm1—Zn1 32.25 (3)
C47—C48—C49 120.27 (19) O3—Sm1—Zn31 108.18 (3)
C49—C48—H48 119.9 O4—Sm1—O31 108.63 (4)
C48—C49—H49 120.0 O4—Sm1—Zn1 90.48 (3)
C50—C49—C48 119.9 (2) O4—Sm1—Zn31 146.28 (3)
C50—C49—H49 120.0 O31—Sm1—Zn1 142.97 (3)
C49—C50—C51 121.15 (19) O31—Sm1—Zn31 90.16 (3)
O34—C50—C49 125.60 (19) O32—Sm1—O2 78.61 (4)
O34—C50—C51 113.25 (16) O32—Sm1—O4 161.77 (4)
C50—C51—C46 118.34 (17) O32—Sm1—O31 59.85 (4)
O33—C51—C46 123.33 (17) O32—Sm1—O33 65.80 (4)
O33—C51—C50 118.33 (17) O32—Sm1—O91 114.01 (4)
H52A—C52—H52B 109.5 O32—Sm1—Zn1 107.06 (3)
H52A—C52—H52C 109.5 O32—Sm1—Zn31 32.72 (3)
H52B—C52—H52C 109.5 O33—Sm1—O2 79.92 (4)
O34—C52—H52A 109.5 O33—Sm1—O4 115.61 (4)
O34—C52—H52B 109.5 O33—Sm1—O31 119.80 (4)
O34—C52—H52C 109.5 O33—Sm1—Zn1 75.67 (3)
H61A—C61—H61B 109.5 O33—Sm1—Zn31 33.13 (3)
H61A—C61—H61C 109.5 O91—Sm1—O2 83.29 (4)
H61B—C61—H61C 109.5 O91—Sm1—O4 70.36 (4)
O61—C61—H61A 109.5 O91—Sm1—O31 69.71 (4)
O61—C61—H61B 109.5 O91—Sm1—O33 162.88 (5)
O61—C61—H61C 109.5 O91—Sm1—Zn1 88.55 (3)
C67—C62—C63 118.03 (18) O91—Sm1—Zn31 143.36 (3)
O62—C62—C63 117.98 (17) O101—Sm1—O2 167.46 (5)
O62—C62—C67 123.98 (17) O101—Sm1—O4 71.53 (4)
C64—C63—C62 121.73 (19) O101—Sm1—O31 67.27 (5)
O61—C63—C62 112.25 (18) O101—Sm1—O32 90.46 (5)
O61—C63—C64 126.02 (19) O101—Sm1—O33 90.05 (5)
C63—C64—H64 120.2 O101—Sm1—O91 107.03 (5)
C63—C64—C65 119.57 (19) O101—Sm1—Zn1 149.69 (4)
C65—C64—H64 120.2 O101—Sm1—Zn31 91.66 (4)
C64—C65—H65 119.9 Zn1—Sm1—Zn31 90.491 (5)
C66—C65—C64 120.1 (2) N1—Zn1—Sm1 117.86 (5)
C66—C65—H65 119.9 N2—Zn1—N1 79.60 (6)
C65—C66—H66 119.4 N2—Zn1—Sm1 118.28 (4)
C65—C66—C67 121.1 (2) N121—Zn1—N1 108.05 (7)
C67—C66—H66 119.4 N121—Zn1—N2 112.95 (7)
C62—C67—C66 119.13 (18) N121—Zn1—O2 104.31 (6)
C62—C67—C68 123.64 (18) N121—Zn1—O3 108.25 (6)
C66—C67—C68 117.22 (18) N121—Zn1—Sm1 115.01 (5)
C67—C68—H68 117.6 O2—Zn1—N1 147.54 (6)
N52—C68—C67 124.86 (18) O2—Zn1—N2 90.27 (6)
N52—C68—H68 117.6 O2—Zn1—Sm1 42.08 (4)
C70—C69—C74 119.76 (19) O3—Zn1—N1 87.12 (6)
C70—C69—N52 124.25 (19) O3—Zn1—N2 138.79 (6)
C74—C69—N52 115.97 (17) O3—Zn1—O2 80.40 (5)
C69—C70—H70 120.2 O3—Zn1—Sm1 38.57 (4)
C71—C70—C69 119.7 (2) N31—Zn31—N32 80.42 (7)
C71—C70—H70 120.2 N31—Zn31—Sm1 116.69 (4)
C70—C71—H71 119.8 N32—Zn31—Sm1 120.54 (4)
C72—C71—C70 120.5 (2) N131—Zn31—N31 120.99 (6)
C72—C71—H71 119.8 N131—Zn31—N32 104.40 (6)
C71—C72—H72 119.7 N131—Zn31—O32 102.67 (6)
C73—C72—C71 120.5 (2) N131—Zn31—O33 105.95 (6)
C73—C72—H72 119.7 N131—Zn31—Sm1 110.51 (5)
C72—C73—H73 120.0 O32—Zn31—N31 136.30 (6)
C72—C73—C74 120.0 (2) O32—Zn31—N32 87.56 (6)
C74—C73—H73 120.0 O32—Zn31—O33 79.86 (5)
C69—C74—N51 116.15 (17) O32—Zn31—Sm1 39.29 (3)
C73—C74—C69 119.59 (18) O33—Zn31—N31 89.29 (6)
C73—C74—N51 124.22 (19) O33—Zn31—N32 149.00 (6)
C76—C75—H75 117.3 O33—Zn31—Sm1 40.63 (4)
N51—C75—H75 117.3 N151—Zn61—O62 114.80 (7)
N51—C75—C76 125.49 (18) N151—Zn61—O63 112.60 (7)
C77—C76—C75 117.14 (19) N151—Zn61—Zn62 129.02 (5)
C81—C76—C75 124.22 (18) N161—Zn61—N151 119.03 (8)
C81—C76—C77 118.60 (19) N161—Zn61—O62 112.66 (7)
C76—C77—H77 119.3 N161—Zn61—O63 113.62 (8)
C78—C77—C76 121.4 (2) N161—Zn61—Zn62 111.94 (6)
C78—C77—H77 119.3 O62—Zn61—Zn62 39.28 (4)
C77—C78—H78 119.9 O63—Zn61—O62 76.86 (6)
C77—C78—C79 120.2 (2) O63—Zn61—Zn62 39.03 (4)
C79—C78—H78 119.9 N51—Zn62—Zn61 123.45 (5)
C78—C79—H79 120.2 N52—Zn62—N51 80.67 (7)
C80—C79—C78 119.5 (2) N52—Zn62—Zn61 125.32 (5)
C80—C79—H79 120.2 N141—Zn62—N51 110.27 (7)
C79—C80—C81 121.6 (2) N141—Zn62—N52 106.67 (7)
O64—C80—C79 126.19 (19) N141—Zn62—O62 111.31 (7)
O64—C80—C81 112.22 (18) N141—Zn62—O63 108.59 (7)
C76—C81—C80 118.54 (19) N141—Zn62—Zn61 107.65 (5)
O63—C81—C76 123.47 (18) O62—Zn62—N51 138.41 (6)
O63—C81—C80 117.98 (18) O62—Zn62—N52 88.34 (6)
H82A—C82—H82B 109.5 O62—Zn62—Zn61 39.59 (4)
H82A—C82—H82C 109.5 O63—Zn62—N51 88.94 (6)
H82B—C82—H82C 109.5 O63—Zn62—N52 144.69 (7)
O64—C82—H82A 109.5 O63—Zn62—O62 77.30 (6)
O64—C82—H82B 109.5 O63—Zn62—Zn61 39.18 (4)
O64—C82—H82C 109.5
C2—C3—C4—C5 0.6 (3) C49—C50—C51—C46 2.9 (3)
C2—C3—O1—C1 175.17 (15) C49—C50—C51—O33 −176.88 (18)
C2—C7—C8—N2 −13.1 (3) C49—C50—O34—C52 −13.0 (3)
C3—C2—C7—C6 −5.3 (2) C50—C51—O33—Sm1 48.7 (2)
C3—C2—C7—C8 172.50 (16) C50—C51—O33—Zn31 −144.55 (14)
C3—C2—O2—Sm1 53.4 (2) C51—C46—C47—C48 3.9 (3)
C3—C2—O2—Zn1 −149.98 (13) C51—C50—O34—C52 167.24 (17)
C3—C4—C5—C6 −2.0 (3) C62—C63—C64—C65 −3.9 (3)
C4—C3—O1—C1 −4.9 (3) C62—C63—O61—C61 −166.0 (2)
C4—C5—C6—C7 −0.3 (3) C62—C67—C68—N52 15.0 (3)
C5—C6—C7—C2 4.1 (3) C63—C62—C67—C66 −2.9 (3)
C5—C6—C7—C8 −173.92 (17) C63—C62—C67—C68 175.68 (18)
C6—C7—C8—N2 164.79 (18) C63—C62—O62—Zn61 −10.8 (3)
C7—C2—C3—C4 3.1 (3) C63—C62—O62—Zn62 158.78 (14)
C7—C2—C3—O1 −176.96 (15) C63—C64—C65—C66 −1.3 (3)
C7—C2—O2—Sm1 −126.30 (15) C64—C63—O61—C61 14.7 (3)
C7—C2—O2—Zn1 30.4 (2) C64—C65—C66—C67 4.3 (3)
C7—C8—N2—C9 −176.64 (17) C65—C66—C67—C62 −2.1 (3)
C7—C8—N2—Zn1 7.3 (3) C65—C66—C67—C68 179.25 (19)
C9—C10—C11—C12 1.0 (4) C66—C67—C68—N52 −166.43 (19)
C9—C14—N1—C15 170.83 (18) C67—C62—C63—C64 5.9 (3)
C9—C14—N1—Zn1 −13.1 (2) C67—C62—C63—O61 −173.43 (17)
C10—C9—C14—C13 −3.9 (3) C67—C62—O62—Zn61 167.78 (14)
C10—C9—C14—N1 174.41 (19) C67—C62—O62—Zn62 −22.6 (3)
C10—C9—N2—C8 23.7 (3) C67—C68—N52—C69 −177.88 (18)
C10—C9—N2—Zn1 −159.72 (18) C67—C68—N52—Zn62 −0.1 (3)
C10—C11—C12—C13 −2.4 (4) C69—C70—C71—C72 0.1 (4)
C11—C12—C13—C14 0.6 (4) C69—C74—N51—C75 −159.30 (19)
C12—C13—C14—C9 2.6 (3) C69—C74—N51—Zn62 17.0 (2)
C12—C13—C14—N1 −175.6 (2) C70—C69—C74—C73 1.4 (3)
C13—C14—N1—C15 −10.9 (3) C70—C69—C74—N51 −176.47 (18)
C13—C14—N1—Zn1 165.10 (17) C70—C69—N52—C68 −23.3 (3)
C14—C9—C10—C11 2.2 (4) C70—C69—N52—Zn62 158.57 (17)
C14—C9—N2—C8 −160.00 (18) C70—C71—C72—C73 0.6 (4)
C14—C9—N2—Zn1 16.6 (2) C71—C72—C73—C74 −0.3 (3)
C15—C16—C17—C18 −175.54 (19) C72—C73—C74—C69 −0.7 (3)
C15—C16—C21—C20 173.49 (18) C72—C73—C74—N51 177.04 (19)
C15—C16—C21—O3 −2.8 (3) C73—C74—N51—C75 22.9 (3)
C16—C15—N1—C14 −177.64 (18) C73—C74—N51—Zn62 −160.84 (16)
C16—C15—N1—Zn1 6.9 (3) C74—C69—C70—C71 −1.2 (3)
C16—C17—C18—C19 1.4 (3) C74—C69—N52—C68 158.65 (19)
C16—C21—O3—Sm1 151.92 (14) C74—C69—N52—Zn62 −19.5 (2)
C16—C21—O3—Zn1 −29.7 (2) C75—C76—C77—C78 179.7 (2)
C17—C16—C21—C20 −1.3 (3) C75—C76—C81—C80 −177.5 (2)
C17—C16—C21—O3 −177.59 (18) C75—C76—C81—O63 2.0 (3)
C17—C18—C19—C20 −0.4 (3) C76—C75—N51—C74 178.54 (19)
C18—C19—C20—C21 −1.5 (3) C76—C75—N51—Zn62 2.9 (3)
C18—C19—C20—O4 175.67 (18) C76—C77—C78—C79 −2.4 (4)
C19—C20—C21—C16 2.3 (3) C76—C81—O63—Zn61 −153.77 (16)
C19—C20—C21—O3 178.87 (17) C76—C81—O63—Zn62 15.7 (3)
C19—C20—O4—C22 10.7 (3) C77—C76—C81—C80 0.0 (3)
C19—C20—O4—Sm1 −160.67 (15) C77—C76—C81—O63 179.5 (2)
C20—C21—O3—Sm1 −24.4 (2) C77—C78—C79—C80 0.7 (4)
C20—C21—O3—Zn1 153.97 (13) C78—C79—C80—C81 1.4 (3)
C21—C16—C17—C18 −0.5 (3) C78—C79—C80—O64 −179.9 (2)
C21—C20—O4—C22 −171.90 (16) C79—C80—C81—C76 −1.7 (3)
C21—C20—O4—Sm1 16.70 (19) C79—C80—C81—O63 178.8 (2)
C32—C33—C34—C35 −2.8 (3) C79—C80—O64—C82 2.3 (3)
C32—C33—O31—C31 −176.21 (16) C80—C81—O63—Zn61 25.7 (3)
C32—C33—O31—Sm1 5.8 (2) C80—C81—O63—Zn62 −164.81 (15)
C32—C37—C38—N32 18.3 (3) C81—C76—C77—C78 2.0 (3)
C33—C32—C37—C36 −3.0 (3) C81—C80—O64—C82 −178.91 (19)
C33—C32—C37—C38 171.44 (17) N1—C15—C16—C17 −170.43 (19)
C33—C32—O32—Sm1 −15.5 (2) N1—C15—C16—C21 14.8 (3)
C33—C32—O32—Zn31 151.84 (13) N2—C9—C10—C11 178.3 (2)
C33—C34—C35—C36 −1.0 (3) N2—C9—C14—C13 179.61 (18)
C34—C33—O31—C31 6.4 (3) N2—C9—C14—N1 −2.0 (3)
C34—C33—O31—Sm1 −171.61 (15) N31—C45—C46—C47 163.73 (19)
C34—C35—C36—C37 2.6 (3) N31—C45—C46—C51 −14.5 (3)
C35—C36—C37—C32 −0.6 (3) N32—C39—C40—C41 177.57 (18)
C35—C36—C37—C38 −175.31 (19) N32—C39—C44—C43 −176.90 (17)
C36—C37—C38—N32 −167.26 (19) N32—C39—C44—N31 3.3 (2)
C37—C32—C33—C34 4.8 (3) N51—C75—C76—C77 170.7 (2)
C37—C32—C33—O31 −172.72 (16) N51—C75—C76—C81 −11.7 (3)
C37—C32—O32—Sm1 161.14 (13) N52—C69—C70—C71 −179.1 (2)
C37—C32—O32—Zn31 −31.5 (2) N52—C69—C74—C73 179.59 (18)
C37—C38—N32—C39 −173.79 (17) N52—C69—C74—N51 1.7 (3)
C37—C38—N32—Zn31 7.9 (3) N91—C91—O91—Sm1 159.59 (15)
C39—C40—C41—C42 −0.6 (3) N101—C101—O101—Sm1 −165.90 (15)
C39—C44—N31—C45 −170.26 (18) O1—C3—C4—C5 −179.35 (17)
C39—C44—N31—Zn31 7.9 (2) O2—C2—C3—C4 −176.60 (16)
C40—C39—C44—C43 2.0 (3) O2—C2—C3—O1 3.3 (2)
C40—C39—C44—N31 −177.82 (17) O2—C2—C7—C6 174.33 (16)
C40—C39—N32—C38 −10.1 (3) O2—C2—C7—C8 −7.8 (3)
C40—C39—N32—Zn31 168.42 (16) O4—C20—C21—C16 −175.19 (16)
C40—C41—C42—C43 1.6 (3) O4—C20—C21—O3 1.4 (2)
C41—C42—C43—C44 −0.8 (3) O31—C33—C34—C35 174.34 (18)
C42—C43—C44—C39 −1.0 (3) O32—C32—C33—C34 −178.39 (17)
C42—C43—C44—N31 178.85 (19) O32—C32—C33—O31 4.1 (2)
C43—C44—N31—C45 9.9 (3) O32—C32—C37—C36 −179.60 (17)
C43—C44—N31—Zn31 −171.95 (15) O32—C32—C37—C38 −5.1 (3)
C44—C39—C40—C41 −1.3 (3) O34—C50—C51—C46 −177.34 (16)
C44—C39—N32—C38 168.79 (18) O34—C50—C51—O33 2.9 (2)
C44—C39—N32—Zn31 −12.7 (2) O61—C63—C64—C65 175.4 (2)
C45—C46—C47—C48 −174.4 (2) O62—C62—C63—C64 −175.42 (19)
C45—C46—C51—C50 173.08 (18) O62—C62—C63—O61 5.2 (3)
C45—C46—C51—O33 −7.2 (3) O62—C62—C67—C66 178.57 (18)
C46—C45—N31—C44 −178.56 (18) O62—C62—C67—C68 −2.9 (3)
C46—C45—N31—Zn31 3.5 (3) O64—C80—C81—C76 179.37 (18)
C46—C47—C48—C49 −0.4 (3) O64—C80—C81—O63 −0.1 (3)
C46—C51—O33—Sm1 −131.01 (16) O91—C91—N91—C92 −2.5 (3)
C46—C51—O33—Zn31 35.7 (2) O91—C91—N91—C93 178.8 (2)
C47—C46—C51—C50 −5.1 (3) O101—C101—N101—C102 0.1 (4)
C47—C46—C51—O33 174.67 (18) O101—C101—N101—C103 −179.0 (2)
C47—C48—C49—C50 −1.9 (3) O110—C110—N110—C111 −1.3 (5)
C48—C49—C50—C51 0.6 (3) O110—C110—N110—C112 176.7 (3)
C48—C49—C50—O34 −179.11 (19)

Funding Statement

This work was funded by Sonatel Foundation grant .

References

  1. Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356.
  2. Andrez, J., Guidal, V., Scopelliti, R., Pécaut, J., Gambarelli, S. & Mazzanti, M. (2017). J. Am. Chem. Soc. 139, 8628–8638. [DOI] [PubMed]
  3. Andruh, M. (2011). Chem. Commun. 47, 3025–3042. [DOI] [PubMed]
  4. Bi, W.-Y., Lü, X., Chai, W.-L., Jin, W.-J. J.-R., Song, J. & Wong, W. (2008b). Inorg. Chem. Commun. 11, 1316–1319.
  5. Bi, W.-Y., Lü, Y., Chai, W.-L., Song, J.-R., Wong, W.-K., Yang, X.-P. & Jones, R. A. (2008a). Z. Anorg. Allg. Chem. 634, 1795–1800.
  6. Bi, W.-Y., Lü, X., Chai, W.-L., Wei, T., Song, J.-R., Zhao, S.-S. & Wong, W.-K. (2009). Inorg. Chem. Commun. 12, 267–271.
  7. Bian, J. (2008). Acta Cryst. E64, m625. [DOI] [PMC free article] [PubMed]
  8. Biswas, A., Mandal, L., Mondal, S., Lucas, R. & Mohanta, S. (2013a). CrystEngComm, 15, 5888–5897.
  9. Biswas, A., Mondal, S. & Mohanta, S. (2013b). J. Coord. Chem. 66, 152–170.
  10. Chen, P., Chen, H., Yan, P., Wang, Y. & Li, G. (2011). CrystEngComm, 13, 6237–6242.
  11. Chesman, A. S. R., Turner, D. R., Moubaraki, B., Murray, K. S., Deacon, G. B. & Batten, S. R. (2012). Inorg. Chim. Acta, 389, 99–106.
  12. Cristóvão, B. & Miroslaw, B. (2013). Inorg. Chim. Acta, 401, 50–57.
  13. Cristóvão, B., Miroslaw, B. & Bartyzel, A. (2017). Inorg. Chim. Acta, 466, 160–165.
  14. Das, M., Chatterjee, S. & Chattopadhyay, S. (2011). Inorg. Chem. Commun. 14, 1337–1340.
  15. Ding, D.-D., Gao, T., Sun, O., Li, G.-M., Wu, Y.-H., Xu, M.-M., Zou, X.-Y. & Yan, P.-F. (2015). Inorg. Chem. Commun. 51, 21–25.
  16. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
  17. Feng, X., Wu, K. Y., Xie, S. Y., Li, R. & Wang, L. (2017). Inorg. Nano-Met. Chem. 47, 1134–1140.
  18. Fu, G., Su, P., Lü, X. & Wong, W.-K. (2017). Inorg. Chem. Commun. 76, 12–14.
  19. Gao, T., Xu, L.-L., Zhang, Q., Li, G.-M. & Yan, P.-F. (2012). Inorg. Chem. Commun. 26, 60–63.
  20. Ghosh, S. & Ghosh, A. (2016). Inorg. Chim. Acta, 442, 64–69.
  21. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  22. Klokishner, S. & Reu, O. (2012). Chem. Phys. Lett. 552, 130–135.
  23. Kou, H.-Z., Yang, G.-M., Liao, D.-Z., Cheng, P., Jiang, Z.-H., Yan, S.-P., Huang, X.-Y. & Wang, G.-L. (1998). J. Chem. Crystallogr. 28, 303–307.
  24. Lan, T.-X., Gao, W.-S., Chen, C.-N., Wang, H.-S., Wang, M. & Fan, Y. (2018). New J. Chem. 42, 5798–5805.
  25. Liao, A., Yang, X., Stanley, J. M., Jones, R. A. & Holliday, B. J. (2010). J. Chem. Crystallogr. 40, 1060–1064.
  26. Liu, L., Li, H., Su, P., Zhang, Z., Fu, G., Li, B. & Lü, X. (2017). J. Mater. Chem. C. 5, 4780–4787.
  27. Liu, D.-F., Wu, L.-Y., Feng, W.-X., Zhang, X.-M., Wu, J., Zhu, L.-Q., Fan, D.-D., Lü, X.-Q. & Shi, Q. (2014). J. Mol. Catal. A Chem. 382, 136–145.
  28. Lo, W.-K., Wong, W.-K., Wong, W.-Y., Guo, J., Yeung, K.-T., Cheng, W.-K., Yang, X. & Jones, R. A. (2006). Inorg. Chem. 45, 9315–9325. [DOI] [PubMed]
  29. Ma, Q., Feng, X., Cao, W., Wang, H. & Jiang, J. (2013). CrystEngComm, 15, 10383–10388.
  30. Ma, Q., Zeng, S., Feng, X., Cao, W., Wang, H., Dou, J. & Jiang, J. (2016). Eur. J. Inorg. Chem. 2016, 4194–4198.
  31. Nandy, M., Saha, D., Rizzoli, C. & Shit, S. (2017). Z. Naturforsch. Teil B, 72, 133–140.
  32. Pasatoiu, T. D., Madalan, A. M., Zamfirescu, M., Tiseanu, C. & Andruh, M. (2012). Phys. Chem. Chem. Phys. 14, 11448–11456. [DOI] [PubMed]
  33. Pushkarev, A. P., Balashova, T. V., Kukinov, A. A., Arsenyev, M. V., Yablonskiy, A. N., Kryzhkov, D. I., Andreev, B. A., Rumyantcev, R. V., Fukin, G. K. & Bochkarev, M. N. (2017). Dalton Trans. 46, 10408–10417. [DOI] [PubMed]
  34. Rigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.
  35. Rossi, P., Ciattini, S., Formica, M., Fusi, V., Giorgi, L., Macedi, E., Micheloni, M. & Paoli, P. (2018). Inorg. Chim. Acta, 470, 254–262.
  36. Sarr, M., Diop, M., Thiam, I. E., Gaye, M., Barry, A. H., Alvarez, N. & Ellena, J. (2018). Eur. J. Chem. 9, 67–73.
  37. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  38. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  39. Sun, W.-B., Yan, P.-F., Jiang, S.-D., Wang, B.-W., Zhang, Y.-Q., Li, H.-F., Chen, P., Wang, Z.-M. & Gao, S. (2016). Chem. Sci. 7, 684–691. [DOI] [PMC free article] [PubMed]
  40. Tian, Y.-M., Li, H.-F., Han, B.-L., Zhang, Q. & Sun, W.-B. (2012). Acta Cryst. E68, m1500–m1501. [DOI] [PMC free article] [PubMed]
  41. Wang, H., Cao, W., Liu, T., Duan, C. & Jiang, J. (2013). Chem. Eur. J. 19, 2266–2270. [DOI] [PubMed]
  42. Wang, H., Zhang, D., Ni, Z.-H., Li, X., Tian, L. & Jiang, J. (2009). Inorg. Chem. 48, 5946–5956. [DOI] [PubMed]
  43. Wang, H., Zhang, D., Tian, L. & Zhang, L.-F. (2008b). Acta Cryst. E64, m1460. [DOI] [PMC free article] [PubMed]
  44. Wang, H., Zhang, D. & Zhang, L.-F. (2008a). Acta Cryst. E64, m1408–m1409. [DOI] [PMC free article] [PubMed]
  45. Wong, W.-K., Yang, X., Jones, R. A., Rivers, J. H., Lynch, V., Lo, W.-K., Xiao, D., Oye, M. M. & Holmes, A. L. (2006). Inorg. Chem. 45, 4340–4345. [DOI] [PubMed]
  46. Wu, B. & Hou, T. (2010). Acta Cryst. E66, m457. [DOI] [PMC free article] [PubMed]
  47. Yang, X., Jones, R. A., Wu, Q., Oye, M. M., Lo, W.-K., Wong, W.-K. & Holmes, A. L. (2006). Polyhedron, 25, 271–278.
  48. Yang, F., Li, G.-M., Chen, P., Yan, P.-F. & Hou, G.-F. (2011). Acta Cryst. E67, m1185. [DOI] [PMC free article] [PubMed]
  49. Yang, X., Schipper, D., Liao, A., Stanley, J. M., Jones, R. A. & Holliday, B. J. (2013). Polyhedron, 52, 165–169.
  50. Yin, J.-C., Qin, T.-Z., Hu, C., He, G.-M., Zhao, B.-W., Zhang, C. & Wang, J. (2017). Mater. Lett. 197, 221–223.
  51. Zhang, Y., Zhang, W.-X. & Zheng, J.-M. (2016). Z. Anorg. Allg. Chem. 642, 461–466.
  52. Zhao, S., Liu, X., Wong, W.-Y., Lü, X. & Wong, W.-K. (2014). Inorg. Chim. Acta, 414, 160–164.
  53. Zhou, H., Chen, C., Liu, Y. & Shen, X. (2015). Inorg. Chim. Acta, 437, 188–194.
  54. Zhu, T., Yu, Z., Yang, X., Bo, L., Jiang, D. & Chen, H. (2018). Polyhedron, 148, 124–128.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989018016109/ex2013sup1.cif

e-74-01862-sup1.cif (12.1MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989018016109/ex2013Isup2.hkl

e-74-01862-Isup2.hkl (1.5MB, hkl)

CCDC reference: 1878960

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES