Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2018 Nov 27;74(Pt 12):1878–1880. doi: 10.1107/S2056989018016584

Crystal structure of the lead-containing organic–inorganic hybrid: (C18H26N2)3[Pb4I14(DMSO)2]·2DMSO

Li Li a, Dan Zhao a, Zhi Liu a,*, Dingchao Zhang a, Zhenhao Hu a, Kunlun Li a, Jing Yang b
PMCID: PMC6281093  PMID: 30574392

The compound tris­(1,1′-dibutyl-4,4′-bi­pyridine-1,1′-diium) bis­(dimethyl sulfoxide)di-μ3-iodido-tetra-μ2-iodido-octa­iodido­tetra­lead(II) dimethyl sulfoxide tetra­solvate belongs a class of organic–inorganic hybrid materials with novel functionalities. In this compound, C—H⋯O and C—H⋯I hydrogen-bonding inter­actions, π–π inter­actions, other short contacts and Pb octa­hedral chains are present, extending the crystal structure into a three-dimensional supra­molecular network.

Keywords: organic-inorganic hybrid, crystal structure, hydrogen-bonding inter­actions, π–π inter­actions

Abstract

The title compound, tris­(1,1′-dibutyl-4,4′-bi­pyridine-1,1′-diium) bis­(dimethyl sulfoxide)di-μ3-iodido-tetra-μ2-iodido-octa­iodido­tetra­lead(II) dimethyl sulfoxide di­solvate, (C18H26N2)3[Pb4I14(C2H6OS)2]·2C2H6OS, belongs to a class of organic–inorganic hybrid materials with novel functionalities. In this compound, C—H⋯O and C—H⋯I hydrogen-bonding inter­actions, π–π inter­actions, other short contacts and Pb octa­hedral chains are present, extending the crystal structure into a three-dimensional supra­molecular network.

Chemical context  

Organic–inorganic hybrid materials have attracted more and more attention from researchers because of their inter­esting physical properties and novel functionalities, such as magnetism, ferroelectricity, electrical/optical properties and photochromism (Yao et al., 2017). The inorganic components provide rich structural possibilities, including discrete clusters, chains, layers and open frameworks, which dominate the significant electrical, optical and magnetic properties in hybrids (Sun et al., 2018). The organic moieties may exhibit unique mol­ecular properties such as hyperpolarizability, photochromicity and polymerizability (Tang & Guloy, 1999). The title mol­ecule was prepared by the reaction of viologens (N,N′-disubstituted-4,4′-bipyridinium) and a metal halide. Viologens show excellent redox and chemical stability. In addition, they can act as effective templates for the construction of various organic–inorganic hybrids, charge-transfer complexes and supra­molecular systems (Liu et al., 2017). As lead is a heavy p-block metal in the IVA group, lead(II) halide-based organic–inorganic hybrids possess a large radius, a flexible coordination environment, and variable stereochemical activities of the lead center (Li et al., 2012).graphic file with name e-74-01878-scheme1.jpg

Structural commentary  

The title compound crystallizes in the triclinic system in space group Pī. The asymmetric unit consists of half a [(Pb4I14)]6− trianion, one and a half BV2+ (BV2+ = 1,1′-dibutyl-4,4′- bipyridinium) dications and two DMSO mol­ecules, as shown in Fig. 1. The BV2+ cation is located on a general position and adopts a non-planar structure, with a dihedral angle of 27.5 (3)° between the planes of the pyridinium rings. In the bipyridinium rings, C—N bond lengths vary from 1.335 (9) to 1.499 (10) Å and C—C bond lengths from 1.336 (17) to 1.636 (17) Å. C—N—C bond angles are in the range 118.6 (6)–121.1 (7)° and C—C—C bond angles in the range 107.9 (9)–122.1 (6)°. The inorganic anion can be considered as a set of mixed face-shared/edge-shared octa­hedra (Krautscheid et al., 2001). Pb1—I bond lengths range from 3.0765 (5) to 3.4315 (5) Å and Pb2—I bond lengths from 3.0802 (5) to 3.4010 (5) Å. I—Pb1—I bond angles are in the range 82.007 (13)–172.112 (13)° and O—Pb2—I bond angles in the range 82.78 (10)-174.71 (9)°. All the above angles deviate from the angles of an ideal octa­hedron (90 and 180°) due to the stereochemical activity of the Pb (6s 2) lone pairs (Li et al., 2005).

Figure 1.

Figure 1

The mol­ecular structure of the title compound. Displacement ellipsoids are drawn at the 25% probability level. The second lattice DMSO molecule and the third VB cation, generated by symmetry, are omitted for clarity. Symmetry code: (A) −x, −y, −z.

Supra­molecular features  

In the compound, the organic species inter­act with the inorganic [(Pb4I14)]6− and DMSO via C—H⋯I and C—H⋯O hydrogen bonds (Table 1). The C⋯I distances are in the range 3.668 (8)–3.940 (10) Å while the C⋯O distances are 3.093 (9) and 3.517 (10) Å. The C—H⋯I angle values vary from 136 to 168°. Hydrogen bonds between the anionic entities [(Pb4I14)]6− and organic species play an important role in stabilizing the crystal structure (Fig. 2). In addition, there are weak π–π inter­actions between adjacent free BV2+ cations with centroid-to-centroid distances between the pyridyl groups ranging from 4.249 (4) to 4.796 (4) Å (Table 2).

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8⋯I2i 0.93 2.94 3.668 (8) 136
C18—H18⋯O1ii 0.93 2.30 3.093 (9) 142
C21—H21⋯I7iii 0.93 2.95 3.780 (7) 150
C22—H22⋯I2ii 0.93 2.86 3.776 (8) 168
C23—H23⋯I1iv 0.93 2.85 3.753 (7) 165
C24—H24B⋯I5v 0.97 2.99 3.940 (10) 166
C30—H30C⋯O2ii 0.96 2.57 3.517 (10) 169

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic.

Figure 2.

Figure 2

The crystal packing of the title compound with hydrogen bonds (Table 1) shown as dashed lines.

Table 2. Analysis of short ring–ring inter­actions (Å, °).

Cg(I)⋯Cg(J): ring centroid I,J (numbered as in Fig. 1); CgCg: distance between ring centroids; α: dihedral angle between planes I and J; CgI_Perp: perpendicular distance of Cg(I) on ring J; CgJ_Perp: perpendicular distance of Cg(J) on ring I.

Cg(I)⋯Cg(J) CgCg α CgI_Perp CgJ_Perp
Cg(2)⋯Cg(3)vi 4.796 (4) 27.5 (3) 3.481 (3) 3.970 (3)
Cg(3)⋯Cg(2)vi 4.795 (4) 27.5 (3) 3.970 (3) 3.480 (3)
Cg(3)⋯Cg(3)vi 4.249 (4) 0.0 (4) 3.507 (3) 3.507 (3)

Symmetry code: (vi) 1 − x, 2 − y, 1 − z.

Database survey  

Lead(II) iodide complexes have been reported whose structures include chains of face-sharing ideal PbI6 octa­hedra (Krautscheid et al., 2001; She et al., 2014) and chains of corner-sharing PbI6 octa­hedra (Wang et al., 1995). The structure of 1,1′-dibutyl-4,4′-bipyridinium diiodide was reported by our research group (Zhao et al., 2012). Typical Pb–I-based hybrids templated with alkyl viologen cations include, for example, [(Pb6I22)(DMF)2(DPB)5] (Zhang et al., 2015), (C21H27N3)[Pb3I9] (Hong-Xu et al., 2010), (C14H18N2)[Pb2I6] (Pradeesh et al., 2010) and [IV][Pb2I6] (Kim et al., 2018).

Synthesis and crystallization  

NaI (0.23 g, 1.5 mmol), PbI2 (0.46 g, 1.0 mmol) and 10 ml of methanol were stirred under an argon atmosphere until dissolved. 1,1′-Dibutyl-4,4′-bipyridyl cation salt (0.52 g, 1.0 mmol) dissolved in methanol (5 ml) was added to the reaction mixture at room temperature. The resulting precipitate was dissolved in DMSO (3 ml) and placed in a sealed jar of anhydrous ether. Red crystals were produced two weeks later under an argon-protected atmosphere. After filtering and drying under vacuum, red needle-shaped crystals of 0.73 g (72.3%) with high quality were obtained. Analysis calculated for C62H102I14N6O4Pb4S4: C 19.97, H 2.70, N 2.25%. Found: C 19.80, H 2.82, N 2.25%. IR (cm−1): 3291 (w), 3108 (m), 3035 (s), 2931 (w), 2958 (w), 2857 (w), 944 (w), 1636 (m), 1634 (s), 1441 (m), 1060 (s), 833 (s).

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 3. Hydrogen atoms were placed in calculated positions (C—H = 0.93–0.97 Å) and were included in the refinement in the riding-model approximation, with U iso(H)= 1.2-1.5U eq(C).

Table 3. Experimental details.

Crystal data
Chemical formula (C18H26N2)3[Pb4I14(C2H6OS)2]·2C2H6OS
M r 1864.54
Crystal system, space group Triclinic, P Inline graphic
Temperature (K) 296
a, b, c (Å) 11.5011 (10), 14.2262 (13), 16.2969 (14)
α, β, γ (°) 80.305 (1), 78.449 (1), 81.753 (1)
V3) 2558.5 (4)
Z 2
Radiation type Mo Kα
μ (mm−1) 10.90
Crystal size (mm) 0.55 × 0.50 × 0.09
 
Data collection
Diffractometer Bruker APEX3 CCD area-detector
Absorption correction Multi-scan (SADABS; Bruker, 2017)
T min, T max 0.065, 0.440
No. of measured, independent and observed [I > 2σ(I)] reflections 24466, 8975, 8219
R int 0.040
(sin θ/λ)max−1) 0.595
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.034, 0.099, 1.07
No. of reflections 8975
No. of parameters 432
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 2.47, −1.72

Computer programs: APEX3 and SAINT (Bruker, 2017), SHELXTL (Sheldrick, 2008).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989018016584/ex2016sup1.cif

e-74-01878-sup1.cif (31.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989018016584/ex2016Isup2.hkl

e-74-01878-Isup2.hkl (439KB, hkl)

CCDC reference: 1880239

Additional supporting information: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Crystal data

(C18H26N2)3[Pb4I14(C2H6OS)2]·2C2H6OS Z = 2
Mr = 1864.54 F(000) = 1682
Triclinic, P1 Dx = 2.419 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 11.5011 (10) Å Cell parameters from 29882 reflections
b = 14.2262 (13) Å θ = 1.8–25°
c = 16.2969 (14) Å µ = 10.90 mm1
α = 80.305 (1)° T = 296 K
β = 78.449 (1)° Needle, red
γ = 81.753 (1)° 0.55 × 0.50 × 0.09 mm
V = 2558.5 (4) Å3

Data collection

Bruker APEX3 CCD area-detector diffractometer 8975 independent reflections
Radiation source: fine-focus sealed tube 8219 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.040
φ and ω scans θmax = 25.0°, θmin = 1.8°
Absorption correction: multi-scan (SADABS; Bruker, 2017) h = −13→13
Tmin = 0.065, Tmax = 0.440 k = −16→16
24466 measured reflections l = −19→19

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.034 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.099 w = 1/[σ2(Fo2) + (0.0562P)2 + 3.2208P] where P = (Fo2 + 2Fc2)/3
S = 1.07 (Δ/σ)max = 0.059
8975 reflections Δρmax = 2.47 e Å3
432 parameters Δρmin = −1.72 e Å3
0 restraints Extinction correction: SHELXTL (Bruker, 2017), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.00081 (6)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Pb1 −0.019011 (19) 0.115698 (16) 0.614407 (14) 0.02456 (9)
Pb2 0.056844 (19) 0.234124 (16) 0.300143 (15) 0.02475 (9)
I3 −0.12457 (3) 0.27930 (3) 0.48471 (3) 0.02923 (11)
I4 −0.07737 (4) 0.39067 (3) 0.18256 (3) 0.04282 (14)
I5 0.27864 (4) 0.19949 (4) 0.16274 (3) 0.04566 (14)
I6 0.15180 (4) 0.24586 (3) 0.65461 (3) 0.04339 (14)
I7 −0.22112 (4) 0.16826 (4) 0.75974 (3) 0.04122 (13)
C7 0.9915 (6) 0.9485 (5) 0.0111 (4) 0.0338 (15)
N2 0.4596 (5) 0.6917 (4) 0.7240 (4) 0.0363 (13)
C1 0.5880 (9) 0.6807 (9) 0.1101 (8) 0.087 (3)
H1A 0.5779 0.7078 0.0535 0.130*
H1B 0.5298 0.7132 0.1499 0.130*
H1C 0.5775 0.6137 0.1193 0.130*
C2 0.7139 (8) 0.6923 (7) 0.1220 (7) 0.068 (3)
H2A 0.7239 0.7601 0.1120 0.082*
H2B 0.7218 0.6681 0.1801 0.082*
C3 0.8105 (7) 0.6412 (5) 0.0644 (5) 0.050 (2)
H3A 0.8006 0.6641 0.0064 0.060*
H3B 0.8012 0.5733 0.0756 0.060*
C4 0.9363 (7) 0.6536 (5) 0.0728 (5) 0.0496 (19)
H4A 0.9479 0.6299 0.1303 0.059*
H4B 0.9935 0.6161 0.0352 0.059*
N1 0.9583 (5) 0.7570 (4) 0.0515 (4) 0.0368 (13)
C5 0.9825 (8) 0.8037 (6) 0.1095 (5) 0.055 (2)
H5 0.9881 0.7715 0.1635 0.066*
C6 0.9992 (8) 0.8996 (6) 0.0897 (5) 0.055 (2)
H6 1.0160 0.9314 0.1306 0.067*
C9 0.9507 (8) 0.8038 (7) −0.0262 (5) 0.060 (2)
H9 0.9343 0.7710 −0.0666 0.072*
C8 0.9665 (9) 0.8976 (7) −0.0468 (5) 0.063 (3)
H8 0.9604 0.9284 −0.1011 0.076*
C10 0.2978 (9) 0.6823 (9) 1.0341 (6) 0.084 (3)
H10A 0.2572 0.6397 1.0793 0.127*
H10B 0.2407 0.7316 1.0127 0.127*
H10C 0.3547 0.7110 1.0548 0.127*
C11 0.3623 (9) 0.6262 (7) 0.9635 (6) 0.067 (3)
H11A 0.3150 0.5765 0.9594 0.081*
H11B 0.4382 0.5951 0.9771 0.081*
C12 0.3845 (7) 0.6903 (6) 0.8783 (5) 0.0481 (19)
H12A 0.3091 0.7237 0.8656 0.058*
H12B 0.4353 0.7380 0.8812 0.058*
C13 0.4431 (7) 0.6323 (5) 0.8086 (5) 0.0446 (18)
H13A 0.5203 0.6018 0.8201 0.054*
H13B 0.3944 0.5821 0.8083 0.054*
C14 0.3627 (6) 0.7293 (5) 0.6908 (5) 0.0381 (16)
H14 0.2872 0.7185 0.7213 0.046*
C15 0.3738 (5) 0.7837 (5) 0.6123 (5) 0.0393 (17)
H15 0.3059 0.8096 0.5899 0.047*
C16 0.4857 (5) 0.8001 (5) 0.5664 (5) 0.0310 (15)
C19 0.4996 (5) 0.8580 (5) 0.4816 (5) 0.0330 (16)
C23 0.5989 (6) 0.9090 (5) 0.4521 (5) 0.0392 (16)
H23 0.6563 0.9058 0.4856 0.047*
C22 0.6111 (6) 0.9628 (6) 0.3748 (5) 0.0468 (19)
H22 0.6775 0.9962 0.3555 0.056*
N3 0.5285 (5) 0.9690 (4) 0.3252 (4) 0.0419 (15)
C24 0.5471 (8) 1.0264 (7) 0.2402 (6) 0.064 (3)
H24A 0.6019 1.0729 0.2383 0.077*
H24B 0.4717 1.0613 0.2290 0.077*
C25 0.5966 (9) 0.9636 (9) 0.1732 (6) 0.076 (3)
H25A 0.5386 0.9216 0.1703 0.091*
H25B 0.6685 0.9242 0.1864 0.091*
C26 0.6271 (12) 1.0332 (11) 0.0828 (8) 0.112 (5)
H26A 0.5573 1.0779 0.0735 0.134*
H26B 0.6913 1.0699 0.0842 0.134*
C27 0.6594 (15) 0.9805 (13) 0.0197 (10) 0.140 (6)
H27A 0.7293 0.9371 0.0286 0.209*
H27B 0.6767 1.0219 −0.0331 0.209*
H27C 0.5955 0.9445 0.0183 0.209*
C21 0.4319 (6) 0.9209 (5) 0.3527 (5) 0.0430 (19)
H21 0.3755 0.9253 0.3181 0.052*
C20 0.4156 (5) 0.8659 (5) 0.4301 (5) 0.0363 (16)
H20 0.3480 0.8338 0.4483 0.044*
C17 0.5853 (5) 0.7597 (5) 0.6030 (5) 0.0378 (16)
H17 0.6619 0.7693 0.5740 0.045*
C18 0.5692 (6) 0.7060 (5) 0.6819 (5) 0.0372 (16)
H18 0.6353 0.6794 0.7062 0.045*
S1 0.09717 (14) 0.45421 (12) 0.35969 (11) 0.0341 (4)
O1 0.1616 (4) 0.3631 (3) 0.3269 (3) 0.0348 (11)
C30 0.1581 (7) 0.4585 (6) 0.4499 (5) 0.058 (2)
H30A 0.1352 0.4060 0.4928 0.087*
H30B 0.1285 0.5181 0.4710 0.087*
H30C 0.2436 0.4537 0.4349 0.087*
C31 0.1638 (9) 0.5487 (6) 0.2894 (7) 0.078 (3)
H31A 0.2470 0.5437 0.2926 0.117*
H31B 0.1248 0.6092 0.3047 0.117*
H31C 0.1559 0.5445 0.2326 0.117*
S2 0.44397 (18) 0.46100 (15) 0.66133 (14) 0.0493 (5)
O2 0.5347 (5) 0.5287 (4) 0.6236 (4) 0.0671 (18)
C28 0.3245 (8) 0.4909 (6) 0.6066 (6) 0.062 (2)
H28A 0.2831 0.5519 0.6188 0.092*
H28B 0.2707 0.4426 0.6240 0.092*
H28C 0.3543 0.4945 0.5469 0.092*
C29 0.4998 (9) 0.3496 (7) 0.6250 (9) 0.091 (4)
H29A 0.4961 0.3549 0.5660 0.136*
H29B 0.4523 0.3008 0.6566 0.136*
H29C 0.5812 0.3327 0.6327 0.136*
I2 0.10647 (3) −0.07348 (3) 0.72885 (3) 0.02993 (12)
I1 −0.16306 (3) −0.05420 (3) 0.56721 (3) 0.02845 (12)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Pb1 0.02601 (14) 0.02141 (14) 0.02844 (15) −0.00252 (10) −0.00949 (10) −0.00442 (10)
Pb2 0.02510 (14) 0.02060 (14) 0.03053 (15) −0.00131 (10) −0.00997 (10) −0.00449 (10)
I3 0.0275 (2) 0.0228 (2) 0.0371 (2) −0.00003 (16) −0.00946 (17) −0.00164 (18)
I4 0.0412 (3) 0.0305 (3) 0.0544 (3) −0.0011 (2) −0.0192 (2) 0.0108 (2)
I5 0.0392 (3) 0.0600 (3) 0.0366 (3) 0.0084 (2) −0.0076 (2) −0.0147 (2)
I6 0.0441 (3) 0.0374 (3) 0.0561 (3) −0.0159 (2) −0.0173 (2) −0.0080 (2)
I7 0.0369 (2) 0.0492 (3) 0.0397 (3) −0.0072 (2) −0.00319 (19) −0.0148 (2)
C7 0.029 (3) 0.044 (4) 0.032 (4) −0.002 (3) −0.010 (3) −0.011 (3)
N2 0.032 (3) 0.036 (3) 0.043 (3) 0.002 (2) −0.005 (2) −0.021 (3)
C1 0.061 (6) 0.100 (9) 0.100 (9) −0.029 (6) −0.022 (6) 0.008 (7)
C2 0.058 (5) 0.063 (6) 0.086 (7) −0.017 (5) −0.012 (5) −0.009 (5)
C3 0.072 (5) 0.026 (4) 0.056 (5) −0.014 (4) −0.031 (4) 0.009 (3)
C4 0.063 (5) 0.037 (4) 0.053 (5) −0.004 (4) −0.027 (4) 0.001 (4)
N1 0.043 (3) 0.032 (3) 0.040 (3) −0.003 (3) −0.016 (3) −0.008 (3)
C5 0.088 (6) 0.041 (5) 0.039 (4) 0.013 (4) −0.037 (4) 0.000 (4)
C6 0.093 (6) 0.043 (5) 0.045 (5) 0.006 (4) −0.046 (4) −0.018 (4)
C9 0.091 (7) 0.071 (6) 0.031 (4) −0.046 (5) −0.013 (4) −0.008 (4)
C8 0.106 (7) 0.069 (6) 0.028 (4) −0.053 (6) −0.019 (4) 0.001 (4)
C10 0.072 (7) 0.132 (11) 0.045 (5) −0.002 (6) −0.003 (5) −0.018 (6)
C11 0.074 (6) 0.071 (7) 0.055 (6) −0.006 (5) −0.013 (5) −0.007 (5)
C12 0.036 (4) 0.059 (5) 0.051 (5) −0.002 (4) −0.005 (3) −0.020 (4)
C13 0.049 (4) 0.040 (4) 0.047 (5) 0.004 (3) −0.012 (3) −0.014 (4)
C14 0.029 (3) 0.040 (4) 0.046 (4) −0.003 (3) −0.002 (3) −0.015 (3)
C15 0.018 (3) 0.046 (4) 0.058 (5) 0.001 (3) −0.007 (3) −0.024 (4)
C16 0.025 (3) 0.029 (3) 0.043 (4) 0.000 (3) −0.007 (3) −0.019 (3)
C19 0.020 (3) 0.033 (4) 0.050 (4) 0.002 (3) −0.004 (3) −0.024 (3)
C23 0.026 (3) 0.047 (4) 0.047 (4) −0.010 (3) −0.010 (3) −0.007 (4)
C22 0.027 (3) 0.049 (5) 0.067 (5) −0.006 (3) −0.008 (3) −0.014 (4)
N3 0.029 (3) 0.044 (4) 0.048 (4) 0.008 (3) −0.005 (3) −0.008 (3)
C24 0.040 (4) 0.082 (7) 0.063 (6) 0.016 (4) −0.015 (4) −0.002 (5)
C25 0.072 (6) 0.108 (9) 0.049 (6) −0.012 (6) −0.015 (5) −0.011 (6)
C26 0.108 (10) 0.143 (12) 0.092 (9) 0.056 (9) −0.055 (8) −0.052 (9)
C27 0.136 (13) 0.164 (16) 0.130 (14) 0.020 (11) −0.042 (11) −0.062 (12)
C21 0.020 (3) 0.043 (4) 0.072 (6) 0.007 (3) −0.017 (3) −0.023 (4)
C20 0.023 (3) 0.040 (4) 0.050 (4) −0.001 (3) −0.008 (3) −0.017 (4)
C17 0.021 (3) 0.038 (4) 0.058 (5) 0.000 (3) −0.011 (3) −0.015 (4)
C18 0.029 (3) 0.033 (4) 0.055 (5) 0.004 (3) −0.014 (3) −0.020 (3)
S1 0.0289 (8) 0.0265 (8) 0.0481 (10) −0.0021 (6) −0.0051 (7) −0.0117 (7)
O1 0.026 (2) 0.031 (2) 0.052 (3) −0.0029 (18) −0.007 (2) −0.021 (2)
C30 0.056 (5) 0.064 (6) 0.065 (6) −0.002 (4) −0.013 (4) −0.040 (5)
C31 0.065 (6) 0.039 (5) 0.123 (9) −0.012 (4) −0.009 (6) 0.006 (5)
S2 0.0485 (11) 0.0429 (11) 0.0629 (13) −0.0001 (9) −0.0184 (9) −0.0197 (10)
O2 0.049 (3) 0.050 (4) 0.113 (5) −0.012 (3) −0.015 (3) −0.037 (4)
C28 0.066 (5) 0.037 (5) 0.088 (7) −0.012 (4) −0.040 (5) 0.009 (4)
C29 0.060 (6) 0.050 (6) 0.168 (12) 0.004 (5) −0.011 (7) −0.049 (7)
I2 0.0277 (2) 0.0258 (2) 0.0380 (2) −0.00431 (17) −0.00994 (17) −0.00347 (18)
I1 0.0271 (2) 0.0254 (2) 0.0363 (2) −0.00027 (16) −0.01434 (17) −0.00608 (18)

Geometric parameters (Å, º)

Pb1—I7 3.0765 (5) C14—H14 0.9300
Pb1—I6 3.1121 (5) C15—C16 1.383 (9)
Pb1—I3 3.1493 (5) C15—H15 0.9300
Pb1—I2 3.3282 (5) C16—C17 1.403 (9)
Pb1—I1 3.3858 (5) C16—C19 1.476 (10)
Pb2—O1 2.473 (4) C19—C20 1.384 (9)
Pb2—I5 3.0802 (5) C19—C23 1.400 (9)
Pb2—I4 3.1266 (5) C23—C22 1.351 (11)
Pb2—I2i 3.3053 (5) C23—H23 0.9300
Pb2—I1i 3.3187 (5) C22—N3 1.350 (10)
Pb2—I3 3.4010 (5) C22—H22 0.9300
C7—C6 1.364 (10) N3—C21 1.348 (9)
C7—C8 1.378 (10) N3—C24 1.479 (11)
C7—C7ii 1.481 (14) C24—C25 1.499 (13)
N2—C18 1.335 (9) C24—H24A 0.9700
N2—C14 1.340 (9) C24—H24B 0.9700
N2—C13 1.483 (10) C25—C26 1.636 (17)
C1—C2 1.534 (13) C25—H25A 0.9700
C1—H1A 0.9600 C25—H25B 0.9700
C1—H1B 0.9600 C26—C27 1.336 (17)
C1—H1C 0.9600 C26—H26A 0.9700
C2—C3 1.491 (12) C26—H26B 0.9700
C2—H2A 0.9700 C27—H27A 0.9600
C2—H2B 0.9700 C27—H27B 0.9600
C3—C4 1.518 (11) C27—H27C 0.9600
C3—H3A 0.9700 C21—C20 1.361 (11)
C3—H3B 0.9700 C21—H21 0.9300
C4—N1 1.499 (9) C20—H20 0.9300
C4—H4A 0.9700 C17—C18 1.373 (10)
C4—H4B 0.9700 C17—H17 0.9300
N1—C5 1.336 (9) C18—H18 0.9300
N1—C9 1.341 (10) S1—O1 1.522 (4)
C5—C6 1.380 (11) S1—C30 1.763 (8)
C5—H5 0.9300 S1—C31 1.770 (9)
C6—H6 0.9300 C30—H30A 0.9600
C9—C8 1.349 (12) C30—H30B 0.9600
C9—H9 0.9300 C30—H30C 0.9600
C8—H8 0.9300 C31—H31A 0.9600
C10—C11 1.520 (13) C31—H31B 0.9600
C10—H10A 0.9600 C31—H31C 0.9600
C10—H10B 0.9600 S2—O2 1.492 (6)
C10—H10C 0.9600 S2—C28 1.749 (8)
C11—C12 1.524 (12) S2—C29 1.774 (9)
C11—H11A 0.9700 C28—H28A 0.9600
C11—H11B 0.9700 C28—H28B 0.9600
C12—C13 1.508 (10) C28—H28C 0.9600
C12—H12A 0.9700 C29—H29A 0.9600
C12—H12B 0.9700 C29—H29B 0.9600
C13—H13A 0.9700 C29—H29C 0.9600
C13—H13B 0.9700 I2—Pb2i 3.3053 (5)
C14—C15 1.371 (10) I1—Pb2i 3.3187 (5)
I7—Pb1—I6 93.528 (15) C12—C13—H13B 109.1
I7—Pb1—I3 91.655 (15) H13A—C13—H13B 107.8
I6—Pb1—I3 93.038 (15) N2—C14—C15 120.7 (6)
I7—Pb1—I2 95.153 (14) N2—C14—H14 119.7
I6—Pb1—I2 90.519 (14) C15—C14—H14 119.7
I3—Pb1—I2 172.112 (13) C14—C15—C16 120.2 (7)
I7—Pb1—I1 93.512 (14) C14—C15—H15 119.9
I6—Pb1—I1 170.159 (14) C16—C15—H15 119.9
I3—Pb1—I1 93.622 (13) C15—C16—C17 117.8 (7)
I2—Pb1—I1 82.007 (13) C15—C16—C19 121.0 (6)
O1—Pb2—I5 84.47 (10) C17—C16—C19 121.2 (6)
O1—Pb2—I4 87.45 (11) C20—C19—C23 118.0 (7)
I5—Pb2—I4 94.693 (16) C20—C19—C16 122.1 (6)
O1—Pb2—I2i 174.71 (9) C23—C19—C16 119.9 (6)
I5—Pb2—I2i 100.234 (14) C22—C23—C19 119.9 (7)
I4—Pb2—I2i 89.734 (15) C22—C23—H23 120.0
O1—Pb2—I1i 99.08 (11) C19—C23—H23 120.0
I5—Pb2—I1i 90.803 (14) N3—C22—C23 121.1 (7)
I4—Pb2—I1i 171.859 (14) N3—C22—H22 119.5
I2i—Pb2—I1i 83.372 (13) C23—C22—H22 119.5
O1—Pb2—I3 82.78 (10) C21—N3—C22 119.9 (7)
I5—Pb2—I3 162.883 (14) C21—N3—C24 120.8 (7)
I4—Pb2—I3 96.095 (14) C22—N3—C24 119.3 (7)
I2i—Pb2—I3 93.076 (12) N3—C24—C25 111.0 (8)
I1i—Pb2—I3 80.016 (12) N3—C24—H24A 109.4
Pb1—I3—Pb2 100.953 (13) C25—C24—H24A 109.4
C6—C7—C8 116.9 (7) N3—C24—H24B 109.4
C6—C7—C7ii 121.8 (7) C25—C24—H24B 109.4
C8—C7—C7ii 121.3 (8) H24A—C24—H24B 108.0
C18—N2—C14 121.1 (7) C24—C25—C26 107.9 (9)
C18—N2—C13 120.3 (6) C24—C25—H25A 110.1
C14—N2—C13 118.6 (6) C26—C25—H25A 110.1
C2—C1—H1A 109.5 C24—C25—H25B 110.1
C2—C1—H1B 109.5 C26—C25—H25B 110.1
H1A—C1—H1B 109.5 H25A—C25—H25B 108.4
C2—C1—H1C 109.5 C27—C26—C25 110.1 (14)
H1A—C1—H1C 109.5 C27—C26—H26A 109.6
H1B—C1—H1C 109.5 C25—C26—H26A 109.6
C3—C2—C1 113.3 (9) C27—C26—H26B 109.7
C3—C2—H2A 108.9 C25—C26—H26B 109.6
C1—C2—H2A 108.9 H26A—C26—H26B 108.1
C3—C2—H2B 108.9 C26—C27—H27A 109.5
C1—C2—H2B 108.9 C26—C27—H27B 109.5
H2A—C2—H2B 107.7 H27A—C27—H27B 109.5
C2—C3—C4 114.6 (7) C26—C27—H27C 109.5
C2—C3—H3A 108.6 H27A—C27—H27C 109.5
C4—C3—H3A 108.6 H27B—C27—H27C 109.5
C2—C3—H3B 108.6 N3—C21—C20 121.1 (6)
C4—C3—H3B 108.6 N3—C21—H21 119.4
H3A—C3—H3B 107.6 C20—C21—H21 119.4
N1—C4—C3 111.1 (6) C21—C20—C19 119.9 (6)
N1—C4—H4A 109.4 C21—C20—H20 120.1
C3—C4—H4A 109.4 C19—C20—H20 120.1
N1—C4—H4B 109.4 C18—C17—C16 119.7 (6)
C3—C4—H4B 109.4 C18—C17—H17 120.1
H4A—C4—H4B 108.0 C16—C17—H17 120.1
C5—N1—C9 119.6 (7) N2—C18—C17 120.6 (6)
C5—N1—C4 120.8 (6) N2—C18—H18 119.7
C9—N1—C4 119.6 (6) C17—C18—H18 119.7
N1—C5—C6 120.2 (7) O1—S1—C30 104.1 (3)
N1—C5—H5 119.9 O1—S1—C31 104.7 (4)
C6—C5—H5 119.9 C30—S1—C31 99.9 (5)
C7—C6—C5 121.0 (7) S1—O1—Pb2 123.4 (2)
C7—C6—H6 119.5 S1—C30—H30A 109.5
C5—C6—H6 119.5 S1—C30—H30B 109.5
N1—C9—C8 121.2 (7) H30A—C30—H30B 109.5
N1—C9—H9 119.4 S1—C30—H30C 109.5
C8—C9—H9 119.4 H30A—C30—H30C 109.5
C9—C8—C7 121.1 (8) H30B—C30—H30C 109.5
C9—C8—H8 119.4 S1—C31—H31A 109.5
C7—C8—H8 119.5 S1—C31—H31B 109.5
C11—C10—H10A 109.5 H31A—C31—H31B 109.5
C11—C10—H10B 109.5 S1—C31—H31C 109.5
H10A—C10—H10B 109.5 H31A—C31—H31C 109.5
C11—C10—H10C 109.5 H31B—C31—H31C 109.5
H10A—C10—H10C 109.5 O2—S2—C28 108.1 (4)
H10B—C10—H10C 109.5 O2—S2—C29 107.1 (4)
C10—C11—C12 112.1 (8) C28—S2—C29 98.0 (5)
C10—C11—H11A 109.2 S2—C28—H28A 109.5
C12—C11—H11A 109.2 S2—C28—H28B 109.5
C10—C11—H11B 109.2 H28A—C28—H28B 109.5
C12—C11—H11B 109.2 S2—C28—H28C 109.5
H11A—C11—H11B 107.9 H28A—C28—H28C 109.5
C13—C12—C11 111.1 (7) H28B—C28—H28C 109.5
C13—C12—H12A 109.4 S2—C29—H29A 109.5
C11—C12—H12A 109.4 S2—C29—H29B 109.5
C13—C12—H12B 109.4 H29A—C29—H29B 109.5
C11—C12—H12B 109.4 S2—C29—H29C 109.5
H12A—C12—H12B 108.0 H29A—C29—H29C 109.5
N2—C13—C12 112.5 (6) H29B—C29—H29C 109.5
N2—C13—H13A 109.1 Pb2i—I2—Pb1 97.673 (13)
C12—C13—H13A 109.1 Pb2i—I1—Pb1 96.290 (13)
N2—C13—H13B 109.1
I7—Pb1—I3—Pb2 −173.613 (13) C17—C16—C19—C23 −28.4 (9)
I6—Pb1—I3—Pb2 92.765 (15) C20—C19—C23—C22 −0.9 (10)
I2—Pb1—I3—Pb2 −23.93 (9) C16—C19—C23—C22 −179.3 (6)
I1—Pb1—I3—Pb2 −79.987 (13) C19—C23—C22—N3 0.4 (11)
O1—Pb2—I3—Pb1 −98.01 (11) C23—C22—N3—C21 0.0 (11)
I5—Pb2—I3—Pb1 −55.87 (5) C23—C22—N3—C24 −178.2 (7)
I4—Pb2—I3—Pb1 175.355 (13) C21—N3—C24—C25 −79.3 (9)
I2i—Pb2—I3—Pb1 85.294 (14) C22—N3—C24—C25 98.9 (9)
I1i—Pb2—I3—Pb1 2.580 (11) N3—C24—C25—C26 −174.4 (8)
C1—C2—C3—C4 178.3 (8) C24—C25—C26—C27 −173.3 (11)
C2—C3—C4—N1 −61.5 (9) C22—N3—C21—C20 0.2 (10)
C3—C4—N1—C5 117.3 (8) C24—N3—C21—C20 178.4 (7)
C3—C4—N1—C9 −61.1 (10) N3—C21—C20—C19 −0.7 (10)
C9—N1—C5—C6 0.2 (12) C23—C19—C20—C21 1.1 (9)
C4—N1—C5—C6 −178.2 (8) C16—C19—C20—C21 179.4 (6)
C8—C7—C6—C5 −0.1 (13) C15—C16—C17—C18 0.0 (9)
C7ii—C7—C6—C5 179.7 (8) C19—C16—C17—C18 −179.8 (6)
N1—C5—C6—C7 0.0 (14) C14—N2—C18—C17 −0.2 (9)
C5—N1—C9—C8 −0.4 (13) C13—N2—C18—C17 179.1 (6)
C4—N1—C9—C8 178.1 (8) C16—C17—C18—N2 0.2 (10)
N1—C9—C8—C7 0.3 (15) C30—S1—O1—Pb2 126.1 (4)
C6—C7—C8—C9 −0.1 (14) C31—S1—O1—Pb2 −129.5 (5)
C7ii—C7—C8—C9 −179.8 (9) I5—Pb2—O1—S1 150.1 (3)
C10—C11—C12—C13 −177.2 (8) I4—Pb2—O1—S1 55.2 (3)
C18—N2—C13—C12 112.7 (7) I2i—Pb2—O1—S1 −2.7 (15)
C14—N2—C13—C12 −68.0 (8) I1i—Pb2—O1—S1 −119.9 (3)
C11—C12—C13—N2 176.7 (7) I3—Pb2—O1—S1 −41.3 (3)
C18—N2—C14—C15 0.1 (10) I7—Pb1—I2—Pb2i 86.695 (15)
C13—N2—C14—C15 −179.2 (6) I6—Pb1—I2—Pb2i −179.716 (13)
N2—C14—C15—C16 0.1 (10) I3—Pb1—I2—Pb2i −62.87 (9)
C14—C15—C16—C17 −0.2 (9) I1—Pb1—I2—Pb2i −6.140 (11)
C14—C15—C16—C19 179.6 (6) I7—Pb1—I1—Pb2i −88.621 (15)
C15—C16—C19—C20 −26.5 (9) I6—Pb1—I1—Pb2i 46.99 (9)
C17—C16—C19—C20 153.3 (6) I3—Pb1—I1—Pb2i 179.495 (10)
C15—C16—C19—C23 151.8 (6) I2—Pb1—I1—Pb2i 6.097 (11)

Symmetry codes: (i) −x, −y, −z+1; (ii) −x+2, −y+2, −z.

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C8—H8···I2iii 0.93 2.94 3.668 (8) 136
C18—H18···O1iv 0.93 2.30 3.093 (9) 142
C21—H21···I7v 0.93 2.95 3.780 (7) 150
C22—H22···I2iv 0.93 2.86 3.776 (8) 168
C23—H23···I1vi 0.93 2.85 3.753 (7) 165
C24—H24B···I5vii 0.97 2.99 3.940 (10) 166
C30—H30C···O2iv 0.96 2.57 3.517 (10) 169

Symmetry codes: (iii) x+1, y+1, z−1; (iv) −x+1, −y+1, −z+1; (v) −x, −y+1, −z+1; (vi) x+1, y+1, z; (vii) x, y+1, z.

The fractional coordinates of Cg(I)

Cg(I) x y z
Cg(1) 0.9749 (3) 0.8517 (2) 0.03147 (19)
Cg(2) 0.4727 (2) 0.7451 (2) 0.6464 (2)
Cg(3) 0.5142 (2) 0.9143 (2) 0.4028 (2)

Funding Statement

This work was funded by Natural Science Foundation of Shandong Province grant ZR2010EM017.

References

  1. Bruker (2017). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Hong-Xu, G., Xi-Zhong, L., Wen-Bing, W. & Wen, W. (2010). Chin. J. Struct. Chem. 29, 181–186.
  3. Kim, K. J., Kim, G. H., Lampande, R., Ahn, D. H., Im, J. B., Moon, J. S., Lee, J. K., Lee, J. Y., Lee, J. Y. & Kwon, J. H. (2018). J. Mater. Chem. C. 6, 1343–1348.
  4. Krautscheid, H., Lode, C., Vielsack, F. & Vollmer, H. (2001). J. Chem. Soc. Dalton Trans. pp. 1099–1104.
  5. Li, H.-H., Chen, Z.-R., Li, J.-Q., Huang, C.-C., Xiao, G.-C., Lian, Z.-X. & Hu, X.-L. (2005). Acta Chim. Sin. 63, 697–702.
  6. Li, H.-H., Wang, Y.-J., Lian, Z.-X., Xu, Y.-F., Wang, M., Huang, S.-W. & Chen, Z.-R. (2012). J. Mol. Struct. 1016, 118–125.
  7. Liu, G., Liu, J., Nie, L., Ban, R., Armatas, G. S., Tao, X. & Zhang, Q. (2017). Inorg. Chem. 56, 5498–5501. [DOI] [PubMed]
  8. Pradeesh, K., Agarwal, M., Rao, K. K. & Prakash, G. V. (2010). Solid State Sci. 12, 95–98.
  9. She, Y.-J., Zhao, S.-P., Tian, Z.-F. & Ren, X.-M. (2014). Inorg. Chem. Commun. 46, 29–32.
  10. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  11. Sun, C., Du, M. X., Xu, J. G., Mao, F. F., Wang, M. S. & Guo, G. C. (2018). Dalton Trans. 47, 1023–1026. [DOI] [PubMed]
  12. Tang, Z. & Guloy, A. M. (1999). J. Am. Chem. Soc. 121, 452–453.
  13. Wang, S., Mitzi, D. B., Feild, C. A. & Guloy, A. (1995). J. Am. Chem. Soc. 117, 5297–5302.
  14. Yao, Z.-Y., Zou, Y., Chen, X. & Ren, X.-M. (2017). Inorg. Chem. Commun. 81, 5–9.
  15. Zhang, W., Zhang, N., Shen, L., Wu, H., Li, X., Li, S., Yue, J. & Niu, Y. (2015). Synth. React. Inorg. Met.-Org. Nano-Met. Chem. 45, 1347–1351.
  16. Zhao, D., Liu, Z., Shi, L.-Q., Yu, W.-T., Cui, D.-L. & Tao, X.-T. (2012). Z. Kristallogr. New Cryst. Struct. 227, 245–246.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989018016584/ex2016sup1.cif

e-74-01878-sup1.cif (31.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989018016584/ex2016Isup2.hkl

e-74-01878-Isup2.hkl (439KB, hkl)

CCDC reference: 1880239

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES